Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Microb Cell Fact ; 22(1): 72, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37062846

RESUMO

BACKGROUND: Laccases are multicopper enzymes that oxidize a wide range of aromatic and non-aromatic compounds in the presence of oxygen. The majority of industrially relevant laccases are derived from fungi and are produced in eukaryotic expression systems such as Pichia pastoris and Saccharomyces cerevisiae. Bacterial laccases for research purposes are mostly produced intracellularly in Escherichia coli, but secretory expression systems are needed for future applications. Bacterial laccases from Streptomyces spp. are of interest for potential industrial applications because of their lignin degrading activities. RESULTS: In this study, we expressed small laccases genes from Streptomyces coelicolor, Streptomyces viridosporus and Amycolatopsis 75iv2 with their native signal sequences in Gram-positive Bacillus subtilis and Streptomyces lividans host organisms. The extracellular activities of ScLac, SvLac and AmLac expressed in S. lividans reached 1950 ± 99 U/l, 812 ± 57 U/l and 12 ± 1 U/l in the presence of copper supplementation. The secretion of the small laccases was irrespective of the copper supplementation; however, activities upon reconstitution with copper after expression were significantly lower, indicating the importance of copper during laccase production. The production of small laccases in B. subtilis resulted in extracellular activity that was significantly lower than in S. lividans. Unexpectedly, AmLac and ScLac were secreted without their native signal sequences in B. subtilis, indicating that B. subtilis secretes some heterologous proteins via an unknown pathway. CONCLUSIONS: Small laccases from S. coelicolor, S. viridosporus and Amycolatopsis 75iv2 were secreted in both Gram-positive expression hosts B. subtilis and S. lividans, but the extracellular activities were significantly higher in the latter.


Assuntos
Cobre , Lacase , Lacase/genética , Lacase/metabolismo , Lignina/metabolismo , Streptomyces lividans/metabolismo , Sinais Direcionadores de Proteínas/genética , Escherichia coli/metabolismo
2.
Microb Cell Fact ; 22(1): 262, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114944

RESUMO

BACKGROUND: Transforming waste and nonfood materials into bulk biofuels and chemicals represents a major stride in creating a sustainable bioindustry to optimize the use of resources while reducing environmental footprint. However, despite these advancements, the production of high-value natural products often continues to depend on the use of first-generation substrates, underscoring the intricate processes and specific requirements of their biosyntheses. This is also true for Streptomyces lividans, a renowned host organism celebrated for its capacity to produce a wide array of natural products, which is attributed to its genetic versatility and potent secondary metabolic activity. Given this context, it becomes imperative to assess and optimize this microorganism for the synthesis of natural products specifically from waste and nonfood substrates. RESULTS: We metabolically engineered S. lividans to heterologously produce the ribosomally synthesized and posttranslationally modified peptide bottromycin, as well as the polyketide pamamycin. The modified strains successfully produced these compounds using waste and nonfood model substrates such as protocatechuate (derived from lignin), 4-hydroxybenzoate (sourced from plastic waste), and mannitol (from seaweed). Comprehensive transcriptomic and metabolomic analyses offered insights into how these substrates influenced the cellular metabolism of S. lividans. In terms of production efficiency, S. lividans showed remarkable tolerance, especially in a fed-batch process using a mineral medium containing the toxic aromatic 4-hydroxybenzoate, which led to enhanced and highly selective bottromycin production. Additionally, the strain generated a unique spectrum of pamamycins when cultured in mannitol-rich seaweed extract with no additional nutrients. CONCLUSION: Our study showcases the successful production of high-value natural products based on the use of varied waste and nonfood raw materials, circumventing the reliance on costly, food-competing resources. S. lividans exhibited remarkable adaptability and resilience when grown on these diverse substrates. When cultured on aromatic compounds, it displayed a distinct array of intracellular CoA esters, presenting promising avenues for polyketide production. Future research could be focused on enhancing S. lividans substrate utilization pathways to process the intricate mixtures commonly found in waste and nonfood sources more efficiently.


Assuntos
Produtos Biológicos , Policetídeos , Streptomyces lividans/genética , Streptomyces lividans/metabolismo , Lignina/metabolismo , Produtos Biológicos/metabolismo , Policetídeos/metabolismo , Manitol/metabolismo
3.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-37669898

RESUMO

Small peptide aldehydes (SPAs) with protease inhibitory activity are naturally occurring compounds shown to be synthesized by non-ribosomal peptide synthetases (NRPS). SPAs are widely used in biotechnology and have been utilized as therapeutic agents. They are also physiologically relevant and have been postulated to regulate the development of their producing microorganisms. Previously, we identified an NRPS-like biosynthetic gene cluster (BGC) in Streptomyces lividans 66 that lacked a condensation (C) domain but included a tRNA-utilizing enzyme (tRUE) belonging to the leucyl/phenylalanyl (L/F) transferase family. This system was predicted to direct the synthesis of a novel SPA, which we named livipeptin. Using evolutionary genome mining approaches, here, we confirm the presence of L/F transferase tRUEs within the genomes of diverse Streptomyces and related organisms, including fusions with the anticipated C-minus NRPS-like protein. We then demonstrate genetic functional cooperation between the identified L/F-transferase divergent tRUE homolog with the C-minus NRPS, leading to the synthesis of a metabolic fraction with protease inhibitory activity. Semisynthetic assays in the presence of RNAse revealed that the productive interaction between the tRUE and the C-minus NRPS enzymes is indeed tRNA dependent. We expect our findings to boost the discovery of SPAs, as well as the development of protease-mediated biotechnologies, by exploiting the uncovered genetic basis for synthesizing putative acetyl-leu/phe-arginine protease inhibitors. Furthermore, these results will facilitate the purification and structural elucidation of livipeptin, which has proven difficult to chemically characterize. SIGNIFICANCE: The discovery of natural products biosynthetic genes marks a significant advancement in our understanding of these metabolites, for example of their evolution, activity, and biosynthesis, but also opens biotechnological opportunities and knowledge to advance genome mining approaches. We made this possible by uncovering a new biosynthetic pathway in Streptomyces lividans 66 shown to direct the synthesis of a strong protease inhibitor, termed livipeptin, following unprecedented biosynthetic rules and genes. Thus, by shedding light on the genetic mechanisms predicted to govern the production of acetyl-leu/phe-arginine protease inhibitors, including the elusive livipeptin, this study enables novel protease-mediated biotechnologies as well as approaches for discovering protease inhibitors from genome data.


Assuntos
Anti-Infecciosos , Streptomyces lividans , Streptomyces lividans/genética , Streptomyces lividans/metabolismo , Inibidores de Proteases , Peptídeo Sintases/metabolismo , Peptídeos/genética , Peptídeo Hidrolases/genética , RNA de Transferência/genética , Transferases/genética , Arginina , Família Multigênica
4.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768294

RESUMO

Lignin degradation in fungal systems is well characterized. Recently, a potential for lignin depolymerization and modification employing similar enzymatic activities by bacteria is increasingly recognized. The presence of genes annotated as peroxidases in Actinobacteria genomes suggests that these bacteria should contain auxiliary enzymes such as flavin-dependent carbohydrate oxidoreductases. The only auxiliary activity subfamily with significantly similar representatives in bacteria is pyranose oxidase (POx). A biological role of providing H2O2 for peroxidase activation and reduction of radical degradation products suggests an extracellular localization, which has not been established. Analysis of the genomic locus of POX from Kitasatospora aureofaciens (KaPOx), which is similar to fungal POx, revealed a start codon upstream of the originally annotated one, and the additional sequence was considered a putative Tat-signal peptide by computational analysis. We expressed KaPOx including this additional upstream sequence as well as fusion constructs consisting of the additional sequence, the KaPOx mature domain and the fluorescent protein mRFP1 in Streptomyces lividans. The putative signal peptide facilitated secretion of KaPOx and the fusion protein, suggesting a natural extracellular localization and supporting a potential role in providing H2O2 and reducing radical compounds derived from lignin degradation.


Assuntos
Desidrogenases de Carboidrato , Lignina , Lignina/metabolismo , Peróxido de Hidrogênio , Oxirredutases/metabolismo , Peroxidases/metabolismo , Desidrogenases de Carboidrato/genética , Desidrogenases de Carboidrato/metabolismo , Bactérias/metabolismo , Sinais Direcionadores de Proteínas/genética
5.
Arch Microbiol ; 204(11): 687, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36324009

RESUMO

Antimicrobial proteins and peptides are an alternative to current antibiotics. Here, we report an antimicrobial activity in a low-molecular-weight protein secreted naturally by Streptomyces lividans TK24 when glucose or glycerol were used as carbon sources. The antimicrobial activity was demonstrated against Bacillus subtilis, Bacillus cereus, Kokuria rhizophila, Clostridium sporogenes and Clavibacter michiganensis, causal pathogen of tomato bacterial canker; one of the most destructive bacterial diseases of this crop. The protein fraction with antimicrobial activity was identified and quantified by LC-MS/MS. From a total of 155 proteins, 11 were found to be within the range of 11.3-13.9 kDa of which four proteins were selected by functional analysis as possibly responsible for the antimicrobial activity. Protein fractionation, correlation analysis between antimicrobial activity and abundance of selected proteins, as well as transcriptional expression analysis, indicate that 50S ribosomal protein L19 is the main candidate responsible for antimicrobial activity.


Assuntos
Anti-Infecciosos , Micrococcaceae , Solanum lycopersicum , Streptomyces lividans , Cromatografia Líquida , Espectrometria de Massas em Tandem , Solanum lycopersicum/microbiologia , Anti-Infecciosos/farmacologia
6.
Pestic Biochem Physiol ; 170: 104704, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32980065

RESUMO

Carboxylesterases have widely been used in a series of industrial applications, especially, the detoxification of pesticide residues. In the present study, EstC, a novel carboxylesterase from Streptomyces lividans TK24, was successfully heterogeneously expressed, purified and characterized. Phylogenetic analysis showed that EstC can be assigned as the first member of a novel family XIX. Multiple sequence alignment indicated that EstC has highly conserved structural features, including a catalytic triad formed by Ser155, Asp248 and His278, as well as a canonical Gly-His-Ser-Ala-Gly pentapeptide. Biochemical characterization indicated that EstC exhibited maximal activity at pH 9.0 (Tris-HCl buffer) and 55 °C. It also showed higher activity towards short-chain substrates, with the highest activity for p-nitrophenyl acetate (pNPA2) (Km = 0.31 ± 0.02 mM, kcat/Km = 1923.35 ± 9.62 s-1 mM-1) compared to other pNP esters used in this experiment. Notably, EstC showed hyper-thermostability and good alkali stability. The activity of EstC had no significant changes when it was incubated under 55 °C for 100 h and reached half-life after incubation at 100 °C for 8 h. Beyond that, EstC also showed stability at pH ranging from 6.0 to 11.0 and about 90% residual activity still reserved after treatment at pH 8.0 or 9.0 for 26 h, especially. Furthermore, EstC had outstanding potential for bioremediation of chlorpyrifos-contaminated environment. The recombinant enzyme (0.5 U mL-1) could hydrolyze 79.89% chlorpyrifos (5 mg L-1) at 37 °C within 80 min. These properties will make EstC have a potential application value in various industrial productions and detoxification of chlorpyrifos residues.


Assuntos
Carboxilesterase/genética , Clorpirifos , Sequência de Aminoácidos , Hidrolases de Éster Carboxílico/genética , Clonagem Molecular , Concentração de Íons de Hidrogênio , Filogenia , Proteínas Recombinantes/genética , Especificidade por Substrato , Temperatura
7.
BMC Microbiol ; 19(1): 233, 2019 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-31655540

RESUMO

BACKGROUND: Streptomyces lividans is an appealing host for the production of proteins of biotechnological interest due to its relaxed exogenous DNA restriction system and its ability to secrete proteins directly to the medium through the major Sec or the minor Tat routes. Often, protein secretion displays non-uniform time-dependent patterns. Understanding the associated metabolic changes is a crucial step to engineer protein production. Dynamic Flux Balance Analysis (DFBA) allows the study of the interactions between a modelled organism and its environment over time. Existing methods allow the specification of initial model and environment conditions, but do not allow introducing arbitrary modifications in the course of the simulation. Living organisms, however, display unexpected adaptive metabolic behaviours in response to unpredictable changes in their environment. Engineering the secretion of products of biotechnological interest has systematically proven especially difficult to model using DFBA. Accurate time-dependent modelling of complex and/or arbitrary, adaptive metabolic processes demands an extended approach to DFBA. RESULTS: In this work, we introduce Adaptive DFBA, a novel, versatile simulation approach that permits inclusion of changes in the organism or the environment at any time in the simulation, either arbitrary or interactively responsive to environmental changes. This approach extends traditional DFBA to allow steering arbitrarily complex simulations of metabolic dynamics. When applied to Sec- or Tat-dependent secretion of overproduced proteins in S. lividans, Adaptive DFBA can overcome the limitations of traditional DFBA to reproduce experimental data on plasmid-free, plasmid bearing and secretory protein overproducing S. lividans TK24, and can yield useful insights on the behaviour of systems with limited experimental knowledge such as agarase or amylase overproduction in S. lividans TK21. CONCLUSIONS: Adaptive DFBA has allowed us to overcome DFBA limitations and to generate more accurate models of the metabolism during the overproduction of secretory proteins in S. lividans, improving our understanding of the underlying processes. Adaptive DFBA is versatile enough to permit dynamical metabolic simulations of arbitrarily complex biotechnological processes.


Assuntos
Proteínas de Bactérias/metabolismo , Análise do Fluxo Metabólico/métodos , Streptomyces lividans/crescimento & desenvolvimento , Engenharia Metabólica , Modelos Teóricos , Transporte Proteico , Streptomyces lividans/metabolismo
8.
Microb Cell Fact ; 18(1): 126, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31345224

RESUMO

BACKGROUND: Bacterial secretory proteins often require the formation of disulphide bonds outside the cell to acquire an active conformation. Thiol-disulphide oxidoreductases are enzymes that catalyse the formation of disulphide bonds. The bacterium Streptomyces lividans is a well-known host for the efficient secretion of overproduced homologous and heterologous secretory proteins of industrial application. Therefore, the correct conformation of these extracellular proteins is of great importance when engineering that overproduction. RESULTS: We have identified four acting thiol-disulphide oxidoreductases (TDORs) in S. lividans TK21, mutants in all TDOR candidates affect the secretion and activity of the Sec-dependent alpha-amylase, which contains several disulphide bonds, but the effect was more drastic in the case of the Sli-DsbA deficient strain. Thus, the four TDOR are required to obtain active alpha-amylase. Additionally, only mutations in Sli-DsbA and Sli-DsbB affect the secretion and activity of the Tat-dependent agarase, which does not form a disulphide bond, when it is overproduced. This suggests a possible role of the oxidised Sli-DsbA as a chaperone in the production of active agarase. CONCLUSIONS: Enzymes involved in the production of the extracellular mature active proteins are not fully characterised yet in Streptomyces lividans. Our results suggest that the role of thiol-disulphide oxidoreductases must be considered when engineering Streptomyces strains for the overproduction of homologous or heterologous secretory proteins of industrial application, irrespective of their secretion route, in order to obtain active, correctly folded proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Dissulfetos/metabolismo , Oxirredutases/metabolismo , Streptomyces lividans/enzimologia , Regulação Bacteriana da Expressão Gênica , Domínios Proteicos , Dobramento de Proteína , Streptomyces lividans/genética
9.
BMC Microbiol ; 18(1): 59, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29898665

RESUMO

BACKGROUND: Streptomyces lividans has demonstrated its value as an efficient host for protein production due to its ability to secrete functional proteins directly to the media. Secretory proteins that use the major Sec route need to be properly folded outside the cell, whereas secretory proteins using the Tat route appear outside the cell correctly folded. This feature makes the Tat system very attractive for the production of natural or engineered Tat secretory proteins. S. lividans cells are known to respond differently to overproduction and secretion of Tat versus Sec proteins. Increased understanding of the impact of protein secretion through the Tat route can be obtained by a deeper analysis of the metabolic impact associated with protein production, and its dependence on protein origin, composition, secretion mechanisms, growth phases and nutrients. Flux Balance Analysis of Genome-Scale Metabolic Network models provides a theoretical framework to investigate cell metabolism under different constraints. RESULTS: We have built new models for various S. lividans strains to better understand the mechanisms associated with overproduction of proteins secreted through the Tat route. We compare models of an S. lividans Tat-dependent agarase overproducing strain with those of the S. lividans wild-type, an S. lividans strain carrying the multi-copy plasmid vector and an α-amylase Sec-dependent overproducing strain. Using updated genomic, transcriptomic and experimental data we could extend existing S. lividans models and produce a new model which produces improved results largely extending the coverage of S. lividans strains, the number of genes and reactions being considered, the predictive behaviour and the dependence on specification of exchange constraints. Comparison of the optimized solutions obtained highlights numerous changes between Tat- and Sec-dependent protein secreting strains affecting the metabolism of carbon, amino acids, nucleotides, lipids and cofactors, and variability analysis predicts a large potential for protein overproduction. CONCLUSIONS: This work provides a detailed look to metabolic changes associated to Tat-dependent protein secretion reproducing experimental observations and identifying changes that are specific to each secretory route, presenting a novel, improved, more accurate and strain-independent model of S. lividans, thus opening the way for enhanced metabolic engineering of protein overproduction in S. lividans.


Assuntos
Glicosídeo Hidrolases/metabolismo , Streptomyces lividans/metabolismo , alfa-Amilases/metabolismo , Proteínas de Bactérias/metabolismo , Engenharia Metabólica , Redes e Vias Metabólicas , Modelos Biológicos , Dobramento de Proteína
10.
Microb Cell Fact ; 17(1): 151, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30241528

RESUMO

BACKGROUND: Genetic tools including constitutive and inducible promoters have been developed over the last few decades for strain engineering in Streptomyces. Inducible promoters are useful for controlling gene expression, however only a limited number are applicable to Streptomyces. The aim of this study is to develop a controllable protein expression system based on an inducible promoter using sugar inducer, which has not yet been widely applied in Streptomyces. RESULTS: To determine a candidate promoter, inducible protein expression was first examined in Streptomyces avermitilis MA-4680 using various carbon sources. Xylose isomerase (xylA) promoter derived from xylose (xyl) operon was selected due to strong expression of xylose isomerase (XylA) in the presence of D-xylose. Next, a xylose-inducible protein expression system was constructed by investigating heterologous protein expression (chitobiase as a model protein) driven by the xylA promoter in Streptomyces lividans. Chitobiase activity was detected at high levels in S. lividans strain harboring an expression vector with xylA promoter (pXC), under both xylose-induced and non-induced conditions. Thus, S. avermitilis xylR gene, which encodes a putative repressor of xyl operon, was introduced into constructed vectors in order to control protein expression by D-xylose. Among strains constructed in the study, XCPR strain harboring pXCPR vector exhibited strict regulation of protein expression. Chitobiase activity in the XCPR strain was observed to be 24 times higher under xylose-induced conditions than that under non-induced conditions. CONCLUSION: In this study, a strictly regulated protein expression system was developed based on a xylose-induced system. As far as we could ascertain, this is the first report of engineered inducible protein expression in Streptomyces by means of a xylose-induced system. This system might be applicable for controllable expression of toxic products or in the field of synthetic biology using Streptomyces strains.


Assuntos
Engenharia Metabólica/métodos , Streptomyces/genética , Acetilglucosaminidase/biossíntese , Aldose-Cetose Isomerases/genética , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Streptomyces/metabolismo
11.
Microb Cell Fact ; 17(1): 189, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30486842

RESUMO

BACKGROUND: In Streptomyces, understanding the switch from primary to secondary metabolism is important for maximizing the production of secondary metabolites such as antibiotics, as well as for optimizing recombinant glycoprotein production. Differences in Streptomyces lividans bacterial aggregation as well as recombinant glycoprotein production and O-mannosylation have been reported due to modifications in the shake flask design. We hypothetized that such differences are related to the metabolic switch that occurs under oxygen-limiting conditions in the cultures. RESULTS: Shake flask design was found to affect undecylprodigiosin (RED, a marker of secondary metabolism) production; the RED yield was 12 and 385 times greater in conventional normal Erlenmeyer flasks (NF) than in baffled flasks (BF) and coiled flasks (CF), respectively. In addition, oxygen transfer rates (OTR) and carbon dioxide transfer rates were almost 15 times greater in cultures in CF and BF as compared with those in NF. Based on these data, we obtained respiration quotients (RQ) consistent with aerobic metabolism for CF and BF, but an RQ suggestive of anaerobic metabolism for NF. CONCLUSION: Although the metabolic switch is usually related to limitations in phosphate and nitrogen in Streptomyces sp., our results reveal that it can also be activated by low OTR, dramatically affecting recombinant glycoprotein production and O-mannosylation and increasing RED synthesis in the process.


Assuntos
Reatores Biológicos/microbiologia , Oxigênio/farmacologia , Recombinação Genética/genética , Streptomyces lividans/metabolismo , Cinética , Redes e Vias Metabólicas/efeitos dos fármacos , Prodigiosina/análogos & derivados , Prodigiosina/biossíntese , Prodigiosina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Streptomyces lividans/efeitos dos fármacos , Streptomyces lividans/crescimento & desenvolvimento
12.
Microb Cell Fact ; 17(1): 198, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30577858

RESUMO

BACKGROUND: The Gram-positive Streptomyces lividans TK24 is an attractive host for heterologous protein production because of its high capability to secrete proteins-which favors correct folding and facilitates downstream processing-as well as its acceptance of methylated DNA and its low endogeneous protease activity. However, current inconsistencies in protein yields urge for a deeper understanding of the burden of heterologous protein production on the cell. In the current study, transcriptomics and [Formula: see text]-based fluxomics were exploited to uncover gene expression and metabolic flux changes associated with heterologous protein production. The Rhodothermus marinus thermostable cellulase A (CelA)-previously shown to be successfully overexpressed in S. lividans-was taken as an example protein. RESULTS: RNA-seq and [Formula: see text]-based metabolic flux analysis were performed on a CelA-producing and an empty-plasmid strain under the same conditions. Differential gene expression, followed by cluster analysis based on co-expression and co-localization, identified transcriptomic responses related to secretion-induced stress and DNA damage. Furthermore, the OsdR regulon (previously associated with hypoxia, oxidative stress, intercellular signaling, and morphological development) was consistently upregulated in the CelA-producing strain and exhibited co-expression with isoenzymes from the pentose phosphate pathway linked to secondary metabolism. Increased expression of these isoenzymes matches to increased fluxes in the pentose phosphate pathway. Additionally, flux maps of the central carbon metabolism show increased flux through the tricarboxylic acid cycle in the CelA-producing strain. Redirection of fluxes in the CelA-producing strain leads to higher production of NADPH, which can only partly be attributed to increased secretion. CONCLUSIONS: Transcriptomic and fluxomic changes uncover potential new leads for targeted strain improvement strategies which may ease the secretion stress and metabolic burden associated with heterologous protein synthesis and secretion, and may help create a more consistently performing S. lividans strain. Yet, links to secondary metabolism and redox balancing should be further investigated to fully understand the S. lividans metabolome under heterologous protein production.


Assuntos
Família Multigênica/genética , Biossíntese de Proteínas/genética , Streptomyces lividans/metabolismo , Transcriptoma/genética
13.
Appl Microbiol Biotechnol ; 102(2): 857-869, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29196786

RESUMO

Mithramycin A is an antitumor compound used for treatment of several types of cancer including chronic and acute myeloid leukemia, testicular carcinoma, hypercalcemia and Paget's disease. Selective modifications of this molecule by combinatorial biosynthesis and biocatalysis opened the possibility to produce mithramycin analogues with improved properties that are currently under preclinical development. The mithramycin A biosynthetic gene cluster from Streptomyces argillaceus ATCC12956 was cloned by transformation assisted recombination in Saccharomyces cerevisiae and heterologous expression in Streptomyces lividans TK24 was evaluated. Mithramycin A was efficiently produced by S. lividans TK24 under standard fermentation conditions. To improve the yield of heterologously produced mithramycin A, a collection of derivative strains of S. lividans TK24 were constructed by sequential deletion of known potentially interfering secondary metabolite gene clusters using a protocol based on the positive selection of double crossover events with blue pigment indigoidine-producing gene. Mithramycin A production was evaluated in these S. lividans strains and substantially improved mithramycin A production was observed depending on the deleted gene clusters. A collection of S. lividans strains suitable for heterologous expression of actinomycetes secondary metabolites were generated and efficient production of mithramycin A with yields close to 3 g/L, under the tested fermentation conditions was achieved using these optimized collection of strains.


Assuntos
Plicamicina/análogos & derivados , Policetídeos/metabolismo , Streptomyces lividans/metabolismo , Streptomyces/enzimologia , Biocatálise , Vias Biossintéticas , Clonagem Molecular , Fermentação , Família Multigênica , Plicamicina/biossíntese , Saccharomyces cerevisiae , Metabolismo Secundário , Streptomyces/genética , Streptomyces lividans/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-27919888

RESUMO

Comparative genome sequencing analysis of a lincomycin-resistant strain of Streptomyces coelicolor A3(2) and the wild-type strain identified a novel mutation conferring a high level of lincomycin resistance. Surprisingly, the new mutation was an in-frame DNA deletion in the genes SCO4597 and SCO4598, resulting in formation of the hybrid gene linR. SCO4597 and SCO4598 encode two histidine kinases, which together with SCO4596, encoding a response regulator, constitute a unique two-component system. Sequence analysis indicated that these three genes and their arrangement patterns are ubiquitous among all Streptomyces genomes sequenced to date, suggesting these genes play important regulatory roles. Gene replacement showed that this mutation was responsible for the high level of lincomycin resistance, the overproduction of the antibiotic actinorhodin, and the enhanced morphological differentiation of this strain. Moreover, heterologous expression of the hybrid gene linR in Escherichia coli conferred resistance to lincomycin in this organism. Introduction of the hybrid gene linR in various Streptomyces strains by gene engineering technology may widely activate and/or enhance antibiotic production.


Assuntos
Antibacterianos/farmacologia , Lincomicina/farmacologia , Streptomyces coelicolor/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Mutação/genética
15.
Biotechnol Bioeng ; 114(9): 2011-2022, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28436005

RESUMO

Filamentous organisms of the genus Streptomyces play an important role in industrial production processes, due to their extensive secondary metabolism variability, as well as their ability to secrete efficiently large amounts of (heterologous) proteins. While genetic engineering tools are available to rapidly build up large strain libraries, the subsequent strain screening and bioprocess development still constitutes a bottleneck. This is due to the lack of reliable parallelized and accelerated cultivation techniques for morphologically challenging organisms. To address this challenge, we developed an integrated cultivation workflow for Streptomyces lividans based on a parallelized shaken 48-well microtiter-plate (MTP) cultivation device. In a first step, a feasible pre-culture method was identified and validated, revealing high comparability in subsequent main cultivations (coefficient of variation of 1.1% for in-plate replicates and 3.2% between different pre-cultures). When validating the growth performance in 1 mL MTP cultivation against an established 1,000 mL lab-scale cultivation system, highly comparable cultivation patterns were found for online (pH, dissolved oxygen), as well as for offline derived parameters (glucose uptake, cell-dry-weight, and pellet size). Additionally, the two cultivation regimes were compared with respect to transcriptional and protein secretion activity of Streptomyces, showing overall good comparability with minor, but well explainable discrepancies, most probably caused by different energy dissipation (shaking vs. stirring) and adaption effects due to different illumination conditions. Embedded within the presented cultivation workflow, the 1 mL MTP-based parallelized cultivation system seems to be a suitable screening tool for filamentous and industrial relevant organisms like Streptomyces. This can contribute to widen the field of application for these organisms and facilitate screening and early-stage bioprocess development. Biotechnol. Bioeng. 2017;114: 2011-2022. © 2017 Wiley Periodicals, Inc.


Assuntos
Técnicas de Cultura Celular por Lotes/instrumentação , Reatores Biológicos/microbiologia , Ensaios de Triagem em Larga Escala/métodos , Modelos Biológicos , Streptomyces lividans/citologia , Streptomyces lividans/fisiologia , Técnicas de Cultura Celular por Lotes/métodos , Proliferação de Células , Tamanho Celular , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização , Projetos Piloto , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Especificidade da Espécie , Fluxo de Trabalho
16.
Microb Cell Fact ; 16(1): 232, 2017 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-29274637

RESUMO

BACKGROUND: The gene encoding a thermostable cellulase of family 12 was previously isolated from a Rhodothermus marinus through functional screening. CelA is a protein of 260 aminoacyl residues with a 28-residue amino-terminal signal peptide. Mature CelA was poorly synthesized in some Escherichia coli strains and not at all in others. Here we present an alternative approach for its heterologous production as a secreted polypeptide in Streptomyces. RESULTS: CelA was successfully over-expressed as a secreted polypeptide in Streptomyces lividans TK24. To this end, CelA was fused C-terminally to the secretory signal peptide of the subtilisin inhibitor protein (Sianidis et al. in J Biotechnol. 121: 498-507, 2006) from Streptomyces venezuelae and a new cloning strategy developed. Optimal growth media and conditions that stall biomass production promote excessive CelA secretion. Under optimal growth conditions in nutrient broth medium, significant amounts of mature CelA (50-90 mg/L or 100-120 mg/g of dry cell weight) are secreted in the spent growth media after 7 days. A protocol to rapidly purify CelA to homogeneity from culture supernatants was developed and specific anti-sera raised against it. Biophysical, biochemical and immmuno-detection analyses indicate that the enzyme is intact, stable and fully functional. CelA is the most thermostable heterologous polypeptide shown to be secreted from S. lividans. CONCLUSION: This study further validates and extends the use of the S. lividans platform for production of heterologous enzymes of industrial importance and extends it to active thermostable enzymes. This study contributes to developing a platform for poly-omics analysis of protein secretion in S. lividans.


Assuntos
Proteínas de Bactérias/metabolismo , Celulase/metabolismo , Expressão Gênica , Rhodothermus/enzimologia , Streptomyces lividans/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Celulase/química , Celulase/genética , Estabilidade Enzimática , Temperatura Alta , Transporte Proteico , Rhodothermus/genética , Streptomyces lividans/metabolismo
17.
Appl Microbiol Biotechnol ; 101(10): 4259-4268, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28243709

RESUMO

Kasugamycin (KSM), an aminoglycoside antibiotic isolated from Streptomyces kasugaensis cultures, has been used against rice blast disease for more than 50 years. We cloned the KSM biosynthetic gene (KBG) cluster from S. kasugaensis MB273-C4 and constructed three KBG cassettes (i.e., cassettes I-III) to enable heterologous production of KSM in many actinomycetes by constitutive expression of KBGs. Cassette I comprised all putative transcriptional units in the cluster, but it was placed under the control of the P neo promoter from Tn5. It was not maintained stably in Streptomyces lividans and did not transform Rhodococcus erythropolis. Cassette II retained the original arrangement of KBGs, except that the promoter of kasT, the specific activator gene for KBG, was replaced with P rpsJ , the constitutive promoter of rpsJ from Streptomyces avermitilis. To enhance the intracellular concentration of myo-inositol, an expression cassette of ino1 encoding the inositol-1-phosphate synthase from S. avermitilis was inserted into cassette II to generate cassette III. These two cassettes showed stable maintenance in S. lividans and R. erythropolis to produce KSM. Particularly, the transformants of S. lividans induced KSM production up to the same levels as those produced by S. kasugaensis. Furthermore, cassette III induced more KSM accumulation than cassette II in R. erythropolis, suggesting an exogenous supply of myo-inositol by the ino1 expression in the host. Cassettes II and III appear to be useful for heterologous KSM production in actinomycetes. Rhodococcus exhibiting a spherical form in liquid cultivation is also a promising heterologous host for antibiotic fermentation.


Assuntos
Aminoglicosídeos/biossíntese , Antibacterianos/biossíntese , Família Multigênica , Rhodococcus/genética , Streptomyces lividans/genética , Streptomyces/genética , Sequência de Bases , Clonagem Molecular , Fermentação , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Inositol/biossíntese , Inositol/metabolismo , Mio-Inositol-1-Fosfato Sintase/genética , Mio-Inositol-1-Fosfato Sintase/metabolismo , Rhodococcus/metabolismo , Streptomyces/metabolismo , Fatores de Transcrição/metabolismo
18.
BMC Biotechnol ; 16(1): 75, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27793152

RESUMO

BACKGROUND: Transglutaminases (TGase), which are synthesized as a zymogen (pro-TGase) in Streptomyces sp., are important enzymes in the food industry. Because this pro-peptide is essential for the correct folding of Streptomyces TGase, TGase is usually expressed in an inactive pro-TGase form, which is then converted to active TGase by the addition of activating proteases in vitro. In this study, Streptomyces hygroscopicus TGase was actively produced by Streptomyces lividans through promoter engineering and codon optimization. RESULTS: A gene fragment (tg1, 2.6 kb) that encoded the pro-TGase and its endogenous promoter region, signal peptide and terminator was amplified from S. hygroscopicus WSH03-13 and cloned into plasmid pIJ86, which resulted in pIJ86/tg1. After fermentation for 2 days, S. lividans TK24 that harbored pIJ86/tg1 produced 1.8 U/mL of TGase, and a clear TGase band (38 kDa) was detected in the culture supernatant. These results indicated that the pro-TGase was successfully expressed and correctly processed into active TGase in S. lividans TK24 by using the TGase promoter. Based on deletion analysis, the complete sequence of the TGase promoter is restricted to the region from -693 to -48. We also identified a negative element (-198 to -148) in the TGase promoter, and the deletion of this element increased the TGase production by 81.3 %, in contrast to the method by which S. lividans expresses pIJ86/tg1. Combining the deletion of the negative element of the promoter and optimization of the gene codons, the yield and productivity of TGase reached 5.73 U/mL and 0.14 U/mL/h in the recombinant S. lividans, respectively. CONCLUSIONS: We constructed an active TGase-producing strain that had a high yield and productivity, and the optimized TGase promoter could be a good candidate promoter for the expression of other proteins in Streptomyces.


Assuntos
Códon/genética , Regiões Promotoras Genéticas/genética , Streptomyces lividans/enzimologia , Streptomyces lividans/genética , Transglutaminases/biossíntese , Transglutaminases/genética , Regulação Bacteriana da Expressão Gênica/genética , Regulação Enzimológica da Expressão Gênica/genética , Melhoramento Genético/métodos
19.
Biotechnol Appl Biochem ; 63(3): 334-43, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26621184

RESUMO

A novel esterase gene (estW) from soil bacterium Streptomyces lividans TK64 was successfully cloned using a pair of homologous primers. The estW gene encoded a protein (EstW) of 289 amino acid residues with a predicted molecular weight of 31.43 kDa. Sequence alignment revealed that EstW show relatively high levels of homology to other lipolytic enzymes characterized from Streptomyces and phylogenetic analysis suggested EstW belongs to the bacterial lipase/esterase family I. The estW gene was expressed at a high level in Escherichia coli and the recombinant enzyme was purified to homogeneity. The purified EstW was characterized via hydrolysis of various p-nitrophenyl esters and the best substrate was found to be p-nitrophenyl acetate (pNPA). Maximal activity of the recombinant protein was observed at pH 8.0 and 50 °C with pNPA as the substrate. The calculated activation energy (Ea ) of the esterase reaction was 9.12 kcal/mol. Half-life of EstW at 95 °C was approximately 12.5 H, making it the most thermostable esterase among all of the known lipolytic enzymes from Streptomyces, and the thermostability of EstW was similar to those of some enzymes characterized from the thermophilic bacteria. EstW exhibited relatively high tolerance to several detergents and required no cations for its maximal activity. The unique properties of EstW, namely its high thermostability and stability in the presence of organic solvents, may render it a potential candidate for industrial applications.


Assuntos
Esterases/metabolismo , Microbiologia do Solo , Streptomyces lividans/enzimologia , Sequência de Aminoácidos , Clonagem Molecular , Estabilidade Enzimática , Esterases/química , Esterases/genética , Esterases/isolamento & purificação , Concentração de Íons de Hidrogênio , Metais/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Solventes/farmacologia , Streptomyces lividans/genética , Tensoativos/farmacologia , Temperatura
20.
J Microbiol Biotechnol ; 33(7): 949-954, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37254303

RESUMO

Type III polyketide synthase (PKS) found in bacteria is known as 1,3,6,8-tetrahydroxynaphthalene synthase (THNS). Microbial type III PKSs synthesize various compounds that possess crucial biological functions and significant pharmaceutical activities. Based on our sequence analysis, we have identified a putative type III polyketide synthase from Nocardia sp. CS682 was named as ThnA. The role of ThnA, in Nocardia sp. CS682 during the biosynthesis of 1,3,6,8 tetrahydroxynaphthalene (THN), which is the key intermediate of 1-(α-L-(2-O-methyl)-6-deoxymannopyranosyloxy)-3,6,8-trimethoxynaphthalene (IBR-3) was characterized. ThnA utilized five molecules of malonyl-CoA as a starter substrate to generate the polyketide 1,3,6,8-tetrahydroxynaphthalene, which could spontaneously be oxidized to the red flaviolin compound 2,5,7-trihydroxy-1,4-naphthoquinone. The amino acid sequence alignment of ThnA revealed similarities with a previously identified type III PKS and identified Cys138, Phe188, His270, and Asn303 as four highly conserved active site amino acid residues, as found in other known polyketide synthases. In this study, we report the heterologous expression of the type III polyketide synthase thnA in S. lividans TK24 and the identification of THN production in a mutant strain. We also compared the transcription level of thnA in S. lividans TK24 and S. lividans pIBR25-thnA and found that thnA was only transcribed in the mutant.


Assuntos
Nocardia , Nocardia/genética , Nocardia/metabolismo , Sequência de Aminoácidos , Naftóis/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa