Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Mol Cell Proteomics ; 22(2): 100479, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36481452

RESUMO

Neuropeptides regulate animal physiology and behavior, making them widely studied targets of functional genetics research. While the field often relies on differential -omics approaches to build hypotheses, no such method exists for neuropeptidomics. It would nonetheless be valuable for studying behaviors suspected to be regulated by neuropeptides, especially when little information is otherwise available. This includes nictation, a phoretic strategy of Caenorhabditis elegans dauers that parallels host-finding strategies of infective juveniles of many pathogenic nematodes. We here developed a targeted peptidomics method for the model organism C. elegans and show that 161 quantified neuropeptides are more abundant in its dauer stage compared with L3 juveniles. Many of these have orthologs in the commercially relevant pathogenic nematode Steinernema carpocapsae, in whose infective juveniles, we identified 126 neuropeptides in total. Through further behavioral genetics experiments, we identify flp-7 and flp-11 as novel regulators of nictation. Our work advances knowledge on the genetics of nictation behavior and adds comparative neuropeptidomics as a tool to functional genetics workflows.


Assuntos
Proteínas de Caenorhabditis elegans , Nematoides , Neuropeptídeos , Animais , Caenorhabditis elegans , Nematoides/fisiologia , Espectrometria de Massas
2.
Arch Insect Biochem Physiol ; 117(1): e22152, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39323103

RESUMO

An entomopathogenic nematode, Oscheius tipulae, was isolated from a soil sample. The identification of this species was supported by morphological and molecular markers. The nematode isolate exhibited pathogenicity against different target insects including lepidopteran, coleopteran, and dipteran insects. The virulence of this nematode was similar to that of a well-known entomopathogenic nematode, Steinernema carpocapsae, against the same insect targets. A comparative metagenomics analysis of these two nematode species predicted the existence of a combined total of 272 bacterial species in their intestines, of which 51 bacterial species were shared between the two nematode species. In particular, the common gut bacteria included several entomopathogenic bacteria including Xenorhabdus nematophila, which is known as a symbiotic bacterium to S. carpocapsae. The nematode virulence of O. tipulae to insects was enhanced by an addition of dexamethasone but suppressed by an addition of arachidonic acid, suggesting that the immune defenses of the target insects against the nematode infection is mediated by eicosanoids, which would be manipulated by the symbiotic bacteria of the nematode. Unlike S. carpocapsae, O. tipulae showed high virulence against dipteran insects including fruit flies, onion flies, and mosquitoes. O. tipulae showed particularly high control efficacies against the onion maggot, Delia platura, infesting the Welsh onion in the rhizosphere in both pot and field assays.


Assuntos
Dípteros , Animais , Dípteros/microbiologia , Controle Biológico de Vetores , Rabditídios/patogenicidade , Rabditídios/fisiologia , Virulência , Simbiose , Nematoides , Xenorhabdus/genética , Xenorhabdus/patogenicidade , Xenorhabdus/fisiologia
3.
J Invertebr Pathol ; 203: 108067, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278342

RESUMO

Entomopathogenic nematodes (EPNs) use the chemical cues emitted by insects and insect-damaged plants to locate their hosts. Steinernema carpocapsae, a species of EPN, is an established biocontrol agent used against insect pests. Despite its promising potential, the molecular mechanisms underlying its ability to detect plant volatiles remain poorly understood. In this study, we investigated the response of S. carpocapsae infective juveniles (IJs) to 8 different plant volatiles. Among these, carvone was found to be the most attractive volatile compound. To understand the molecular basis of the response of IJs to carvone, we used RNA-Seq technology to identify gene expression changes in response to carvone treatment. Transcriptome analysis revealed 721 differentially expressed genes (DEGs) between carvone-treated and control groups, with 403 genes being significantly upregulated and 318 genes downregulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the responsive DEGs to carvone attraction were mainly involved in locomotion, localization, behavior, response to stimulus, and olfactory transduction. We also identified four upregulated genes of chemoreceptor and response to stimulus that were involved in the response of IJs to carvone attraction. Our results provide insights into the potential transcriptional mechanisms underlying the response of S. carpocapsae to carvone, which can be utilized to develop environmentally friendly strategies for attracting EPNs.


Assuntos
Monoterpenos Cicloexânicos , Insetos , Rabditídios , Animais , Rabditídios/fisiologia
4.
J Invertebr Pathol ; 204: 108123, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705354

RESUMO

Entomopathogenic nematodes (EPNs) can control several important turfgrass insect pests including white grubs, weevils, cutworms, and sod webworms. But most of the research has focused on inundative releases in a biopesticide strategy using EPN strains that may have lost some of their ability to persist effectively over years of lab maintenance and / or selection for virulence and efficient mass-production. Our study examined the potential of fresh field isolate mixes of endemic EPNs to provide multi-year suppression of turfgrass insect pests. In early June 2020, we applied isolate mixes from golf courses of the EPNs Steinernema carpocapsae, Heterorhabditis bacteriophora, and their combination to plots straddling fairway and rough on two golf courses in central New Jersey, USA. Populations of EPNs and insect pests were sampled on the fairway and rough side of the plots from just before EPN application until October 2022. EPN populations increased initially in plots treated with the respective species. Steinernema carpocapsae densities stayed high for most of the experiment. Heterorhabditis bacteriophora densities decreased after 6 months and stabilized at lower levels. Several insect pests were reduced across the entire experimental period. In the fairway, the combination treatment reduced annual bluegrass weevil larvae (59 % reduction) and adults (74 %); S. carpocapsae reduced only adults (42 %). White grubs were reduced by H. bacteriophora (67 %) and the combination (63 %). Black turfgrass ataenius adults were reduced in all EPN treatments (43-62 %) in rough and fairway. Sod webworm larvae were reduced by S. carpocapsae in the fairway (75 %) and the rough (100 %) and by H. bacteriophora in the rough (75 %). Cutworm larvae were reduced in the fairway by S. carpocapsae (88 %) and the combination (75 %). Overall, our observations suggest that inoculative applications of fresh field isolate mixes of endemic EPNs may be a feasible approach to long-term suppression of insect pests in turfgrass but may require periodic reapplications.


Assuntos
Controle Biológico de Vetores , Rabditídios , Animais , Rabditídios/fisiologia , Poaceae/parasitologia , Mariposas/parasitologia , Gorgulhos/parasitologia , New Jersey
5.
Parasitology ; : 1-14, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36328953

RESUMO

Temperature is one of the most important factors affecting soil organisms, including the infective stages of parasites and entomopathogenic nematodes, which are important biological control agents. We investigated the response of 2 species of entomopathogenic nematodes to different storage regimes: cold (9°C), culture temperature (20°C) and temperature swapped from 9 to 20°C. For Steinernema carpocapsae, cold storage had profound effects on chemotaxis, stress tolerance and protein expression that were retained in temperature-swapped individuals. These effects included reversal of chemotactic response for 3 (prenol, methyl salicylate and hexanol) of the 4 chemicals tested, and enhanced tolerance to freezing (−10°C) and desiccation (75% RH). Label-free quantitative proteomics showed that cold storage induced widespread changes in S. carpocapsae, including an increase in heat-shock proteins and late embryogenesis abundant proteins. For Heterorhabditis megidis, cold storage had a less dramatic effect on chemotaxis (as previously shown for proteomic expression) and changes were not maintained on return to 20°C. Thus, cold temperature exposure has significant effects on entomopathogenic nematodes, but the nature of the change depends on the species. Steinernema carpocapsae, in particular, displays significant plasticity, and its behaviour and stress tolerance may be manipulated by brief exposure to low temperatures, with implications for its use as a biological control agent.

6.
J Invertebr Pathol ; 184: 107641, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34186086

RESUMO

Entomopathogenic nematodes are used widely in biological insect control. Entomopathogenic nematodes can infect live insects as well as dead insects (i.e., they can act as scavengers). It is important to determine compatibility of entomopathogenic nematodes with other pest management tactics such as chemical insecticides. We hypothesized that chemical insecticides have negative impact on scavenging nematodes. According to our hypothesis, we first investigated the effects of direct exposure of Steinernema carpocapsae infectivity juveniles (IJs) to three chemical insecticides, cypermethrin, spinosad or diflubenzuron in terms of nematode survival and virulence. Subsequently, using the same chemicals, we tested the effects of insecticide-killed insects on scavenger nematode penetration efficiency, time of emergence and the number of nematode progeny. Prior to our study, the impact of pesticides on scavenger nematode fitness had not been studied. Fall webworm, Hyphantria cunea, and greater wax moth, Galleria mellonella, larvae were used as host insects. The survival rate of IJs after direct exposure was 83% for cypermethrin and 93-97% for the other insecticides and control. There were no significant differences in the survival and virulence of the nematodes after 24 h exposure to insecticides. The number of nematodes that invaded the insecticide-killed host was significantly higher in cypermethrin and spinosad treated groups and live H. cunea than in the diflubenzoron treated group and freeze-killed control. However, no significant differences were observed in time of emergence. Significantly more progeny IJs emerged from Spinosad-killed insects than the freeze-killed control. In conclusion, we discovered that the fitness of scavenging IJs is not diminished by insecticides in insect cadavers. In fact, in some cases the exposure to chemical insecticides may enhance virulence.


Assuntos
Diflubenzuron/toxicidade , Inseticidas/toxicidade , Macrolídeos/toxicidade , Piretrinas/toxicidade , Rabditídios/efeitos dos fármacos , Animais , Combinação de Medicamentos , Insetos/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Rabditídios/patogenicidade , Virulência/efeitos dos fármacos
7.
J Nematol ; 532021.
Artigo em Inglês | MEDLINE | ID: mdl-34286283

RESUMO

The goal was to determine the efficacy of entomopathogenic nematodes (EPNs) on Aethina tumida small hive beetle (SHB) in Alabama soils. The objectives were to (i) determine the pupation success of SHB wandering larvae; (ii) determine the efficacy of EPNs on SHB wandering larvae in natural and autoclaved soil; and (iii) determine the efficacy of EPNs on SHB wandering larvae in three Alabama soil types at typical low moisture levels. The Alabama soils were Kalmia loamy sand (KLS), Benndale fine sandy loam (BFSL), and Decatur silt loam (DSL). Heterorhabditis bacteriophora, H. indica, Steinernema carpocapsae, S. feltiae, S. kraussei, and S. riobrave were tested at population densities of 5, 10, 20, 40, and 80 third-stage infective EPN juveniles (IJ3) per 130 cm3 soil. Pupation success in SHB population densities of 5, 10, and 20 wandering larvae per Petri dish were similar. Of the six EPN species, S. carpocapsae achieved the highest efficacy across all EPN population densities in both natural and autoclaved soil. Steinernema riobrave and H. indica achieved the next highest efficacies; however, they were significantly less effective than S. carpocapsae. Steinernema carpocapsae parasitized 87% SHB wandering larvae across all population densities tested. Steinernema carpocapsae achieved the best efficacy colonizing 94% of the SHB in the KLS soil, 80% in the BFSL soil, and 47% in the DSL soil. In conclusions, S. carpocapsae is be a promising biological control EPN to implement into a management system on SHB.

8.
J Nematol ; 522020.
Artigo em Inglês | MEDLINE | ID: mdl-33829195

RESUMO

In Colombia, identification of entomopathogenic nematodes (EPN's) native species is of great importance for pest management programs. The aim of this study was to isolate and identify EPNs and their bacterial symbiont in the department of Cauca-Colombia and then evaluate the susceptibility of two Hass avocado (Persea americana) pests to the EPNs isolated. EPNs were isolated from soil samples by the insect baiting technique. Their bacterial symbiont was isolated from hemolymph of infected Galleria mellonella larvae. Both organisms were molecularly identified. Morphological, and biochemical characterization was done for the bacteria. Susceptibility of Epitrix cucumeris and Pandeleteius cinereus adults was evaluated by individually exposing adults to 50 infective juveniles. EPNs were allegedly detected at two sampled sites (natural forest and coffee cultivation) in 5.8% of the samples analyzed. However, only natural forest EPN's could be isolated and multiplied. The isolate was identified as Steinernema carpocapsae BPS and its bacterial symbiont as Xenorhabus nematophila BPS. Adults of both pests were susceptible to S. carpocapsae indicating this EPN potential for its management. The results of this study constitute the first record of S. carpocapsae in Colombia and the susceptibility of P. cinereus to this EPN.

9.
J Invertebr Pathol ; 166: 107221, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31356819

RESUMO

Xenorhabdus nematophila, an entomopathogenic bacterium, is mutualistic with the nematode Steinernema carpocapsae. The bacterium produces secondary metabolites to inhibit target insect phospholipase A2 (PLA2) and induce immunosuppression, which is required for the pathogenicity of this bacterium-nematode complex. However, it was unclear if immunosuppressive intensity of the bacteria was correlated with their insecticidal potency. We compared six different X. nematophila strains inhibiting the immune responses of the beet armyworm (Spodoptera exigua) to explain their virulence variations. In addition to four known strains obtained from the Korean Agricultural Culture Collection, we identified two new strains (SK1 and SK2) of X. nematophila from two different isolates of S. carpocapsae. Although all six strains were virulent, they showed significant variation in median lethal bacterial dosage (LD50). The LD50 of most strains was 15-30 CFU/larva, however, the LD50 of the SK1 strain was more than two-fold higher against S. exigua larvae. Immunosuppressive activities of the six strains were measured by comparing hemocyte-spreading behavior and nodule formation; the SK1 strain was significantly less potent than other bacterial strains. These suppressed hemocyte behaviors were recovered by adding arachidonic acid (a catalytic product of PLA2) into all six strains. Bacterial culture broth was fractionated with different organic solvents and the ability to inhibit immune response and PLA2 activity were assessed. All organic extracts had immunosuppressive activities and PLA2-inhibitory activities. GC-MS analysis showed that these organic extracts possessed a total of 87 different compounds. There were variations in chemical components among the six bacterial strains. Organic extracts of SK1 strain, which exhibited the lowest virulence, contained the least number of secondary metabolites.


Assuntos
Infecções por Bactérias Gram-Negativas/imunologia , Virulência/fisiologia , Xenorhabdus/imunologia , Xenorhabdus/metabolismo , Xenorhabdus/patogenicidade , Animais , Infecções por Bactérias Gram-Negativas/metabolismo , Interações entre Hospedeiro e Microrganismos/fisiologia , Spodoptera/microbiologia
10.
J Invertebr Pathol ; 164: 38-42, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31034842

RESUMO

Inconsistency in entomopathogenic nematode (EPN) efficacy is still one of the biggest challenges for the wider adoption of EPNs as biocontrol agents. Previous studies demonstrated that extracts from EPN-infected hosts enhance dispersal and efficacy, two key factors in success of EPNs. Some active components in the insect host cadavers responsible for dispersal, ascarosides, have been identified as nematode pheromones. We hypothesized that pheromone extracts increase dispersal of EPN infective juveniles (IJs) leading to increased efficacy. First, we determined whether pheromone extracts improved IJ movement/dispersal in soil columns baited with Tenebrio molitor larvae. We found that pheromone extracts induced higher numbers of Steinernema carpocapsae and Steinernema feltiae IJs to move towards T. molitor larvae in the bottom of the column compared to IJs treated with infected cadaver macerate and water, positive and negative controls, respectively. Furthermore, the number of S. carpocapsae IJs that invaded T. molitor larvae was higher for the pheromone extract treatment than the controls. S. feltiae IJs that were pretreated with pheromone extracts and macerate (positive control) infected T. molitor at the same rate but invasion was superior to IJs that were treated with water. Consistent with the soil column tests, both S. carpocapsae and S. feltiae IJs treated with pheromone extracts performed better in killing larvae of two economically important insect larvae, pecan weevil, Curculio caryae, and black soldier fly, Hermetia illucens, in greenhouse tests compared to IJs treated with water. We demonstrated pheromone-mediated behavioral manipulation of a biological control agent to enhance pest control potential. Conceivably, nematodes can be exposed to efficacy-enhancing pheromones prior to field application.


Assuntos
Feromônios , Infecções por Rhabditida/parasitologia , Rabditídios , Animais , Bioensaio , Agentes de Controle Biológico , Dípteros/parasitologia , Larva/parasitologia , Mariposas/parasitologia , Controle Biológico de Vetores , Rabditídios/patogenicidade , Solo/parasitologia , Gorgulhos/parasitologia
11.
Microb Pathog ; 124: 337-345, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30172903

RESUMO

The Nipa palm hispid, Octodonta nipae (Maulik) is an important invasive pest of palm trees particularly in Southern China. How this beetle interacts with invading pathogens via its immune system remains to be dissected. Steinernema carpocapsae is a pathogenic nematode that attacks a number of insects of economic importance. The present study systematically investigates the cellular immune responses of O. nipae against S. carpocapsae infection using combined immunological, biochemical and transcriptomics approaches. Our data reveal that S. carpocapsae efficiently resists being encapsulated and melanized within the host's hemolymph and most of the nematodes were observed moving freely in the hemolymph even at 24 h post incubation. Consistently, isolated cuticles from the parasite also withstand encapsulation by the O. nipae hemocytes at all-time points. However, significant encapsulation and melanization of the isolated cuticles were recorded following heat treatment of the cuticles. The host's phenoloxidase activity was found to be slightly suppressed due to S. carpocapsae infection. Furthermore, the expression levels of some antimicrobial peptide (AMP) genes were significantly up-regulated in the S. carpocapsae-challenged O. nipae. Taken together, our data suggest that S. carpocapsae modulates and surpasses the O. nipae immune responses and hence can serve as an excellent biological control agent of the pest.


Assuntos
Besouros/imunologia , Besouros/parasitologia , Nematoides/fisiologia , Animais , China , Besouros/genética , Hemolinfa/imunologia , Hemolinfa/parasitologia , Interações Hospedeiro-Parasita , Imunidade Celular , Proteínas de Insetos/genética , Proteínas de Insetos/imunologia
12.
J Invertebr Pathol ; 133: 110-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26549224

RESUMO

Relationships between parasites and hosts can be drastic, depending on the balance between parasite strategies and the efficiency of the host immune response. In the case of entomopathogenic nematodes and their insect hosts, we must also consider the role of bacterial symbionts, as the interaction among them is tripartite and each component plays a critical role in death or survival. We analyzed the effects induced by the nematode-bacteria complex Steinernema carpocapsae, against red palm weevil (RPW) larvae, Rhynchophorus ferrugineus. We examined the antimicrobial response of the insect when in the presence of nematocomplexes or of its symbionts, Xenorhabdus nematophila. In detail, we investigated the potential interference of live and dead S. carpocapsae, their isolated cuticles, live or dead bacterial symbionts and their lipopolysaccharides, on the synthesis and activity of host antimicrobial peptides. Our data indicate that both live nematodes and live bacterial symbionts are able to depress the host antimicrobial response. When nematodes or symbionts were killed, they lacked inhibitory properties, as detected by the presence of antimicrobial peptides (AMPs) in the host hemolymph and by assays of antimicrobial activity. Moreover, we isolated S. carpocapsae cuticles; when cuticles were injected into hosts they revealed evasive properties because they were not immunogenic and were not recognized by the host immune system. We observed that weevil AMPs did not damage X. nematophila, and the lipopolysaccharides purified from symbionts seemed to be non-immunogenic. We believe that our data provide more information on the biology of entomopathogenic nematodes, in particular concerning their role and the activity mediated by symbionts in the relationship with insect hosts.


Assuntos
Interações Hospedeiro-Parasita , Nematoides/microbiologia , Simbiose , Gorgulhos/parasitologia , Xenorhabdus/fisiologia , Animais , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Hemolinfa/microbiologia , Hemolinfa/parasitologia , Larva/imunologia , Larva/metabolismo , Larva/microbiologia , Larva/parasitologia , Lipopolissacarídeos/farmacologia , Testes de Sensibilidade Microbiana , Nematoides/fisiologia , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Gorgulhos/imunologia , Gorgulhos/metabolismo , Gorgulhos/microbiologia , Xenorhabdus/efeitos dos fármacos
13.
J Nematol ; 48(3): 170-176, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27765990

RESUMO

The peachtree borer, Synanthedon exitiosa (Say 1823), is a major pest of stone fruit trees in North America. Current management relies upon preventative control using broad-spectrum chemical insecticides, primarily chlorpyrifos, applied in the late summer or early fall. However, due to missed applications, poor application timing, or other factors, high levels of S. exitiosa infestation may still occur and persist through the following spring. Curative treatments applied in the spring to established infestations would limit damage to the tree and prevent the next generation of S. exitiosa from emerging within the orchard. However, such curative measures for control of S. exitiosa do not exist. Our objective was to measure the efficacy of the entomopathogenic nematode, Steinernema carpocapsae, as a curative control for existing infestations of S. exitiosa. In peach orchards, spring applications of S. carpocapsae (obtained from a commercial source) were made to infested trees and compared with chlorpyrifos and a water-only control in 2014 and 2015. Additionally, types of spray equipment were compared: nematodes were applied via boom sprayer, handgun, or trunk sprayer. To control for effects of application method or nematode source, in vivo laboratory-grown S. carpocapsae, applied using a watering can, was also included. Treatment effects were assessed 39 d (2014) or 19 d (2015) later by measuring percentage of trees still infested, and also number of surviving S. exitiosa larvae per tree. Results indicated that S. carpocapsae provided significant curative control (e.g., >80% corrected control for the handgun application). In contrast, chlorpyrifos failed to reduce S. exitiosa infestations or number of surviving larvae. In most comparisons, no effect of nematode application method was detected; in one assessment, only the handgun and watering can methods reduced infestation. In conclusion, our study indicates that S. carpocapsae may be used as an effective curative measure for S. exitiosa infestations.

14.
J Invertebr Pathol ; 130: 56-60, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26149819

RESUMO

As a new application approach, we tested the efficacy of releasing live insect hosts that were pre-infected with entomopathogenic nematodes against insect pests living in cryptic habitats. We hypothesized that the pre-infected hosts could carry the next generation of emerging nematode infective juveniles to hard-to-reach target sites, and thereby facilitate enhanced control in cryptic habitats. Thus, the infected hosts act as "living insect bombs" against the target pest. We tested this approach using two model insect pests: a chestnut tree pest, the goat moth Cossus cossus (Lepidiptera: Cossidae), and a lawn caterpillar, Spodoptera cilium (Lepidoptera: Noctuidae). One pest is considered hard-to-reach via aqueous spray (C. cossus) and the other is more openly exposed in the environment (S. cilium). C. cossus and S. cilium studies were conducted in chestnut logs and Bermudagrass arenas, respectively. The living bomb approach was compared with standard nematode application in aqueous spray and controls (without nematode application); Steinernema carpocapsae (Rize isolate) was used in all experiments. The percentage larval mortality of C. cossus was 86% in the living insect bomb treatment, whereas, all other treatments and controls exhibited less than 4% mortality. The new approach (living bomb) was equally successful as standard aqueous application for the control of S. cilium larvae. Both methods exhibited more than 90% mortality in the turfgrass arena. Our new approach showed an immense potential to control insect pests living in hard-to-reach cryptic habitats.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Mariposas/parasitologia , Controle Biológico de Vetores/métodos , Rabditídios , Spodoptera/parasitologia , Animais
15.
J Econ Entomol ; 108(2): 473-83, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26470158

RESUMO

The Swede midge, Contarinia nasturtii Kieffer, is an economically significant pest of cruciferous crops in Canada and the northeastern United States. The effect of temperature on the virulence of three entomopathogenic nematode species, Heterorhabditis bacteriophora, Steinernema carpocapsae, and Steinernema feltiae, the entomopathogenic fungus Metarhizium brunneum, and a H. bacteriophora+M. brunneum combination treatment to C. nasturtii larvae, pupae, and cocoons was investigated. In the laboratory, all three nematode species successfully reproduced inside C. nasturtii larvae: H. bacteriophora produced the highest number of infective juveniles per larva, followed by S. carpocapsae and S. feltiae. H. bacteriophora and the H. bacteriophora+M. brunneum combination treatment generally caused the highest mortality levels to all C. nasturtii life stages at 20°C and 25°C, whereas S. feltiae caused the highest mortality to larvae and pupae at 16°C. No nematode species caused significant mortality when applied in foliar treatments to the infested host plant meristem and, in spite of high mortality, an antagonistic interaction was observed in the H. bacteriophora+M. brunneum combination treatment when compared with expected mortality. In trials conducted in broccoli fields in Elora, Ontario, M. brunneum suppressed adult emergence of C. nasturtii from infested soil in 2012 and all nematode treatments successfully suppressed adult emergence in 2013; however, no significant effects were observed in field trials conducted in Baden, Ontario.


Assuntos
Dípteros/parasitologia , Interações Hospedeiro-Parasita , Metarhizium/fisiologia , Nematoides/fisiologia , Controle Biológico de Vetores , Animais , Dípteros/crescimento & desenvolvimento , Feminino , Temperatura
16.
J Nematol ; 46(3): 281-6, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25276002

RESUMO

We investigated the existing susceptibility differences of the hazelnut weevil, Curculio nucum L. (Coleoptera:, Curculionidae) to entomopathogenic nematodes by assessing the main route of entry of the nematodes, Steinernema carpocapsae strain B14 and S. feltiae strain D114, into larvae and adult insects, as well as host immune response. Our results suggested that S. carpocapsae B14 and S. feltiae D114 primarily entered adult insects and larvae through the anus. Larvae were more susceptible to S. feltiae D114 than S. carpocapsae B14 and adults were highly susceptible to S. carpocapsae B14 but displayed low susceptibility to S. feltiae D114. Penetration rate correlated with nematode virulence. We observed little evidence that hazelnut weevils mounted any cellular immune response toward S. carpocapsae B14 or S. feltiae D114. We conclude the differential susceptibility of hazelnut weevil larvae and adults to S. carpocapsae B14 and S. feltiae D114 primarily reflected differences in the ability of these two nematodes to penetrate the host.

17.
Toxicon ; 250: 108101, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39270986

RESUMO

Attempts were made to evaluate the purified bioactive compounds of Xenorhabdus nematophila against Meloidogyne incognita. In order to extract the purified compounds, a solid-supported liquid-liquid extraction system with a flow rate (1 mL/min) was used to purify bioactive molecules. Compounds were individually collected concentrated and evaluated against M. incognita. Among 25 fractions the L19 fraction, exhibited 98% inhibition in egg hatching and mortality of juveniles. The biomolecules were identified through Liquid Chromatography- Mass Spectroscopy (LC-MS) technique. To decipher the mode of action of compounds, molecular docking studies were performed with potential protein targets such as acetylcholinesterase, ß-1,4-endoglucanase, glutathione S-transferase-1, cytochrome c oxidase, G-protein coupled receptor and Fatty acid and retinol-binding proteins of M. incognita. The results revealed that among eight compounds from the L19 fraction, malonate and pidopidon exhibited greater binding affinity towards the selected protein targets of M. incognita. In vitro studies with malonate and pidopidon against M. incognita showcased a 99% reduction in egg hatching and juvenile mortality. Moreover, greenhouse experiments revealed that malonate compounds not only reduced 94% of the M. incognita population but also enhanced the plant growth parameters in tomato by 60%. Hence the present study stands novel in exploiting the nematicidal compounds from X. nematophila giving limelight to explore pidopidon and malonate as novel nematicidal compounds for the management of M. incognita.

18.
Biol Futur ; 75(2): 219-233, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38416361

RESUMO

The grey maize weevil, Tanymecus dilaticollis, is a polyphagous species, which is among the most important pests of maize in Southeastern Europe. The efficacy of commercial products with two species of entomopathogenic nematodes (EPNs), Steinernema carpocapsae and Heterorhabditis bacteriophora, was investigated against adults of the grey maize weevil under laboratory conditions. Nemastar®, containing S. carpocapsae was more effective on T. dilaticollis adults than Nematop® containing H. bacteriophora, when applied uniformly to the surface of the soil, on Petri dishes containing T. dilaticollis adults. Results showed that S. carpocapsae rates of 83-333 infective juveniles/adult caused > 94% mortality in T. dilaticollis adults, whereas H. bacteriophora caused 27-61%, adult mortality, after exposure of insects to the commercial products of EPNs for 15 days. The infection rates of EPNs increased with concentration applied and ranged from 70-83% and 19-64% for Nemastar® and Nematop®, respectively. Subsequent field and semi-field tests were conducted with Nemastar® (application rate of 50 million S. carpocapsae per 100 m2) in maize crops with biological (mycoinsecticide Naturalis®, biofungicides and fertilizers) and chemical seed treatment (Gaucho® FS 600; active ingredient: imidacloprid) in Knezha, Bulgaria. Nematodes were found only in the dead specimens, in open plots and cages sprayed with the commercial nematode product. Nematode sprayings contributed for higher maize yields in the open maize plots in the fields with different seed treatments. We suggest that the use of powder formulation of S. carpocapsae in combination with biologically treated maize seeds can contribute to minimize the use of chemical insecticides against the grey maize weevil. The results obtained can be used as a base to further tests to ascertain the efficacy of EPNs products before they can be recommended for use in the integrated approach to T. dilaticollis management.


Assuntos
Controle Biológico de Vetores , Gorgulhos , Animais , Gorgulhos/parasitologia , Controle Biológico de Vetores/métodos , Zea mays/parasitologia , Nematoides/efeitos dos fármacos
19.
Proc Biol Sci ; 280(1769): 20131500, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23966641

RESUMO

Endemic, low-virulence parasitic infections are common in nature. Such infections may deplete host resources, which in turn could affect the reproduction of other parasites during co-infection. We aimed to determine whether the reproduction, and therefore transmission potential, of an epidemic parasite was limited by energy costs imposed on the host by an endemic infection. Total lipids, triacylglycerols (TAG) and polar lipids were measured in cockroaches (Blattella germanica) that were fed ad libitum, starved or infected with an endemic parasite, Gregarina blattarum. Reproductive output of an epidemic parasite, Steinernema carpocapsae, was then assessed by counting the number of infective stages emerging from these three host groups. We found both starvation and gregarine infection reduced cockroach lipids, mainly through depletion of TAG. Further, both starvation and G. blattarum infection resulted in reduced emergence of nematode transmission stages. This is, to our knowledge, the first study to demonstrate directly that host resource depletion caused by endemic infection could affect epidemic disease transmission. In view of the ubiquity of endemic infections in nature, future studies of epidemic transmission should take greater account of endemic co-infections.


Assuntos
Apicomplexa/fisiologia , Blattellidae/parasitologia , Rabditídios/fisiologia , Animais , Blattellidae/imunologia , Blattellidae/metabolismo , Ácidos Graxos/metabolismo , Feminino , Interações Hospedeiro-Parasita , Imunidade Inata , Larva/fisiologia , Metabolismo dos Lipídeos , Masculino
20.
Front Immunol ; 14: 1122451, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006283

RESUMO

A key aspect of parasitic nematode infection is the nematodes' ability to evade and/or suppress host immunity. This immunomodulatory ability is likely driven by the release of hundreds of excretory/secretory proteins (ESPs) during infection. While ESPs have been shown to display immunosuppressive effects on various hosts, our understanding of the molecular interactions between individual proteins released and host immunity requires further study. We have recently identified a secreted phospholipase A2 (sPLA2) released from the entomopathogenic nematode (EPN) Steinernema carpocapsae we have named Sc-sPLA2. We report that Sc-sPLA2 increased mortality of Drosophila melanogaster infected with Streptococcus pneumoniae and promoted increased bacterial growth. Furthermore, our data showed that Sc-sPLA2 was able to downregulate both Toll and Imd pathway-associated antimicrobial peptides (AMPs) including drosomycin and defensin, in addition to suppressing phagocytosis in the hemolymph. Sc-sPLA2 was also found to be toxic to D. melanogaster with the severity being both dose- and time-dependent. Collectively, our data highlighted that Sc-sPLA2 possessed both toxic and immunosuppressive capabilities.


Assuntos
Nematoides , Fosfolipases A2 Secretórias , Animais , Drosophila melanogaster , Hemócitos , Imunidade Humoral , Interações Hospedeiro-Parasita , Nematoides/microbiologia , Nematoides/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa