Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125663

RESUMO

Oral bacteria are implicated not only in oral diseases but also in gut dysbiosis and inflammatory conditions throughout the body. The periodontal pathogen Aggregatibacter actinomycetemcomitans (Aa) often occurs in complex oral biofilms with Streptococcus gordonii (Sg), and this interaction might influence the pathogenic potential of this pathogen. This study aims to assess the impact of oral inoculation with Aa, Sg, and their association (Aa+Sg) on alveolar bone loss, oral microbiome, and their potential effects on intestinal health in a murine model. Sg and/or Aa were orally administered to C57Bl/6 mice, three times per week, for 4 weeks. Aa was also injected into the gingiva three times during the initial experimental week. After 30 days, alveolar bone loss, expression of genes related to inflammation and mucosal permeability in the intestine, serum LPS levels, and the composition of oral and intestinal microbiomes were determined. Alveolar bone resorption was detected in Aa, Sg, and Aa+Sg groups, although Aa bone levels did not differ from that of the SHAM-inoculated group. Il-1ß expression was upregulated in the Aa group relative to the other infected groups, while Il-6 expression was downregulated in infected groups. Aa or Sg downregulated the expression of tight junction genes Cldn 1, Cldn 2, Ocdn, and Zo-1 whereas infection with Aa+Sg led to their upregulation, except for Cldn 1. Aa was detected in the oral biofilm of the Aa+Sg group but not in the gut. Infections altered oral and gut microbiomes. The oral biofilm of the Aa group showed increased abundance of Gammaproteobacteria, Enterobacterales, and Alloprevotella, while Sg administration enhanced the abundance of Alloprevotella and Rothia. The gut microbiome of infected groups showed reduced abundance of Erysipelotrichaceae. Infection with Aa or Sg disrupts both oral and gut microbiomes, impacting oral and gut homeostasis. While the combination of Aa with Sg promotes Aa survival in the oral cavity, it mitigates the adverse effects of Aa in the gut, suggesting a beneficial role of Sg associations in gut health.


Assuntos
Aggregatibacter actinomycetemcomitans , Perda do Osso Alveolar , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Streptococcus gordonii , Animais , Perda do Osso Alveolar/microbiologia , Perda do Osso Alveolar/etiologia , Perda do Osso Alveolar/patologia , Perda do Osso Alveolar/metabolismo , Camundongos , Biofilmes/crescimento & desenvolvimento , Boca/microbiologia , Modelos Animais de Doenças , Masculino , Gengiva/microbiologia , Gengiva/metabolismo
2.
Proteins ; 91(8): 1007-1020, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36912614

RESUMO

Bacterial fibrillar adhesins are specialized extracellular polypeptides that promote the attachment of bacteria to the surfaces of other cells or materials. Adhesin-mediated interactions are critical for the establishment and persistence of stable bacterial populations within diverse environmental niches and are important determinants of virulence. The fibronectin (Fn)-binding fibrillar adhesin CshA, and its paralogue CshB, play important roles in host colonization by the oral commensal and opportunistic pathogen Streptococcus gordonii. As paralogues are often catalysts for functional diversification, we have probed the early stages of structural and functional divergence in Csh proteins by determining the X-ray crystal structure of the CshB adhesive domain NR2 and characterizing its Fn-binding properties in vitro. Despite sharing a common fold, CshB_NR2 displays an ~1.7-fold reduction in Fn-binding affinity relative to CshA_NR2. This correlates with reduced electrostatic charge in the Fn-binding cleft. Complementary bioinformatic studies reveal that homologues of CshA/B_NR2 domains are widely distributed in both Gram-positive and Gram-negative bacteria, where they are found housed within functionally cryptic multi-domain polypeptides. Our findings are consistent with the classification of Csh adhesins and their relatives as members of the recently defined polymer adhesin domain (PAD) family of bacterial proteins.


Assuntos
Antibacterianos , Proteínas de Membrana , Ligantes , Proteínas de Membrana/química , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Adesinas Bacterianas/genética , Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Proteínas de Bactérias/química
3.
Oral Dis ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37602931

RESUMO

OBJECTIVE: This study aimed to evaluate the in vitro antibacterial effects of lysozyme-chitosan oligosaccharide conjugates (LYZOX) against Streptococcus gordonii and Porphyromonas gingivalis. MATERIALS AND METHODS: Planktonic S. gordonii and P. gingivalis were treated with various concentrations of LYZOX for 10 min. The treated bacteria were incubated on trypticase soy agar plates, and colony-forming unit (CFU) was calculated. The antibacterial effect of LYZOX was compared with that of lysozyme, chitosan, physiological saline, and benzalkonium chloride solution. Cell morphology before and after LYZOX treatment was observed using a scanning electron microscope (SEM). The antibacterial effect of LYZOX with decanoic acid against the biofilm-like bacteria was also examined via crystal violet staining. The Kruskal-Wallis test and post hoc Dunn tests were performed to compare the difference in antibacterial activity of each treatment. RESULTS: Bacterial CFU numbers were reduced after LYZOX treatment in a concentration-dependent manner. The reduction in CFUs was smaller for corresponding concentrations of chitosan or lysozyme alone. SEM analyses revealed bacterial cells shrank following LYZOX treatment. The combined use of LYZOX and decanoic acid yielded an even higher antibacterial effect against bacterial biofilms. CONCLUSION: LYZOX exhibits antibacterial activity against two periodontal bacteria and may be a promising plaque control agent.

4.
J Bacteriol ; 204(6): e0011822, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35652671

RESUMO

Many oral bacteria employ cell wall-anchored adhesins to bind to the salivary films coating the teeth and mucosal surfaces. Surface binding prevents clearance and facilitates catabolism of salivary film glycoproteins. We asked whether Streptococcus gordonii adhesin expression changes in response to surface salivary cues using a eukaryote-like, outside-in recognition and signaling circuit. To determine whether the cues were discriminated, S. gordonii was tested during cell adhesion and biofilm formation on a MUC5B-rich or lower-molecular-mass salivary fraction or an uncoated abiotic surface. Cells were recovered and analyzed for differences in gene expression and proteins in cell wall fractions. In salivary-free conditions, planktonic S. gordonii presented three prominent cell wall LPXTG-motif proteins, SGO_1487, SGO_0890, and MbpA (mucin-binding protein A; SGO_0707). During biofilm formation on MUC5B-coated surfaces, MbpA, a MUC5B-binding protein, and key genes in the tagatose and quorum-sensing pathways were strongly promoted. The response to MUC5B required the two-component system (TCS), streptococcal regulator of adhesins sensor and regulator (SraSR, SGO_1180/81), lipoteichoic acid (LTA), and the homologous paired adhesins, SspA and SspB (SspAB). LTA appears to link the outside signal (MUC5B) to intramembrane SraSR. Tagatose pathway gene expression may poise cells to metabolize MUC5B glycans and, with a quorum-sensing gene (luxS), may direct formation of a consortium to facilitate glycan cross-feeding by S. gordonii. We now show that a Gram-positive bacterium discriminates specific surface environmental cues using an outside-in signaling mechanism to apparently optimize colonization of saliva-coated surfaces. IMPORTANCE All organisms throughout the tree of life sense and respond to their surface environments. To discriminate among mucosal surface environmental cues, we report that Streptococcus gordonii recognizes a high-molecular-weight mucin glycoprotein, MUC5B, using the paired adhesins SspAB and lipoteichoic acid; the latter bridges the outside signal to an intramembrane two-component system to transcriptionally regulate a MUC5B-specific adhesin and genes that may facilitate glycan catabolism.


Assuntos
Aderência Bacteriana , Streptococcus gordonii , Adesinas Bacterianas/metabolismo , Lipopolissacarídeos , Mucinas/metabolismo , Streptococcus gordonii/metabolismo , Ácidos Teicoicos/metabolismo
5.
J Biol Chem ; 296: 100249, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33384382

RESUMO

The serine-rich repeat (SRR) glycoproteins of gram-positive bacteria are a family of adhesins that bind to a wide range of host ligands, and expression of SRR glycoproteins is linked with enhanced bacterial virulence. The biogenesis of these surface glycoproteins involves their intracellular glycosylation and export via the accessory Sec system. Although all accessory Sec components are required for SRR glycoprotein export, Asp2 of Streptococcus gordonii also functions as an O-acetyltransferase that modifies GlcNAc residues on the SRR adhesin gordonii surface protein B (GspB). Because these GlcNAc residues can also be modified by the glycosyltransferases Nss and Gly, it has been unclear whether the post-translational modification of GspB is coordinated. We now report that acetylation modulates the glycosylation of exported GspB. Loss of O-acetylation due to aps2 mutagenesis led to the export of GspB glycoforms with increased glucosylation of the GlcNAc moieties. Linkage analysis of the GspB glycan revealed that both O-acetylation and glucosylation occurred at the same C6 position on GlcNAc residues and that O-acetylation prevented Glc deposition. Whereas streptococci expressing nonacetylated GspB with increased glucosylation were significantly reduced in their ability to bind human platelets in vitro, deletion of the glycosyltransferases nss and gly in the asp2 mutant restored platelet binding to WT levels. These findings demonstrate that GlcNAc O-acetylation controls GspB glycosylation, such that binding via this adhesin is optimized. Moreover, because O-acetylation has comparable effects on the glycosylation of other SRR adhesins, acetylation may represent a conserved regulatory mechanism for the post-translational modification of the SRR glycoprotein family.


Assuntos
Glicoproteínas/genética , Glicosiltransferases/genética , Transporte Proteico/genética , Streptococcus gordonii/genética , Acetilação , Sequência de Aminoácidos/genética , Glicoproteínas/química , Glicosilação , Glicosiltransferases/química , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Ligação Proteica/genética , Processamento de Proteína Pós-Traducional/genética , Serina/química , Serina/genética , Streptococcus gordonii/química
6.
Appl Environ Microbiol ; 88(10): e0011622, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35506689

RESUMO

Candida albicans can coaggregate with Streptococcus gordonii and cocolonize in the oral cavity. Saliva provides a vital microenvironment for close interactions of oral microorganisms. However, the level of fermentable carbohydrates in saliva is not sufficient to support the growth of multiple species. Glycoside hydrolases (GHs) that hydrolyze glycoproteins are critical for S. gordonii growth in low-fermentable-carbohydrate environments such as saliva. However, whether GHs are involved in the cross-kingdom interactions between C. albicans and S. gordonii under such conditions remains unknown. In this study, C. albicans and S. gordonii were cocultured in heart infusion broth with a low level of fermentable carbohydrate. Planktonic growth, biofilm formation, cell aggregation, and GH activities of monocultures and cocultures were examined. The results revealed that the planktonic growth of cocultured S. gordonii in a low-carbohydrate environment was elevated, while that of cocultured C. albicans was reduced. The biomass of S. gordonii in dual-species biofilms was higher than that of monocultures, while that of cocultured C. albicans was decreased. GH activity was observed in S. gordonii, and elevated activity of GHs was detected in S. gordonii-C. albicans cocultures, with elevated expression of GH-related genes of S. gordonii. By screening a mutant library of C. albicans, we identified a tec1Δ/Δ mutant strain that showed reduced ability to promote the growth and GH activities of S. gordonii compared with the wild-type strain. Altogether, the findings of this study demonstrate the involvement of GHs in the cross-kingdom metabolic interactions between C. albicans and S. gordonii in an environment with low level of fermentable carbohydrates. IMPORTANCE Cross-kingdom interactions between Candida albicans and oral streptococci such as Streptococcus gordonii have been reported. However, their interactions in a low-fermentable-carbohydrate environment like saliva is not clear. The current study revealed glycoside hydrolase-related cross-kingdom communications between S. gordonii and C. albicans under the low-fermentable-carbohydrate condition. We demonstrate that C. albicans can promote the growth and metabolic activities of S. gordonii by elevating the activities of cell-wall-anchored glycoside hydrolases of S. gordonii. C. albicans gene TEC1 is critical for this cross-kingdom metabolic communication.


Assuntos
Candida albicans , Glicosídeo Hidrolases , Streptococcus gordonii , Biofilmes , Candida albicans/genética , Carboidratos , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Streptococcus gordonii/genética
7.
Microbiol Immunol ; 66(2): 59-66, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34783072

RESUMO

Streptococcus gordonii, one of the early colonizers of oral biofilms, is involved in the development of dental caries, periodontal disease, and infective endocarditis. The Hsa adhesin of S. gordonii DL1 has the ability to bind strongly to the terminal sialic acid groups of host glycoproteins via the binding region, nonrepetitive region 2 (NR2), which is important for the pathogenicity of S. gordonii DL1. Low similarity with the NR2 of Hsa homologs among other streptococcal species has been reported. However, the reports have been limited to certain strains. This study attempted to assess frequency of the expression on the bacterial cell surface and to analyze the diversity of Hsa homologs among different wild strains of oral streptococci. We isolated 186 wild-type strains of oral streptococci from healthy volunteers and analyzed their hemagglutinating (HA) activity on human erythrocytes and their Hsa homologs and NR2 homologous regions by dot immunoblotting using anti-Hsa and anti-NR2 antisera, respectively. We found 30 strains reacted with anti-NR2 antiserum (NR2 positive) and determined the sequence of the NR2 regions. Many strains with high HA activity were also NR2 positive, suggesting that the NR2 region may be associated with HA activity. Among the NR2-positive strains, four different amino acid sequence patterns were observed, demonstrating diversity in the NR2 region. Notably, S. gordonii strains frequently possessed Hsa homologs and NR2-like antigens compared with other streptococci. It is speculated that the possessing frequency of Hsa homologs and the amino acid sequence of NR2 region may vary among streptococcal species.


Assuntos
Adesinas Bacterianas , Cárie Dentária , Infecções Estreptocócicas , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Proteínas de Transporte , Cárie Dentária/microbiologia , Humanos , Ácido N-Acetilneuramínico , Streptococcus gordonii/genética , Streptococcus gordonii/metabolismo
8.
Appl Environ Microbiol ; 87(22): e0155821, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34469191

RESUMO

Cell-cell adhesion between oral bacteria plays a key role in the development of polymicrobial communities such as dental plaque. Oral streptococci such as Streptococcus gordonii and Streptococcus oralis are important early colonizers of dental plaque and bind to a wide range of different oral microorganisms, forming multispecies clumps or "coaggregates." S. gordonii actively responds to coaggregation by regulating gene expression. To further understand these responses, we assessed gene regulation in S. gordonii and S. oralis following coaggregation in 25% human saliva. Coaggregates were formed by mixing, and after 30 min, RNA was extracted for dual transcriptome sequencing (RNA-Seq) analysis. In S. oralis, 18 genes (6 upregulated and 12 downregulated) were regulated by coaggregation. Significantly downregulated genes encoded functions such as amino acid and antibiotic biosynthesis, ribosome, and central carbon metabolism. In total, 28 genes were differentially regulated in Streptococcus gordonii (25 upregulated and 3 downregulated). Many genes associated with transporters and a two-component (NisK/SpaK) regulatory system were upregulated following coaggregation. Our comparative analyses of S. gordonii-S. oralis with different previously published S. gordonii pairings (S. gordonii-Fusobacterium nucleatum and S. gordonii-Veillonella parvula) suggest that the gene regulation is specific to each pairing, and responses do not appear to be conserved. This ability to distinguish between neighboring bacteria may be important for S. gordonii to adapt appropriately during the development of complex biofilms such as dental plaque. IMPORTANCE Dental plaque is responsible for two of the most prevalent diseases in humans, dental caries and periodontitis. Controlling the formation of dental plaque and preventing the transition from oral health to disease requires a detailed understanding of microbial colonization and biofilm development. Streptococci are among the most common colonizers of dental plaque. This study identifies key genes that are regulated when oral streptococci bind to one another, as they do in the early stages of dental plaque formation. We show that specific genes are regulated in two different oral streptococci following the formation of mixed-species aggregates. The specific responses of S. gordonii to coaggregation with S. oralis are different from those to coaggregation with other oral bacteria. Targeting the key genes that are upregulated during interspecies interactions may be a powerful approach to control the development of biofilm and maintain oral health.


Assuntos
Placa Dentária , Streptococcus gordonii , Streptococcus oralis , Transcriptoma , Placa Dentária/microbiologia , Humanos , RNA-Seq , Streptococcus gordonii/genética , Streptococcus oralis/genética
9.
Anaerobe ; 72: 102466, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34673216

RESUMO

OBJECTIVE: The human oral cavity harbors several bacteria. Among them, Capnocytophaga ochracea, a facultative anaerobe, is responsible for the early phase of dental plaque formation. In this phase, the tooth surface or tissue is exposed to various oxidative stresses. For colonization in the dental plaque phase, a response by hydrogen peroxide (H2O2)-sensing transcriptional regulators, such as OxyR, may be necessary. However, to date, no study has elucidated the role of OxyR protein in C. ochracea. METHODS: Insertional mutagenesis was used to create an oxyR mutant, and gene expression was evaluated by reverse transcription-polymerase chain reaction and quantitative real-time reverse transcription-polymerase chain reaction. Bacterial growth curves were generated by turbidity measurement, and the sensitivity of the oxyR mutant to H2O2 was assessed using the disc diffusion assay. Finally, a two-compartment system was used to assess biofilm formation. RESULTS: The oxyR mutant grew slower than the wild-type under anaerobic conditions. The agar diffusion assay revealed that the oxyR mutant had increased sensitivity to H2O2. The transcript levels of oxidative stress defense genes, sod, ahpC, and trx, were lower in the oxyR mutant than in the wild-type strain. The turbidity of C. ochracea, simultaneously co-cultured with Streptococcus gordonii, was lower than that observed under conditions of homotypic growth. Moreover, the percentage decrease in growth of the oxyR mutant was significantly higher than that of the wild-type. CONCLUSIONS: These results show that OxyR in C. ochracea regulates adequate in vitro growth and escapes oxidative stress.


Assuntos
Proteínas de Bactérias/genética , Capnocytophaga/genética , Capnocytophaga/metabolismo , Inativação Gênica , Infecções por Bactérias Gram-Negativas/microbiologia , Estresse Oxidativo , Proteínas Repressoras/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Loci Gênicos , Peróxido de Hidrogênio/metabolismo , Mutagênese Insercional , Mutação , Proteínas Repressoras/metabolismo
10.
Medicina (Kaunas) ; 57(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34946243

RESUMO

The COVID-19 pandemic is a new challenge for the diagnosis and treatment of infective endocarditis (IE). Fever and other unspecific symptoms of coronaviral infection could be misleading or masking its manifestations. We present the case of a young patient admitted for persistent fever, profuse sweating, headache, articular pain, myalgias, and weight loss. She reported regression taste and smell disorders compared to a month earlier when diagnosed with moderate COVID-19 pneumonia. While the RT-PCR SARS-COV-2 test was positive, she was admitted to a COVID-19 ward. Investigations of febrile syndrome revealed two positive blood cultures with Streptococcus gordonii and the presence of vegetations on the aortic valve, supporting a certain diagnosis of IE. After six weeks of antibiotic treatment, the patient had clinical and biologic favorable outcomes. Streptococcus gordonii is a common commensal related to the dental biofilm, although there were no caries in our patient. The influence of COVID-19 infection on the human microbiome by modifying the virulence of some commensal germs may be a risk factor for IE pathogenesis on native valves and requires the vigilance of clinicians for suspicion of this disease.


Assuntos
COVID-19 , Endocardite , Endocardite/diagnóstico , Endocardite/tratamento farmacológico , Feminino , Humanos , Pandemias , SARS-CoV-2 , Streptococcus gordonii
11.
Biochem Biophys Res Commun ; 523(3): 561-566, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31932035

RESUMO

In this study, we applied protamine, which is an antimicrobial peptide, to oral healthcare in combination with conventional antimicrobial agents. First, we explored the antimicrobial activity of protamine, with or without other antimicrobial agents, against Streptococcus mutans (S. mutans). Co-treatment with protamine and 3-methyl-4-isopropylphenol (IPMP) decreased the viability of S. mutans synergistically within 10 min. Interestingly, sodium fluoride (NaF) did not exhibit synergistic activity with protamine. Next, S. mutans and Streptococcus gordonii (S. gordonii) were co-treated with protamine and IPMP for 5 min to simulate tooth brushing. As a result, this co-treatment killed S. mutans faster than S. gordonii. Therefore, co-treatment with protamine and IPMP could be incorporated into oral healthcare products to prevent dental caries.


Assuntos
Antibacterianos/farmacologia , Protaminas/farmacologia , Streptococcus gordonii/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Cárie Dentária/tratamento farmacológico , Cárie Dentária/microbiologia , Sinergismo Farmacológico , Humanos , Testes de Sensibilidade Microbiana , Fluoreto de Sódio/farmacologia , Infecções Estreptocócicas/prevenção & controle
12.
BMC Microbiol ; 20(1): 280, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928109

RESUMO

BACKGROUND: To respond and adapt to environmental challenges, prokaryotes regulate cellular processes rapidly and reversibly through protein phosphorylation and dephosphorylation. This study investigates the intracellular proteome and Ser/Thr/Tyr phosphoproteome of the oral commensal Streptococcus gordonii. Intracellular proteins from planktonic cells of S. gordonii DL1 were extracted and subjected to 2D-gel electrophoresis. Proteins in general were visualized using Coomassie Brilliant Blue and T-Rex staining. Phosphorylated proteins were visualized with Pro-Q Diamond Phosphoprotein Gel Stain. Proteins were identified by LC-MS/MS and sequence analysis. RESULTS: In total, sixty-one intracellular proteins were identified in S. gordonii DL1, many of which occurred at multiple isoelectric points. Nineteen of these proteins were present as one or more Ser/Thr/Tyr phosphorylated form. The identified phosphoproteins turned out to be involved in a variety of cellular processes. CONCLUSION: Nineteen phosphoproteins involved in various cellular functions were identified in S. gordonii. This is the first time the global intracellular Ser/Thr/Tyr phosphorylation profile has been analysed in an oral streptococcus. Comparison with phosphoproteomes of other species from previous studies showed many similarities. Proteins that are consistently found in a phosphorylated state across several species and growth conditions may represent a core phosphoproteome profile shared by many bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Fosfoproteínas/metabolismo , Streptococcus gordonii/metabolismo , Proteínas de Bactérias/análise , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Humanos , Boca/microbiologia , Fosfoproteínas/análise , Fosforilação , Serina/metabolismo , Streptococcus gordonii/isolamento & purificação , Espectrometria de Massas em Tandem , Treonina/metabolismo , Tirosina/metabolismo
13.
Int J Mol Sci ; 21(11)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32532033

RESUMO

The oral cavity of healthy individuals is inhabited by commensals, with species of Streptococcus being the most abundant and prevalent in sites not affected by periodontal diseases. The development of chronic periodontitis is linked with the environmental shift in the oral microbiome, leading to the domination of periodontopathogens. Structure-function studies showed that Streptococcus gordonii employs a "moonlighting" protein glyceraldehyde-3-phosphate dehydrogenase (SgGAPDH) to bind heme, thus forming a heme reservoir for exchange with other proteins. Secreted or surface-associated SgGAPDH coordinates Fe(III)heme using His43. Hemophore-like heme-binding proteins of Porphyromonas gingivalis (HmuY), Prevotella intermedia (PinO) and Tannerella forsythia (Tfo) sequester heme complexed to SgGAPDH. Co-culturing of P. gingivalis with S. gordonii results in increased hmuY gene expression, indicating that HmuY might be required for efficient inter-bacterial interactions. In contrast to the DhmuY mutant strain, the wild type strain acquires heme and forms deeper biofilm structures on blood agar plates pre-grown with S. gordonii. Therefore, our novel paradigm of heme acquisition used by P. gingivalis appears to extend to co-infections with other oral bacteria and offers a mechanism for the ability of periodontopathogens to obtain sufficient heme in the host environment. Importantly, P. gingivalis is advantaged in terms of acquiring heme, which is vital for its growth survival and virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Heme/metabolismo , Porphyromonas gingivalis/metabolismo , Streptococcus gordonii/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/química , Histidina/metabolismo , Humanos , Microbiota , Boca/microbiologia , Mutação , Porphyromonas gingivalis/patogenicidade , Porphyromonas gingivalis/fisiologia , Streptococcus gordonii/fisiologia
14.
J Contemp Dent Pract ; 21(7): 733-740, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33020355

RESUMO

AIM: Phytomedicine has been commonly practiced as a form of traditional medicine in various cultures for the treatment of oral diseases. Recently, it has gained importance as an alternative to conventional treatment. Several extracts of plants and fruits have been recently evaluated for their potential activity against microorganisms involved in the development of dental caries. The purpose of this study was to evaluate the antimicrobial activity and antiadherent effect of the crude organic extract (COE) and three partitions (aqueous, butanolic, and chloroformic) of Psidium guajava (guava) leaves on a cariogenic biofilm model. MATERIALS AND METHODS: Guava leaves were obtained from the mountains of northern Peru, where they grow wild and free of pesticides. The antimicrobial activity of the COEs and partitions against Streptococcus mutans and Streptococcus gordonii was determined by measuring the inhibition halos, while the effect on biofilm adhesion was determined by measuring the optical density using spectrophotometry. RESULTS: An antibacterial effect of the COE and chloroformic partition against S. gordonii (p < 0.05) was found, as was a significant effect on biofilm adherence, with a minimum inhibitory concentration (MIC) of 0.78 mg/mL, which was maintained throughout the 7 days of evaluation. CONCLUSION: We conclude that the COEs and their chloroformic partition have antimicrobial and antibiotic effects against this strain of S. gordonii, making them of particular interest for evaluation as a promising alternative for the prevention of dental caries. CLINICAL SIGNIFICANCE: By knowing the antimicrobial effect of Psidium guajava, this substance can be effectively used in products aimed to prevent dental caries and periodontal disease.


Assuntos
Anti-Infecciosos/farmacologia , Cárie Dentária/tratamento farmacológico , Psidium , Biofilmes , Humanos , Peru , Folhas de Planta
15.
Microb Pathog ; 126: 218-223, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30414445

RESUMO

Streptococcus gordonii is commonly found in the periapical endodontic lesions of patients with apical periodontitis, a condition characterized by inflammation and periapical bone loss. Since bone metabolism is controlled by osteoclastic bone resorption and osteoblastic bone formation, we investigated the effects of S. gordonii on the differentiation and function of osteoclasts and osteoblasts. For the determination of bone resorption activity in vivo, collagen sheets soaked with heat-killed S. gordonii were implanted on mouse calvaria, and the calvarial bones were scanned by micro-computed tomography. Mouse bone marrow-derived macrophages (BMMs) were stimulated with M-CSF and RANKL for 2 days and then differentiated into osteoclasts in the presence or absence of heat-killed S. gordonii. Tartrate-resistant acid phosphatase staining was performed to determine osteoclast differentiation. Primary osteoblast precursors were differentiated into osteoblasts with ascorbic acid and ß-glycerophosphate in the presence or absence of heat-killed S. gordonii. Alkaline phosphatase staining and alizarin red S staining were conducted to determine osteoblast differentiation. Western blotting was performed to examine the expression of transcription factors including c-Fos, NFATc1, and Runx2. Heat-killed S. gordonii induced bone destruction in a mouse calvarial implantation model. The differentiation of RANKL-primed BMMs into osteoclasts was enhanced in the presence of heat-killed S. gordonii. Heat-killed S. gordonii increased the expression of c-Fos and NFATc1, which are essential transcription factors for osteoclast differentiation. On the other hand, heat-killed S. gordonii inhibited osteoblast differentiation and reduced the expression of Runx2, an essential transcription factor for osteoblast differentiation. S. gordonii exerts bone resorptive activity by increasing osteoclast differentiation and reducing osteoblast differentiation, which may be involved in periapical bone resorption.


Assuntos
Reabsorção Óssea/microbiologia , Diferenciação Celular , Osteoblastos , Osteoclastos , Osteogênese , Streptococcus gordonii/patogenicidade , Fosfatase Alcalina , Animais , Ácido Ascórbico/metabolismo , Reabsorção Óssea/diagnóstico por imagem , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Citocinas , Modelos Animais de Doenças , Glicerofosfatos/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/metabolismo , Periodontite Periapical , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ligante RANK/metabolismo , Fatores de Transcrição , Regulação para Cima , Microtomografia por Raio-X
16.
Cardiol Young ; 29(8): 1099-1100, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31280738

RESUMO

We present a case of infective endocarditis caused by Streptococcus gordonii in an 11-year-old girl with Barlow's mitral valve disease. The differential diagnosis of rheumatic carditis and infective endocarditis was difficult as the patient fulfilled the Jones criteria. Vegetation on the mitral valve which became evident later in course of the disease and positive blood culture allowed diagnosing "definite" infective endocarditis.


Assuntos
Endocardite Bacteriana/complicações , Endocardite Bacteriana/diagnóstico por imagem , Doenças das Valvas Cardíacas/complicações , Doenças das Valvas Cardíacas/diagnóstico por imagem , Streptococcus gordonii/isolamento & purificação , Criança , Diagnóstico Diferencial , Ecocardiografia , Endocardite Bacteriana/cirurgia , Feminino , Doenças das Valvas Cardíacas/cirurgia , Humanos , Valva Mitral/diagnóstico por imagem , Valva Mitral/cirurgia , Resultado do Tratamento
17.
Int J Mol Sci ; 21(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861863

RESUMO

Human ß defensin-3-C15, an epithelium-derived cationic peptide that has antibacterial/antifungal and immuno-regulatory properties, is getting attention as potential therapeutic agent in endodontics. This study aimed to investigate if synthetic human ß defensin-3-C15 (HBD3-C15) peptides could inhibit inflammatory responses in human dental pulp cells (hDPCs), which had been induced by gram-positive endodontic pathogen. hDPC explant cultures were stimulated with Streptococcus gordonii lipoprotein extracts for 24 h to induce expression of pro-inflammatory mediators. The cells were then treated with either HBD3-C15 (50 µg/mL) or calcium hydroxide (CH, 100 µg/mL) as control for seven days, to assess their anti-inflammatory effects. Quantitative RT-PCR analyses and multiplex assays showed that S. gordonii lipoprotein induced the inflammatory reaction in hDPCs. There was a significant reduction of IL-8 and MCP-1 within 24 h of treatment with either CH or HBD3-C15 (p < 0.05), which was sustained over 1 week of treatment. Alleviation of inflammation in both medications was related to COX-2 expression and PGE2 secretion (p < 0.05), rather than TLR2 changes (p > 0.05). These findings demonstrate comparable effects of CH and HDB3-C15 as therapeutic agents for inflamed hDPCs.


Assuntos
Anti-Inflamatórios/farmacologia , Lipoproteínas/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus gordonii/imunologia , beta-Defensinas/farmacologia , Anti-Inflamatórios/síntese química , Células Cultivadas , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/imunologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/imunologia , Modelos Moleculares , Infecções Estreptocócicas/complicações , Infecções Estreptocócicas/tratamento farmacológico , beta-Defensinas/síntese química
18.
Infect Immun ; 86(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29661931

RESUMO

Streptococcus gordonii is an early colonizer of the oral cavity. Although a variety of S. gordonii adherence mechanisms have been described, current dogma is that the major receptor for S. gordonii is sialic acid. However, as many bacterial species in the oral cavity produce neuraminidase that can cleave terminal sialic acid, it is unclear whether S. gordonii relies on sialic acid for adherence to oral surfaces or if this species has developed alternative binding strategies. Previous studies have examined adherence to immobilized glycoconjugates and identified binding to additional glycans, but no prior studies have defined the contribution of these different glycan structures in adherence to oral epithelial cells. We determined that the majority of S. gordonii strains tested did not rely on sialic acid for efficient adherence. In fact, adherence of some strains was significantly increased following neuraminidase treatment. Further investigation of representative strains that do not rely on sialic acid for adherence revealed binding not only to sialic acid via the serine-rich repeat protein GspB but also to ß-1,4-linked galactose. Adherence to this carbohydrate occurs via an unknown adhesin distinct from those utilized by Streptococcus oralis and Streptococcus pneumoniae Demonstrating the potential biological relevance of binding to this cryptic receptor, we established that S. oralis increases S. gordonii adherence in a neuraminidase-dependent manner. These data suggest that S. gordonii has evolved to simultaneously utilize both terminal and cryptic receptors in response to the production of neuraminidase by other species in the oral environment.


Assuntos
Adesinas Bacterianas/fisiologia , Aderência Bacteriana , Proteínas de Transporte/fisiologia , Ácido N-Acetilneuramínico/fisiologia , Neuraminidase/biossíntese , Streptococcus gordonii/fisiologia , Galactose/metabolismo , Hemaglutininas Virais , Humanos , Mucosa Bucal/microbiologia , Streptococcus oralis/fisiologia
19.
Infect Immun ; 86(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29685986

RESUMO

The high-resolution structure of glucan binding protein C (GbpC) at 1.14 Å, a sucrose-dependent virulence factor of the dental caries pathogen Streptococcus mutans, has been determined. GbpC shares not only structural similarities with the V regions of AgI/II and SspB but also functional adherence to salivary agglutinin (SAG) and its scavenger receptor cysteine-rich domains (SRCRs). This is not only a newly identified function for GbpC but also an additional fail-safe binding mechanism for S. mutans Despite the structural similarities with S. mutans antigen I/II (AgI/II) and SspB of Streptococcus gordonii, GbpC remains unique among these surface proteins in its propensity to adhere to dextran/glucans. The complex crystal structure of GbpC with dextrose (ß-d-glucose; Protein Data Bank ligand BGC) highlights exclusive structural features that facilitate this interaction with dextran. Targeted deletion mutant studies on GbpC's divergent loop region in the vicinity of a highly conserved calcium binding site confirm its role in biofilm formation. Finally, we present a model for adherence to dextran. The structure of GbpC highlights how artfully microbes have engineered the lectin-like folds to broaden their functional adherence repertoire.


Assuntos
Aderência Bacteriana , Proteínas de Transporte/fisiologia , Lectinas/fisiologia , Streptococcus mutans/fisiologia , Sacarose/farmacologia , Biofilmes , Proteínas de Ligação ao Cálcio , Proteínas de Transporte/química , Cristalografia , Proteínas de Ligação a DNA , Dextranos/química , Lectinas/química , Receptores de Superfície Celular/química , Receptores Depuradores/química , Proteínas Supressoras de Tumor
20.
Appl Environ Microbiol ; 84(24)2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30341079

RESUMO

Dental caries is a biofilm-mediated disease that occurs when acidogenic/aciduric bacteria obtain an ecological advantage over commensal species. In previous studies, the effects of the antimicrobial peptide GH12 on planktonic bacteria and monospecies biofilms were confirmed. The objectives of this study were to investigate the effects of GH12 on a cariogenic multispecies biofilm and to preliminarily explain the mechanism. In this biofilm model, Streptococcus mutans ATCC 70061 was the representative of cariogenic bacteria, while Streptococcus gordonii ATCC 35105 and Streptococcus sanguinis JCM 5708 were selected as healthy microbiota. The results showed that GH12 was more effective in suppressing S. mutans than the other two species, with lower MIC and minimal bactericidal concentration (MBC) values among diverse type strains and clinical isolated strains. Therefore, GH12, at no more than 8 mg/liter, was used to selectively suppress S. mutans in the multispecies biofilm. GH12 at 4 mg/liter and 8 mg/liter reduced the cariogenic properties of the multispecies biofilm in biofilm formation, glucan synthesis, and lactic acid production. In addition, GH12 suppressed S. mutans within the multispecies biofilm and changed the bacterial composition. Furthermore, 8 mg/liter GH12 showed a selective bactericidal impact on S. mutans, and GH12 promoted hydrogen peroxide production in S. sanguinis and S. gordonii, which improved their ecological advantages. In conclusion, GH12 inhibited the cariogenic properties and changed the composition of the multispecies biofilm through a two-part mechanism by which GH12 directly suppressed the growth of S. mutans as well as enhanced the ecological competitiveness of S. sanguinis and S. gordoniiIMPORTANCE Dental caries is one of the most prevalent chronic infectious diseases worldwide, with substantial economic and quality-of-life impacts. Streptococcus mutans has been considered the principal pathogen of dental caries. To combat dental caries, an antimicrobial peptide, GH12, was designed, and its antibacterial effects on planktonic S. mutans and the monospecies biofilm were confirmed. As etiological concepts of dental caries evolved to include microecosystems, the homeostasis between pathogenic and commensal bacteria and a selective action on cariogenic virulence have increasingly become the focus. The novelty of this research was to study the effects of the antimicrobial peptides on a controlled cariogenic multispecies biofilm model. Notably, the role of an antimicrobial agent in regulating interspecific competition and composition shifts within this multispecies biofilm was investigated. With promising antibacterial and antibiofilm properties, the use of GH12 might be of importance in preventing and controlling caries and other dental infections.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Cariogênicos/farmacologia , Peptídeos/farmacologia , Biofilmes/crescimento & desenvolvimento , Cárie Dentária/microbiologia , Placa Dentária/microbiologia , Humanos , Peróxido de Hidrogênio/metabolismo , Ácido Láctico/metabolismo , Testes de Sensibilidade Microbiana , Microbiota/efeitos dos fármacos , Streptococcus gordonii/efeitos dos fármacos , Streptococcus gordonii/crescimento & desenvolvimento , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/crescimento & desenvolvimento , Streptococcus sanguis/efeitos dos fármacos , Streptococcus sanguis/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa