Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 243(5): 1776-1794, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38978318

RESUMO

Rare variants contribute significantly to the 'missing heritability' of quantitative traits. The genome-wide characteristics of rare variants and their roles in environmental adaptation of woody plants remain unexplored. Utilizing genome-wide rare variant association study (RVAS), expression quantitative trait loci (eQTL) mapping, genetic transformation, and molecular experiments, we explored the impact of rare variants on stomatal morphology and drought adaptation in Populus. Through comparative analysis of five world-wide Populus species, we observed the influence of mutational bias and adaptive selection on the distribution of rare variants. RVAS identified 75 candidate genes correlated with stomatal size (SS)/stomatal density (SD), and a rare haplotype in the promoter of serine/arginine-rich splicing factor PtoRSZ21 emerged as the foremost association signal governing SS. As a positive regulator of drought tolerance, PtoRSZ21 can recruit the core splicing factor PtoU1-70K to regulate alternative splicing (AS) of PtoATG2b (autophagy-related 2). The rare haplotype PtoRSZ21hap2 weakens binding affinity to PtoMYB61, consequently affecting PtoRSZ21 expression and SS, ultimately resulting in differential distribution of Populus accessions in arid and humid climates. This study enhances the understanding of regulatory mechanisms that underlie AS induced by rare variants and might provide targets for drought-tolerant varieties breeding in Populus.


Assuntos
Adaptação Fisiológica , Secas , Regulação da Expressão Gênica de Plantas , Haplótipos , Proteínas de Plantas , Estômatos de Plantas , Populus , Populus/genética , Populus/fisiologia , Populus/anatomia & histologia , Estômatos de Plantas/fisiologia , Estômatos de Plantas/genética , Haplótipos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Adaptação Fisiológica/genética , Locos de Características Quantitativas/genética , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Estudo de Associação Genômica Ampla , Processamento Alternativo/genética , Variação Genética , Resistência à Seca
2.
Plant Cell Environ ; 47(5): 1769-1781, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38314642

RESUMO

Stomata play a pivotal role in regulating gas exchange between plants and the atmosphere controlling water and carbon cycles. Accordingly, we investigated the impact of ultraviolet-B radiation, a neglected environmental factor varying with ongoing global change, on stomatal morphology and function by a Comprehensive Meta-Analysis. The overall UV effect at the leaf level is to decrease stomatal conductance, stomatal aperture and stomatal size, although stomatal density was increased. The significant decline in stomatal conductance is marked (6% in trees and >10% in grasses and herbs) in short-term experiments, with more modest decreases noted in long-term UV studies. Short-term experiments in growth chambers are not representative of long-term field UV effects on stomatal conductance. Important consequences of altered stomatal function are hypothesized. In the short term, UV-mediated stomatal closure may reduce carbon uptake but also water loss through transpiration, thereby alleviating deleterious effects of drought. However, in the long term, complex changes in stomatal aperture, size, and density may reduce the carbon sequestration capacity of plants and increase vegetation and land surface temperatures, potentially exacerbating negative effects of drought and/or heatwaves. Therefore, the expected future strength of carbon sink capacity in high-UV regions is likely overestimated.


Assuntos
Estômatos de Plantas , Raios Ultravioleta , Estômatos de Plantas/fisiologia , Ecossistema , Folhas de Planta/fisiologia , Água/fisiologia , Plantas , Transpiração Vegetal/fisiologia
3.
J Exp Bot ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606772

RESUMO

Plants grown under field conditions experience fluctuating light. Understanding the natural genetic variations for a similarly dynamic photosynthetic response among untapped germplasm resources, as well as the underlying mechanisms, may offer breeding strategies to improve production using molecular approaches. Here, we measured gas exchange under fluctuating light, along with stomatal density and size, in eight wild tomato species and two tomato cultivars. The photosynthetic induction response showed significant diversity, with some wild species having faster induction rates than the two cultivars. Species with faster photosynthetic induction rates had higher daily integrated photosynthesis, but lower average water use efficiency because of high stomatal conductance under natural fluctuating light. The variation in photosynthetic induction was closely associated with the speed of stomatal responses, highlighting its critical role in maximizing photosynthesis under fluctuating light conditions. Moreover, stomatal size was negatively correlated with stomatal density within a species, and plants with smaller stomata at a higher density had a quicker photosynthetic response than those with larger stomata at lower density. Our findings show that the response of stomatal conductance plays a pivotal role in photosynthetic induction, with smaller stomata at higher density proving advantageous for photosynthesis under fluctuating light in tomato species. The interspecific variation in the rate of stomatal responses could offer an untapped resource for optimizing dynamic photosynthetic responses under field conditions.

4.
Am J Bot ; 111(8): e16315, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38695147

RESUMO

PREMISE: Increases in genome size in plants-often associated with larger, low-density stomata and greater water-use efficiency (WUE)-could affect plant ecophysiological and hydraulic function. Variation in plant genome size is often due to polyploidy, having occurred repeatedly in the austral sedge genus Schoenus in the Cape Floristic Region (CFR), while species in the other major schoenoid genus in the region, Tetraria, have smaller genomes. Comparing these genera is useful as they co-occur at the landscape level, under broadly similar bioclimatic conditions. We hypothesized that CFR Schoenus have greater WUE, with lower maximum stomatal conductance (gwmax) imposed by larger, less-dense stomata. METHODS: We investigated relationships between genome size and stomatal parameters in a phylogenetic context, reconstructing a phylogeny of CFR-occurring Schoeneae (Cyperaceae). Species' stomatal and functional traits were measured from field-collected and herbarium specimens. Carbon stable isotopes were used as an index of WUE. Genome size was derived from flow-cytometric measurements of leafy shoots. RESULTS: Evolutionary regressions demonstrated that stomatal size and density covary with genome size, positively and negatively, respectively, with genome size explaining 72-75% of the variation in stomatal size. Larger-genomed species had lower gwmax and C:N ratios, particularly in culms. CONCLUSIONS: We interpret differences in vegetative physiology between the genera as evidence of more-conservative strategies in CFR Schoenus compared to the more-acquisitive Tetraria. Because Schoenus have smaller, reduced leaves, they likely rely more on culm photosynthesis than Tetraria. Across the CFR Schoeneae, ecophysiology correlates with genome size, but confounding sources of trait variation limit inferences about causal relationships between traits.


Assuntos
Tamanho do Genoma , Genoma de Planta , Filogenia , Estômatos de Plantas , Estômatos de Plantas/fisiologia , Estômatos de Plantas/genética , Cyperaceae/genética , Cyperaceae/fisiologia , Água/fisiologia , Folhas de Planta/fisiologia , Folhas de Planta/genética , Folhas de Planta/anatomia & histologia
5.
Plant Cell Environ ; 46(7): 2142-2158, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37066624

RESUMO

Sustaining crop productivity and resilience in water-limited environments and under rising temperatures are matters of concern worldwide. We investigated the leaf anatomical traits that underpin our recently identified link between leaf width (LW) and intrinsic water use efficiency (iWUE), as traits of interest in plant breeding. Ten sorghum lines with varying LW were grown under three temperatures to expand the range of variation of both LW and gas exchange rates. Leaf gas exchange, surface morphology and cross-sectional anatomy were measured and analysed using structural equations modelling. Narrower leaves had lower stomatal conductance (gs ) and higher iWUE across growth temperatures. They also had smaller intercellular airspaces, stomatal size, percentage of open stomatal aperture relative to maximum, hydraulic pathway, mesophyll thickness, and leaf mass per area. Structural modelling revealed a developmental association among leaf anatomical traits that underpinned gs variation in sorghum. Growing temperature and LW both impacted leaf gas exchange rates, but only LW directly impacted leaf anatomy. Wider leaves may be more productive under well-watered conditions, but consume more water for growth and development, which is detrimental under water stress.


Assuntos
Estômatos de Plantas , Sorghum , Temperatura , Estômatos de Plantas/anatomia & histologia , Fotossíntese , Folhas de Planta/anatomia & histologia
6.
J Exp Bot ; 74(3): 878-888, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36385641

RESUMO

Crop domestication for increasing growth rates and yields appears to have altered the features of adaxial and abaxial stomata, but its effect on leaf water use efficiency (WUE) have not been experimentally verified. In this study, we characterized stomatal anatomy and carbon isotope discrimination (δ13C) in 32 wild and 36 domesticated genotypes of cotton grown under agricultural field conditions. The results showed that domesticated genotypes possessed lower WUE, as indicated by low or more negative δ13C compared with wild genotypes. Higher theoretical maximum stomatal conductance (gsmax) after domestication was accounted for by more stomata rather than significantly enlarged stomata. Specifically, abaxial stomatal density was higher whilst there was no change in the adaxial density. The size of both adaxial and abaxial stomata was greater due to larger guard cells but without there being any increase in pore size. However, there was a negative relationship between δ13C and stomatal size across wild and domesticated genotypes, especially on the abaxial leaf surface, because bigger stomata resulted in a lower maximum stomatal response rate to fluctuating canopy light, resulting in increased water loss. Overall, our results indicate that cotton domestication has resulted in substantial variation in stomatal anatomy, and that WUE and drought tolerance can potentially be improved in future breeding by decreasing the size of abaxial stomata to produce a faster stomatal response and hence a reduction in unnecessary water loss.


Assuntos
Estômatos de Plantas , Água , Estômatos de Plantas/fisiologia , Domesticação , Melhoramento Vegetal , Folhas de Planta/fisiologia
7.
Planta ; 254(1): 12, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34165635

RESUMO

MAIN CONCLUSION: Rice genotypes with larger stomata maintain higher nocturnal stomatal conductance, thus having lower nocturnal leaf temperature via transpirational cooling. Incomplete night stomatal closure has been widely observed, but the mechanisms and functions of nocturnal stomatal conductance (gs,n) are not fully understood. Stomatal anatomy, leaf morphology, gs,n and nocturnal leaf temperature (Tleaf,n) were measured in 30 Oryza genotypes. Nocturnal leaf conductance (gn) showed a significant circadian rhythm; it gradually increased by 58% from 20:30 to 04:30. Contrary to cuticular conductance (gcut), gs,n was highly correlated with gn. Moreover, gs,n accounted for 76% of gn. Tleaf,n was significantly lower than the air temperature, and was negatively correlated with both gs,n and nocturnal transpiration rate (En). gs,n was positively correlated with stomatal size, intervein distance between major veins (IVDmajor), leaf thickness (LT), individual leaf area (LA), and leaf width (LW). It was also found negatively correlated with stomatal density. Reversely, Tleaf,n was negatively correlated with stomatal size, IVDmajor, intervein distance between minor veins, LA and LW. Tleaf,n presented a positive correlation with stomatal density. This study highlights the importance of stomatal anatomy and leaf morphology on regulating gs,n and Tleaf,n. The underlying mechanisms to the determinants of gs,n and the physiological and ecological functions of the Tleaf,n regulation on rice growth and production were carefully discussed.


Assuntos
Oryza , Fotossíntese , Folhas de Planta , Estômatos de Plantas , Transpiração Vegetal , Temperatura , Água
8.
Oecologia ; 197(4): 867-883, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33515295

RESUMO

Stomata are central players in the hydrological and carbon cycles, regulating the uptake of carbon dioxide (CO2) for photosynthesis and transpirative loss of water (H2O) between plants and the atmosphere. The necessity to balance water-loss and CO2-uptake has played a key role in the evolution of plants, and is increasingly important in a hotter and drier world. The conductance of CO2 and water vapour across the leaf surface is determined by epidermal and stomatal morphology (the number, size, and spacing of stomatal pores) and stomatal physiology (the regulation of stomatal pore aperture in response to environmental conditions). The proportion of the epidermis allocated to stomata and the evolution of amphistomaty are linked to the physiological function of stomata. Moreover, the relationship between stomatal density and [CO2] is mediated by physiological stomatal behaviour; species with less responsive stomata to light and [CO2] are most likely to adjust stomatal initiation. These differences in the sensitivity of the stomatal density-[CO2] relationship between species influence the efficacy of the 'stomatal method' that is widely used to infer the palaeo-atmospheric [CO2] in which fossil leaves developed. Many studies have investigated stomatal physiology or morphology in isolation, which may result in the loss of the 'overall picture' as these traits operate in a coordinated manner to produce distinct mechanisms for stomatal control. Consideration of the interaction between stomatal morphology and physiology is critical to our understanding of plant evolutionary history, plant responses to on-going climate change and the production of more efficient and climate-resilient food and bio-fuel crops.


Assuntos
Fotossíntese , Estômatos de Plantas , Atmosfera , Dióxido de Carbono , Folhas de Planta
9.
Ann Bot ; 126(2): 323-330, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32474609

RESUMO

BACKGROUND AND AIMS: The idea that genome (size) evolution in eukaryotes could be driven by environmental factors is still vigorously debated. In extant plants, genome size correlates positively with stomatal size, leading to the idea that conditions enabling the existence of large stomata in fossil plants also supported growth of their genome size. We test this inductive assumption in drought-adapted, prostrate-leaved Cape (South Africa) geophytes where, compared with their upright-leaved geophytic ancestors, stomata develop in a favourably humid microclimate formed underneath their leaves. METHODS: Stomatal parameters (leaf cuticle imprints) and genome size (flow cytometry) were measured in 16 closely related geophytic species pairs from seven plant families. In each pair, representing a different genus, we contrasted a prostrate-leaved species with its upright-leaved phylogenetic relative, the latter whose stomata are exposed to the ambient arid climate. KEY RESULTS: Except for one, all prostrate-leaves species had larger stomata, and in 13 of 16 pairs they also had larger genomes than their upright-leaved relatives. Stomatal density and theoretical maximum conductance were less in prostrate-leaved species with small guard cells (<1 pL) but showed no systematic difference in species pairs with larger guard cells (>1 pL). Giant stomata were observed in the prostrate-leaved Satyrium bicorne (89-137 µm long), despite its relatively small genome (2C = 9 Gbp). CONCLUSIONS: Our results imply that climate, through selection on stomatal size, might be able to drive genome size evolution in plants. The data support the idea that plants from 'greenhouse' geological periods with large stomata might have generally had larger genome sizes when compared with extant plants, though this might not have been solely due to higher atmospheric CO2 in these periods but could also have been due to humid conditions prevailing at fossil deposit sites.


Assuntos
Genoma de Planta/genética , Estômatos de Plantas/genética , Tamanho do Genoma , Filogenia , Folhas de Planta , África do Sul
10.
J Exp Bot ; 70(19): 5259-5269, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31145797

RESUMO

The rapid response of stomatal conductance (gs) to fluctuating irradiance is of great importance to maximize carbon assimilation while minimizing water loss. Smaller stomata have been proven to have a faster response rate than larger ones, but most of these studies have been conducted with forest trees. In the present study, the effects of stomatal anatomy on the kinetics of gs and photosynthesis were investigated in 16 Oryza genotypes. Light-induced stomatal opening includes an initial time lag (λ) followed by an exponential increase. Smaller stomata had a larger maximum stomatal conductance increase rate (Slmax) during the exponential increase phase, but showed a longer time lag and a lower initial stomatal conductance (gs,initial) at low light. Stomatal size was, surprisingly, negatively correlated with the time required to reach 50% of maximum gs and photosynthesis (T50%gs and T50%A), which was shown to be positively correlated with λ and negatively correlated with gs,initial. With a lower gs,initial and a larger λ, small stomata showed a faster decrease of intercellular CO2 concentration (Ci) during the induction process, which may have led to a slower apparent Rubisco activation rate. Therefore, smaller stomata do not always benefit photosynthesis as reported before; the influence of stomatal size on dynamic photosynthesis is also correlated with λ and gs,initial.


Assuntos
Oryza/fisiologia , Fotossíntese/fisiologia , Estômatos de Plantas/fisiologia , Cinética , Oryza/anatomia & histologia , Oryza/genética , Estômatos de Plantas/anatomia & histologia , Ribulose-Bifosfato Carboxilase/metabolismo
11.
BMC Plant Biol ; 16(1): 150, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27378125

RESUMO

BACKGROUND: In wheat, grain filling is closely related to flag leaf characteristics and function. Stomata are specialized leaf epidermal cells which regulate photosynthetic CO2 uptake and water loss by transpiration. Understanding the mechanisms controlling stomatal size, and their opening under drought, is critical to reduce plant water loss and maintain a high photosynthetic rate which ultimately leads to elevated yield. We applied a leaf imprinting method for rapid and non-destructive phenotyping to explore genetic variation and identify quantitative traits loci (QTL) for stomatal traits in wheat grown under greenhouse and field conditions. RESULTS: The genetics of stomatal traits on the adaxial surface of the flag leaf was investigated using 146 double haploid lines derived from a cross between two Australian lines of Triticum aestivum, RAC875 and Kukri. The drought tolerant line RAC875 showed numerous small stomata in contrast to Kukri. Significant differences between the lines were observed for stomatal densitity and size related traits. A negative correlation was found between stomatal size and density, reflecting a compensatory relationship between these traits to maintain total pore area per unit leaf surface area. QTL were identified for stomatal traits on chromosomes 1A, 1B, 2B, and 7A under field and controlled conditions. Most importantly some of these loci overlap with QTL on chromosome 7A that control kernel number per spike, normalized difference vegetation index, harvest index and yield in the same population. CONCLUSIONS: In this first study to decifer genetic relationships between wheat stomatal traits and yield in response to water deficit, no significant correlations were observed among yield and stomatal traits under field conditions. However we found some overlaps between QTL for stomatal traits and yield across environments. This suggested that stomatal traits could be an underlying mechanism increasing yield at specific loci and used as a proxy to track a target QTL in recombinant lines. This finding is a step-forward in understanding the function of these loci and identifying candidate genes to accelerate positional cloning of yield QTL in wheat under drought.


Assuntos
Secas , Locos de Características Quantitativas/genética , Triticum/crescimento & desenvolvimento , Triticum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/metabolismo , Triticum/metabolismo
12.
Plant Cell Physiol ; 55(1): 99-118, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24272249

RESUMO

It is well established that 14-3-3 proteins are key regulators of multiple stress signal transduction cascades. However, the biological functions of soybean 14-3-3 proteins, especially in plant drought response, are not yet known. In this study, we characterized a Glycine soja 14-3-3 gene, GsGF14o, which is involved in plant development and drought response. GsGF14o expression was greatly induced by drought stress, as evidenced by the quantitative real-time PCR and ß-glucuronidase (GUS) activity analysis. GsGF14o overexpression in Arabidopsis thaliana resulted in decreased drought tolerance during seed germination and seedling growth. Furthermore, silencing of AtGF14µ, the most homologous 14-3-3 gene of GsGF14o, led to enhanced drought tolerance at both the seed germination and seedling stage. Unexpectedly, GsGF14o transgenic lines showed reduced water loss and transpiration rates compared with wild-type plants, which was demonstrated to be the consequence of the decreased stomatal size. At the same time, the smaller stomata due to GsGF14o overexpression led to a relatively slow net photosynthesis rate, which led to a growth penalty under drought stress. We further demonstrated that GsGF14o overexpression caused deficits in root hair formation and development, and thereby reduced the water intake capacity of the transgenic root system. In addition, GsGF14o overexpression down-regulated the transcript levels of drought-responsive marker genes. Finally, we also investigated the tissue-specific accumulation of GsGF14o by using a GUS activity assay. Collectively, the results presented here confirm that GsGF14o plays a dual role in drought stress responses through its involvement in the regulation of stomatal size and root hair development.


Assuntos
Proteínas 14-3-3/metabolismo , Arabidopsis/fisiologia , Secas , Glycine max/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/crescimento & desenvolvimento , Proteínas de Soja/metabolismo , Proteínas 14-3-3/química , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas , Germinação/efeitos dos fármacos , Dados de Sequência Molecular , Pressão Osmótica , Fotossíntese , Raízes de Plantas/genética , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/genética , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Análise de Sequência de Proteína , Proteínas de Soja/química , Glycine max/genética , Estresse Fisiológico/genética
13.
J Exp Bot ; 65(15): 4361-70, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24863434

RESUMO

Leaf abscisic acid concentration ([ABA]) during growth influences morpho-physiological traits associated with the plant's ability to cope with stress. A dose-response curve between [ABA] during growth and the leaf's ability to regulate water loss during desiccation or rehydrate upon re-watering was obtained. Rosa hybrida plants were grown at two relative air humidities (RHs, 60% or 90%) under different soil water potentials (-0.01, -0.06, or -0.08MPa) or upon grafting onto the rootstock of a cultivar sustaining [ABA] at elevated RH. Measurements included [ABA], stomatal anatomical features, stomatal responsiveness to desiccation, and the ability of leaves, desiccated to varying degrees, to recover their weight (rehydrate) following re-watering. Transpiration efficiency (plant mass per transpired water) was also determined. Soil water deficit resulted in a lower transpiration rate and higher transpiration efficiency at both RHs. The lowest [ABA] was observed in well-watered plants grown at high RH. [ABA] was increased by soil water deficit or grafting, at both RHs. The growth environment-induced changes in stomatal size were mediated by [ABA]. When [ABA] was increased from the level of (well-watered) high RH-grown plants to the value of (well-watered) plants grown at moderate RH, stomatal responsiveness was proportionally improved. A further increase in [ABA] did not affect stomatal responsiveness to desiccation. [ABA] was positively related to the ability of dehydrated leaves to rehydrate. The data indicate a growth [ABA]-related threshold for stomatal sensitivity to desiccation, which was not apparent either for stomatal size or for recovery (rehydration) upon re-watering.


Assuntos
Ácido Abscísico/metabolismo , Estômatos de Plantas/fisiologia , Rosa/fisiologia , Água/fisiologia , Dessecação , Umidade , Transpiração Vegetal , Solo
14.
AoB Plants ; 16(4): plae031, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39011498

RESUMO

Drought is a major agricultural challenge that is expected to worsen with climate change. A better understanding of drought responses has the potential to inform efforts to breed more tolerant plants. We assessed leaf trait variation and covariation in cultivated sunflower (Helianthus annuus L.) in response to water limitation. Plants were grown under four levels of water availability and assessed for environmentally induced plasticity in leaf stomatal and vein traits as well as biomass (performance indicator), mass fractions, leaf area, leaf mass per area, and chlorophyll content. Overall, biomass declined in response to stress; these changes were accompanied by responses in leaf-level traits including decreased leaf area and stomatal size, and increased stomatal and vein density. The magnitude of trait responses increased with stress severity and relative plasticity of smaller-scale leaf anatomical traits was less than that of larger-scale traits related to construction and growth. Across treatments, where phenotypic plasticity was observed, stomatal density was negatively correlated with stomatal size and positively correlated with minor vein density, but the correlations did not hold up within treatments. Four leaf traits previously shown to reflect major axes of variation in a large sunflower diversity panel under well-watered conditions (i.e. stomatal density, stomatal pore length, vein density, and leaf mass per area) predicted a surprisingly large amount of the variation in biomass across treatments, but trait associations with biomass differed within treatments. Additionally, the importance of these traits in predicting variation in biomass is mediated, at least in part, through leaf size. Our results demonstrate the importance of leaf anatomical traits in mediating drought responses in sunflower, and highlight the role that phenotypic plasticity and multi-trait phenotypes can play in predicting productivity under complex abiotic stresses like drought.

15.
Microsc Res Tech ; 87(9): 2027-2033, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38623772

RESUMO

This research is to examine the macromorphological and foliar epidermal anatomical features of Lilium rosthornii Diels and its ability to plastically adapt to environmental forces, which is crucial for its taxonomic classification. L. rosthornii has macromorphological characteristics such as linear to lanceolate leaves of up to 20 cm in length and 2-3 cm in breadth, grouped in a whorled pattern. The blooms are voluminous and conspicuous, measuring up to 15 cm in diameter and are supported by a towering stalk that grows up to 1 m in height. The foliar epidermal structure of L. rosthornii exhibits a stomatal length of 82.02 ± 5.77 µm and a width of 29.19 ± 1.39 µm. These measurements suggest that the plant's stomata are influenced by its ploidy levels and may serve as adaptive mechanisms to enhance water consumption efficiency. The leaf structure shows a significant thickness of 398.74 ± 97.96 µm, which might potentially contribute to its ability to withstand environmental challenges. Additionally, the presence of defensive adaptations in the top and lower epidermal layers further supports this observation. The palisade tissue measurement (58.87 ± 9.56 m) and spongy tissue measurement (32.42 ± 12.72 µm) indicate a potential for photosynthetic optimization. Furthermore, there is a possible correlation between the vascular bundle width (28.15 ± 6.52 °m) and the efficiency of nutrition delivery. The results of this study emphasize the notable diversity in the foliar structures of L. rosthornii, offering valuable understanding of its morphological adaptations that have ecological and taxonomic significance. The findings provide a deeper comprehension of the potential impact of anatomical characteristics on plant function and categorization, hence providing significant insights to the domain of plant morphology and systematics. RESEARCH HIGHLIGHTS: Examines Lilium rosthornii's anatomical features and environmental adaptability for taxonomic relevance. Leaf thickness and epidermal defenses indicate resilience to environmental stress. Highlights the diversity in L. rosthornii's foliar structures, with implications for ecological and taxonomic significance Offers insights into the impact of anatomical characteristics on plant function and classification.


Assuntos
Lilium , Epiderme Vegetal , Folhas de Planta , Estômatos de Plantas , Folhas de Planta/anatomia & histologia , Lilium/anatomia & histologia , Epiderme Vegetal/anatomia & histologia , Estômatos de Plantas/anatomia & histologia , Adaptação Fisiológica
16.
Ecol Evol ; 14(6): e11349, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895564

RESUMO

As plant distribution and performance are determined by both environmental and genetic factors, clarifying the contribution of these two factors is a key for understanding plant adaptation and predicting their distribution under ongoing global warming. Betula ermanii is an ideal species for such research because of its wide distribution across diverse environments. Stomatal density and size are crucial traits that plants undergo changes in to adapt to different environments as these traits directly influence plant photosynthesis and transpiration. In this study, we conducted a multi-location common garden experiment using B. ermanii to (1) clarify the contribution of both environmental and genetic factors to the variation in stomatal density and size of B. ermanii, (2) demonstrate the differences in the plasticity of stomatal density and size among B. ermanii populations, and (3) understand how stomatal density and size of B. ermanii would respond to increased temperature and changing precipitation patterns. Genetic factors played a more significant role in stomatal size than environmental factors, suggesting that B. ermanii struggles to adjust its stomatal size in response to a changing environment. Our results also revealed a positive correlation between stomatal size plasticity and original habitat suitability, indicating that in B. ermanii populations in harsh environments exhibit lower adaptability to environmental shifts. Although stomatal density and size of B. ermanii showed the significant responses to increased temperature and shifting precipitation patterns, the response ranges of stomatal density and size to the environmental factors varied among populations. Our findings highlighted the interplay between genetic and environmental factors in determining the intraspecific variation in stomatal density and size in B. ermanii. This indicated that certain populations of B. ermanii exhibit limited stomatal plasticity and adaptability, which could directly affect photosynthesis and transpiration, suggesting potential population-specific fitness implications for B. ermanii under future climate change.

17.
Plant Biol (Stuttg) ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315499

RESUMO

Drought is becoming more frequent and severe in numerous wine-growing regions. Nevertheless, limited research has examined the legacy of recurrent droughts, focusing on leaf physiology and anatomy over consecutive seasons. We investigated drought legacies (after 2 years of drought exposure) in potted grapevines, focusing on stomatal behaviour under well-watered conditions during the third year. Vines were subjected for two consecutive years to short- (SD) or long-term (LD) seasonal droughts, or well-watered conditions (WW). In the third year, all plants were grown without water limitation. Water potential and gas exchange were monitored throughout the three seasons, while leaf morpho-anatomical traits were measured at the end of the third year. During droughts (1st and 2nd year), stem water potential of SD and LD plants fell below -1.1 MPa, with a consequent 75% reduction in stomatal conductance (gs ) compared to WW. In the 3rd year, when all vines were daily irrigated to soil capacity (midday stem water potential ~ -0.3 MPa), 45% lower values of gs were observed in the ex-LD group compared to both ex-SD and ex-WW. Reduced midrib vessel diameter, lower leaf theoretical hydraulic conductivity, and smaller stomata were measured in ex-LD leaves compared to ex-SD and ex-WW, likely contributing to the reduced gas exchange. Our findings suggest that grapevines exposed to drought may adopt a more water-conserving strategy in subsequent seasons, irrespective of current soil water availability, with the degree of change influenced by the intensity and duration of past drought events.

18.
Plant Biol (Stuttg) ; 24(7): 1287-1296, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35238138

RESUMO

The current projections of climate change might exceed the ability of European forest trees to adapt to upcoming environmental conditions. However, stomatal and leaf morphological traits could greatly influence the acclimation potential of forest tree species subjected to global warming, including the single most important forestry species in Europe, European beech. We analysed stomatal (guard cell length, stomatal density and potential conductance index) and leaf (leaf area, leaf dry weight and leaf mass per area) morphological traits of ten provenances from two provenance trials with contrasting climates between 2016 and 2020. The impact of meteorological conditions of the current and preceding year on stomatal and leaf traits was tested by linear and quadratic regressions. Ecodistance was used to capture the impact of adaptation after the transfer of provenances to new environments. Interactions of trial-provenance and trial-year factors were significant for all measured traits. Guard cell length was lowest and stomatal density was highest across beech provenances in the driest year, 2018. Adaptation was also reflected in a significant relationship between aridity ecodistance and measured traits. Moreover, the meteorological conditions of the preceding year affected the interannual variability of stomatal and leaf traits more than the meteorological conditions of the spring of the current year, suggesting the existence of plant stress memory. High intraspecific variability of stomatal and leaf traits controlled by the interaction of adaptation, acclimation and plant memory suggests a high acclimation potential of European beech provenances under future conditions of global climate change.


Assuntos
Fagus , Mudança Climática , Folhas de Planta/anatomia & histologia , Árvores , Aclimatação
19.
Quant Plant Biol ; 3: e6, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37077975

RESUMO

Stomata are cellular pores on the leaf epidermis that allow plants to regulate carbon assimilation and water loss. Stomata integrate environmental signals to regulate pore apertures and adapt gas exchange to fluctuating conditions. Here, we quantified intraspecific plasticity of stomatal gas exchange and anatomy in response to seasonal variation in Brachypodium distachyon. Over the course of 2 years, we (a) used infrared gas analysis to assess light response kinetics of 120 Bd21-3 wild-type individuals in an environmentally fluctuating greenhouse and (b) microscopically determined the seasonal variability of stomatal anatomy in a subset of these plants. We observed systemic environmental effects on gas exchange measurements and remarkable intraspecific plasticity of stomatal anatomical traits. To reliably link anatomical variation to gas exchange, we adjusted anatomical g smax calculations for grass stomatal morphology. We propose that systemic effects and variability in stomatal anatomy should be accounted for in long-term gas exchange studies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa