RESUMO
BACKGROUND: Ageing and associated cognitive impairments are becoming serious issues around the world. In this study, the physiological properties of three kinds of complexes of fatty acid (capric, stearic and oleic acid, respectively) and de-branched starch molecules were investigated via a d-galactose-induced ageing model. This study revealed differences in the regulation of cognitive impairment and brain damage following intervention of different complexes, which might highlight a potent approach for the prevention of this chronic disease. RESULTS: Data indicated that three complexes improved response time and cognitive function and the bio-parameter markers associated with oxidative stress in ageing rats. Among them, the complexes prepared from de-branched starch-oleic acid showed a greater improvement compared to others. In addition, de-branched starch-capric acid complex showed a higher improvement in the morphology of colon cells and hippocampal neuronal cells. The consumption of de-branched starch-capric acid and -oleic acid complexes generated more short-chain fatty acids in the gut. More importantly, the complexation of de-branched starch with either caprate or stearate enhanced gut Akkermansia. Therefore, it was proposed that the richness in Akkermansia and gut metabolites might be associated with reduced damage of the hippocampal neuronal cells induced by the ageing progress. Moreover, the AMPK (AMP-activated protein kinase) pathway was activated in liver in de-branched starch-capric acid complex diet. In summary, de-branched starch-capric acid complex exhibited a greater effect on the attenuation of ageing-induced cognitive impairment. CONCLUSION: This study might highlight a new approach for intervening in the cognitive impairment during the ageing progress via a food supply. © 2023 Society of Chemical Industry.
Assuntos
Disfunção Cognitiva , Amido , Ratos , Animais , Amido/química , Ácidos Graxos , Ácido Oleico/química , Ácidos Decanoicos , Envelhecimento , Disfunção Cognitiva/prevenção & controleRESUMO
The structural and digestive properties of indica rice starch-fatty acid complexes and the effects of lipoxygenase on the structural and digestive properties of the complexes were examined in this study. The complexes were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform-infrared spectroscopy and Raman spectroscopy. The results showed that indica rice starch had the highest molecular chain order and the highest crystallinity, and the crystallization disappeared after gelatinization, and the formation of indica rice starch-fatty acid complexes promoted the transformation of starch crystal structure from A-type to V-type. Lipoxygenase reduced the regularity of starch molecular crystal structure in the complexes, while enzyme protein improved the order of starch molecular structure in the complexes. The regularity of starch crystal structure in the complexes could improve with the increase of composite temperature and the increase of fatty acid unsaturation. In vitro digestibility and in vitro digestion kinetics showed that the formation of indica rice starch-fatty acid complexes reduced the digestibility of indica rice starch to a certain extent. The RDS content of indica rice starch was 66.42 ± 0.39 %, and lipoxygenase reduced the reduction of rapidly digested starch content during complexes digestion, while enzyme protein increased the content of resistant starch.
Assuntos
Digestão , Ácidos Graxos , Oryza , Amido , Oryza/química , Amido/química , Amido/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Lipoxigenase/metabolismo , Lipoxigenase/química , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , CinéticaRESUMO
The complexation of physically modified starch with fatty acids is favorable for the production of resistant starch. However, there is a lack of information on the effect of ultrasonication (UC) on the structure and properties of starch complexes and the molecular mechanism of the stabilization. Here, the multi-scale structure and in vitro digestive properties of starch-fatty acid complexes before and after UC were investigated, and the stabilization mechanisms of starch and fatty acids were explored. The results showed that the physicochemical properties and multi-scale structure of the starch-fatty acid complexes significantly changed with the type of fatty acids. The solubility and swelling power of the starch-fatty acid complexes were significantly decreased after UC (P < 0.05), which facilitated the binding of starch with fatty acids. The XRD results revealed that after the addition of fatty acids, the starch-fatty acid complexes showed typical V-shaped complexes. In addition, the starch-fatty acid complexes showed a significant increase in complexing index, improved short-range ordering and enhanced thermal stability. However, the differences in the structure and properties of the fatty acids themselves resulted in no significant improvement in the multi-scale structure of maize starch-palmitic acid by UC. In terms of digestibility, especially the complexes after UC were more compact in structure, which increased the difficulty of enzymatic digestion and thus slowed down the digestion process. DFT calculations and combined with FT-IR analysis showed that non-covalent interactions such as hydrogen bonding and hydrophobic interactions were the main driving force for the formation of the complexes, with binding energies (lauric acid, myristic acid and palmitic acid) of -30.50, -22.14 and -14.10 kcal/mol, respectively. Molecular dynamics simulations further confirmed the molecular mechanism of inclusion complex formation and stabilization. This study is important for the regulation of starchy foods by controlling processing conditions, and provides important information on the role of fatty acids in the regulation of starch complexes and the binding mechanism.
Assuntos
Digestão , Ácidos Graxos , Solubilidade , Amido , Amido/química , Ácidos Graxos/química , Sonicação , Ácido Palmítico/química , Zea mays/química , Difração de Raios XRESUMO
Structural factors that determine the amylolysis of starch-lipid complexes have remained unclear. Understanding the relationship between the structure and amylolysis of starch-lipid complexes is important for the design and preparation of complexes with predictable digestibility. In this study, the multiscale structures and amylolytic properties of complexes formed under different conditions between debranched high-amylose starch (DHAMS) and lauric, myristic, palmitic, and stearic acids were investigated. Higher complexing temperatures facilitated the formation of DHAMS-fatty acid (FA) complexes, especially the more stable type II crystallites. Longer complexing times also promoted the formation of complexes and the type II crystallites, except for DHAMS-lauric acid (LA). Molecular dynamics simulations showed that the binding free energy for the formation of DHAMS-LA complexes (10 kJ/mol) was lower than those for the other three DHAMS-FA complexes (20-50 kJ/mol), accounting for the lower stability of DHAMS-LA complexes at longer complexing times. The rate and extent of enzymatic digestion of the DHAMS-FA complexes were much lower in comparison to those of gelatinized HAMS. Correlation analyses showed that the rate and extent of enzymic digestion of DHAMS-FA complexes were mainly determined by the degree of crystallite perfection of the complexes.
RESUMO
Currently, the preparation methods and basic physicochemical properties of starch-FA complexes have been widely studied; however, no in-depth research on the regulatory mechanism of the digestive properties of debranched starch-unsaturated FA complexes has been conducted. Therefore, six fatty acids with different carbon chains and different degrees of unsaturation were complexed with de-branched millet starch in this research, using the microwave method. Microwave millet starch-linoleic acid complex (MPS-LOA) had the highest resistant starch (RS) content, and the structure and physicochemical properties of MPS-LOA were determined using various molecular techniques. The results indicate that MPS-LOA had a resistant starch (RS) content of 40.35% and the most notable fluorescence. The characteristic UV peaks of MPS-LOA were blue-shifted, and new IR peaks appeared. The crystalline structure changed to V-type crystals, the crystallinity increased, and the molecular weight decreased. The enthalpy and coagulability of MPS-LOA increased, and the swelling force decreased. Additionally, MPS-LOA showed enhanced α-glucosidase and α-amylase inhibition, and in-vitro hydrolysis kinetics analysis of MPS-LOA showed a hydrolysis index of 53.8 and an extended glycemic index (eGI)I of 54.6, indicating a low eGI food suitable for consumption by people with type II diabetes. These results provide a theoretical basis for the preparation of amylopectin- and starch-based foods with an anti-enzyme structure and a low glycemic index (GI).
RESUMO
Resistant starch type 5 (RS5), a starch-lipid complex, exhibited potential health benefits in blood glucose and insulin control due to the low digestibility. The effects of the crystalline structure of starch and chain length of fatty acid on the structure, in vitro digestibility, and fermentation ability in RS5 were investigated by compounding (maize, rice, wheat, potato, cassava, lotus, and ginkgo) of different debranched starches with 12-18C fatty acid (lauric, myristic, palmitic, and stearic acids), respectively. The complex showed a V-type structure, formed by lotus and ginkgo debranched starches, and fatty acid exhibited a higher short-range order and crystallinity, and lower in vitro digestibility than others due to the neat interior structure of more linear glucan chains. Furthermore, a fatty acid with 12C (lauric acid)-debranched starches complexes had the highest complex index among all complexes, which might be attributed to the activation energy required for complex formation increased with the lengthening of the lipid carbon chain. Therefore, the lotus starch-lauric acid complex (LS12) exhibited remarkable ability in intestinal flora fermentation to produce short-chain fatty acid (SCFAs), reducing intestinal pH, and creating a favorable environment for beneficial bacteria.
Assuntos
Microbioma Gastrointestinal , Amido , Humanos , Amido/química , Ácidos Graxos/química , Glucanos , Ácidos Láuricos , DigestãoRESUMO
Starch-fatty acid complexes used as emulsifiers have caught great attention because of their renewability and excellent emulsifying property, the development of a simple and efficient synthesis method for the fabrication of starch-fatty acid complexes is still greatly challenging. Herein, the rice starch-fatty acid complexes (NRS-FA) were successfully prepared by mechanical activation method using different long chain fatty acids (myristic acid, palmitic acid, and stearic acid) and native rice starch (NRS) as the raw materials. The results showed that the prepared NRS-FA with a V-shaped crystalline structure exhibited a higher digestion resistance than NRS. Moreover, when the chain length of fatty acids increased from 14 to 18 carbons, the contact angle of the complexes was much closer to 90°, and the average particle size was smaller, deriving the better emulsifying property of NRS-FA18 complexes, which were suitable to be used as an emulsifier to stabilize curcumin-loaded Pickering emulsions. The results of storage stability and in vitro digestion showed that the curcumin retention could reach 79.4 % after 28 days of storage and 80.8 % of curcumin was retained in the system after simulated gastric digestion, showing good encapsulation and delivery performance of prepared Pickering emulsions, which attributed to the enhancement of the coverage of particles at the oil-water interface.
Assuntos
Curcumina , Amido , Emulsões/química , Amido/química , Curcumina/química , Ácidos Graxos , Técnicas de Síntese em Fase Sólida , Emulsificantes/químicaRESUMO
The formation of starch-lipid complexes in instant rice noodles (IRN) free from and incorporated with fatty acids (FAs) and their impacts on textural, in vitro digestive and retrogradation properties were investigated. The gelatinization enthalpy values of IRN samples (1.24-4.93 J/g) were noticeably decreased (P < 0.05) compared to rice starch samples (2.54-6.89 J/g) fortified with FAs. Additionally, long-chain saturated FAs (stearic acid (SA, C18:0)) complexes produced higher ordered structures than the shorter-chain FAs (C12:0-C16:0), for 18-carbon FAs, the unsaturated FAs (linoleic acid (LOA, C18:2)) exhibited the strongest intermolecular interactions with rice starch. The relative crystallinity of IRN (27.01%-38.47%) was lower than the rice starch-FAs complexes (38.36%-56.80%). FAs delayed the retrogradation degree of IRN storaged at 4 °C for 21 days ascribed to the formation of V-type complexes. Higher enzymatic resistance was observed in IRN added FAs with resistant starch content increased from 5.13% to 14.42% (LOA), and the sample fortified with SA exhibited the highest slowly digestible starch content (35.92%). SEM revealed that the IRN compounded with palmitic acid, SA and LOA displayed more compact and regular structures. Overall, the formation of starch-FAs complexes probably is a novel strategy in improving the textural, digestive, and retrogradation properties of IRN.
Assuntos
Oryza , Amido , Ácidos Graxos , Digestão , Suplementos NutricionaisRESUMO
The effect of high amylose corn starch (HAS)-fatty acid complexes on the gel properties, protein secondary structure, microstructure, fatty acid content, and sensory properties of surimi under high-temperature treatment were investigated. The formation of HAS-fatty acid complexes increased melting temperature and decreased average particle size of HAS. The addition of HAS-fatty acid complexes significantly improved the breaking force, deformation and whiteness of surimi gels. The water in surimi gels containing HAS or HAS-fatty acid complexes became increasingly immobilized. HAS or HAS-fatty acid complexes promoted protein conformational transition from α-helix structure to other three secondary structure. Surimi gels added with HAS-fatty acid complexes had more compact network structure and higher fatty acid content. Moreover, the better sensory properties were obtained in surimi gels containing HAS-fatty acid complexes. Therefore, starch-fatty acid complexes not only could improve the gel properties of surimi, but also enhance its fatty acid content.
Assuntos
Ácidos Graxos/química , Produtos Pesqueiros/análise , Produtos Pesqueiros/normas , Peixes , Aditivos Alimentares/química , Géis/química , Temperatura Alta , Amido/química , Animais , Ácidos Graxos/análise , Proteínas de Peixes/químicaRESUMO
The effects of chain length and degree of unsaturation of fatty acids (FAs) on structure and in vitro digestibility of starch-protein-FA complexes were investigated in model systems. Studies with the rapid visco analyzer (RVA) showed that the formation of ternary complex resulted in higher viscosities than those of binary complex during the cooling and holding stages. The results of differential scanning calorimetry (DSC), Raman, and X-ray diffraction (XRD) showed that the structural differences for ternary complexes were much less than those for binary complexes. Starch-protein-FA complexes presented lower in vitro enzymatic digestibility compared with starch-FAs complexes. We conclude that shorter chain and lower unsaturation FAs favor the formation of ternary complexes but decrease the thermal stability of these complexes. FAs had a smaller effect on the ordered structures of ternary complexes than on those of binary complexes and little effect on enzymatic digestibility of both binary and ternary complexes.
Assuntos
Ácidos Graxos Insaturados/química , Proteínas de Plantas/química , Amido/química , Varredura Diferencial de Calorimetria , Digestão , Ácidos Graxos Insaturados/metabolismo , Estrutura Molecular , Proteínas de Plantas/metabolismo , Amido/metabolismo , Viscosidade , Difração de Raios XRESUMO
Adzuki beans are used to prepare foods with glutinous and non-glutinous rice in Japan, and adzuki bean pigments are able to color rice starch a purplish red. This study deals with the adzuki bean extract-dependent suppression of starch digestion of non-glutinous rice flour (joshinko in Japanese), which was gelatinized in boiling water and then cooled to 37 °C. Accompanying the treatment of joshinko with pancreatin, amylose and amylopectin were released from the joshinko particles, and the released amylose and amylopectin were further digested. The adzuki extract suppressed the release and digestion by binding to amylose and amylopectin, which were present in the particles and at the surfaces of the particles. Fatty acids and flavonoids in the adzuki extract contributed to the suppression. In addition, the starch digestion in the joshinko particles appeared to be suppressed if the amylose/fatty acid complexes and amylose/flavonoid and amylopectin/flavonoid complexes, which are poor substrates of α-amylase, surrounded the particles. It is discussed that the suppression was due to the prevention of α-amylase access to the particles.