Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mon Not R Astron Soc ; 516(4): 5712-5725, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36203620

RESUMO

We use a series of magnetohydrodynamic simulations including both radiative and protostellar outflow feedback to study environmental variation of the initial mass function (IMF). The simulations represent a carefully-controlled experiment whereby we keep all dimensionless parameters of the flow constant except for those related to feedback. We show that radiation feedback suppresses the formation of lower mass objects more effectively as the surface density increases, but this only partially compensates for the decreasing Jeans mass in denser environments. Similarly, we find that protostellar outflows are more effective at suppressing the formation of massive stars in higher surface density environments. The combined effect of these two trends is towards an IMF with a lower characteristic mass and a narrower overall mass range in high surface density environments. We discuss the implications for these findings for the interpretation of observational evidence of IMF variation in early type galaxies.

2.
Astrophys J ; 880(1)2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32855559

RESUMO

In this paper we undertake a study of the 21 deg2 SMOG field, a Spitzer cryogenic mission Legacy program to map a region of the outer Milky Way toward the Perseus and outer spiral arms with the IRAC and MIPS instruments. We identify 4648 YSOs across the field. Using the DBSCAN method, we identify 68 clusters or aggregations of YSOs in the region, having eight or more members. We identify 1197 Class I objects, 2632 Class II objects, and 819 Class III objects, of which 45 are candidate transition disk objects, utilizing the MIPS 24 photometry. The ratio of YSOs identified as members of clusters was 2872/4648, or 62%. The ratios of Class I to Class II YSOs in the clusters are broadly consistent with those found in the inner Galactic and nearby Gould Belt young star formation regions. The clustering properties indicate that the protostars may be more tightly bound to their natal sites than the Class II YSOs, and the Class III YSOs are generally widely distributed. We further perform an analysis of the WISE data of the SMOG field to determine how the lower resolution and sensitivity of WISE affects the identification of YSOs as compared to Spitzer: we identify 931 YSOs using combined WISE and 2MASS photometry, or 20% (931/4648) of the total number identified with Spitzer. Performing the same clustering analysis finds 31 clusters that reliably trace the larger associations identified with the Spitzer data. Twelve of the clusters identified have previously measured distances from the WISE H II survey. SEDFitter modeling of these YSOs is reported, leading to an estimation of the initial mass function in the aggregate of these clusters that approximates that found in the inner Galaxy, implying that the processes behind stellar mass distribution during star formation are not widely affected by the lower density and metallicity of the outer Galaxy.

3.
Astron Astrophys ; 6072017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31844331

RESUMO

We present far-infrared observations of Monoceros R2 (a giant molecular cloud at approximately 830 pc distance, containing several sites of active star formation), as observed at 70 µm, 160 µm, 250 µm, 350 µm, and 500 µm by the Photodetector Array Camera and Spectrometer (PACS) and Spectral and Photometric Imaging Receiver (SPIRE) instruments on the Herschel Space Observatory as part of the Herschel imaging survey of OB young stellar objects (HOBYS) Key programme. The Herschel data are complemented by SCUBA-2 data in the submillimetre range, and WISE and Spitzer data in the mid-infrared. In addition, C18O data from the IRAM 30-m Telescope are presented, and used for kinematic information. Sources were extracted from the maps with getsources, and from the fluxes measured, spectral energy distributions were constructed, allowing measurements of source mass and dust temperature. Of 177 Herschel sources robustly detected in the region (a detection with high signal-to-noise and low axis ratio at multiple wavelengths), including protostars and starless cores, 29 are found in a filamentary hub at the centre of the region (a little over 1% of the observed area). These objects are on average smaller, more massive, and more luminous than those in the surrounding regions (which together suggest that they are at a later stage of evolution), a result that cannot be explained entirely by selection effects. These results suggest a picture in which the hub may have begun star formation at a point significantly earlier than the outer regions, possibly forming as a result of feedback from earlier star formation. Furthermore, the hub may be sustaining its star formation by accreting material from the surrounding filaments.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa