Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 227: 117657, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33338620

RESUMO

MOTIVATION: Many clinical and scientific conclusions that rely on voxel-wise analyses of neuroimaging depend on the accurate comparison of corresponding anatomical regions. Such comparisons are made possible by registration of the images of subjects of interest onto a common brain template, such as the Johns Hopkins University (JHU) template. However, current image registration algorithms are prone to errors that are distributed in a template-dependent manner. Therefore, the results of voxel-wise analyses can be sensitive to template choice. Despite this problem, the issue of appropriate template choice for voxel-wise analyses is not generally addressed in contemporary neuroimaging studies, which may lead to the reporting of spurious results. RESULTS: We present a novel approach to determine the suitability of a brain template for voxel-wise analysis. The approach is based on computing a "distance" between automatically-generated atlases of the subjects of interest and templates that is indicative of the extent of subject-to-template registration errors. This allows for the filtering of subjects and candidate templates based on a quantitative measure of registration quality. We benchmark our approach by evaluating alternative templates for a voxel-wise analysis that reproduces the well-known decline in fractional anisotropy (FA) with age. Our results show that filtering registrations minimizes errors and decreases the sensitivity of voxel-wise analysis to template choice. In addition to carrying important implications for future neuroimaging studies, the developed framework of template induction can be used to evaluate robustness of data analysis methods to template choice.


Assuntos
Encéfalo , Processamento de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Adolescente , Adulto , Algoritmos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
2.
Neuroradiology ; 59(8): 747-758, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28597208

RESUMO

PURPOSE: We aimed to identify non-invasive imaging parameters that can serve as biomarkers for the integrity of the spinal cord, which is paramount to neurological function. Diffusion tensor imaging (DTI) indices are sensitive to axonal and myelin damage, and have strong potential to serve as such biomarkers. However, averaging DTI indices over large regions of interest (ROIs), a common approach to analyzing the images of injured spinal cord, leads to loss of subject-specific information. We investigated if DTI-tractography-driven, subject-specific demarcation approach can yield measures that are more specific to impairment. METHODS: In 18 individuals with chronic spinal cord injury (SCI), subject-specific demarcation of the injury region was performed using DTI tractography, which yielded three regions relative to injury (RRI; regions superior to, at, and below injury epicenter). DTI indices averaged over each RRI were correlated with measures of residual motor and sensory function, obtained using the International Standard of Neurological Classification for Spinal Cord Injury (ISNCSCI). RESULTS: Total ISNCSCI score (ISNCSCI-tot; sum of ISNCSCI motor and sensory scores) was significantly (p < 0.05) correlated with fractional anisotropy and axial and radial diffusivities. ISNCSCI-tot showed strongest correlation with indices measured from the region inferior to the injury epicenter (IRRI), the degree of which exceeded that of those measured from the entire cervical cord-suggesting contribution from Wallerian degeneration. CONCLUSION: DTI tractography-driven, subject-specific injury demarcation approach provided measures that were more specific to impairment. Notably, DTI indices obtained from the IRRI region showed the highest specificity to impairment, demonstrating their strong potential as biomarkers for the SCI severity.


Assuntos
Traumatismos da Medula Espinal/diagnóstico por imagem , Adulto , Idoso , Anisotropia , Biomarcadores/análise , Água Corporal , Doença Crônica , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Escala de Gravidade do Ferimento , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade
3.
Ann Biomed Eng ; 51(10): 2289-2300, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37357248

RESUMO

Methods for statistically analyzing patient-specific data that vary both spatially and over time are currently either limited to summary statistics or require elaborate surface registration. We propose a new method, called correspondence-based network analysis, which leverages particle-based shape modeling to establish correspondence across a population and preserve patient-specific measurements and predictions through statistical analysis. Herein, we evaluated this method using three published datasets of the hip describing cortical bone thickness of the proximal femur, cartilage contact stress, and dynamic joint space between control and patient cohorts to evaluate activity- and group-based differences, as applicable, using traditional statistical parametric mapping (SPM) and our proposed spatially considerate correspondence-based network analysis approach. The network approach was insensitive to correspondence density, while the traditional application of SPM showed decreasing area of the region of significance with increasing correspondence density. In comparison to SPM, the network approach identified broader and more connected regions of significance for all three datasets. The correspondence-based network analysis approach identified differences between groups and activities without loss of subject and spatial specificity which could improve clinical interpretation of results.


Assuntos
Osso Cortical , Fêmur , Humanos , Extremidade Inferior , Articulações
4.
Ann Biomed Eng ; 50(11): 1423-1436, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36125606

RESUMO

While individual susceptibility to traumatic brain injury (TBI) has been speculated, past work does not provide an analysis considering how physical features of an individual's brain (e.g., brain size, shape), impact direction, and brain network features can holistically contribute to the risk of suffering a TBI from an impact. This work investigated each of these features simultaneously using computational modeling and analyses of simulated functional connectivity. Unlike the past studies that assess the severity of TBI based on the quantification of brain tissue damage (e.g., principal strain), we approached the brain as a complex network in which neuronal oscillations orchestrate to produce normal brain function (estimated by functional connectivity) and, to this end, both the anatomical damage location and its topological characteristics within the brain network contribute to the severity of brain function disruption and injury. To represent the variations in the population, we analyzed a publicly available database of brain imaging data and selected five distinct network architectures, seven different brain sizes, and three uniaxial head rotational conditions to study the consequences of 74 virtual impact scenarios. Results show impact direction produces the most significant change in connections across brain areas (structural connectome) and the functional coupling of activity across these brain areas (functional connectivity). Axial rotations were more injurious than those with sagittal and coronal rotations when the head kinematics were the same for each condition. When the impact direction was held constant, brain network architecture showed a significantly different vulnerability across axial and sagittal, but not coronal rotations. As expected, brain size significantly affected the expected change in structural and functional connectivity after impact. Together, these results provided groupings of predicted vulnerability to impact-a subgroup of male brain architectures exposed to axial impacts were most vulnerable, while a subgroup of female brain architectures was the most tolerant to the sagittal impacts studied. These findings lay essential groundwork for subject-specific analyses of concussion and provide invaluable guidance for designing personalized protection equipment.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Lesões Encefálicas , Masculino , Feminino , Humanos , Concussão Encefálica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Simulação por Computador
5.
Front Neurosci ; 11: 510, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28943838

RESUMO

Independent component analysis (ICA) has been widely used in functional magnetic resonance imaging (fMRI) data analysis to evaluate functional connectivity of the brain; however, there are still some limitations on ICA simultaneously handling neuroimaging datasets with diverse acquisition parameters, e.g., different repetition time, different scanner, etc. Therefore, it is difficult for the traditional ICA framework to effectively handle ever-increasingly big neuroimaging datasets. In this research, a novel feature-map based ICA framework (FMICA) was proposed to address the aforementioned deficiencies, which aimed at exploring brain functional networks (BFNs) at different scales, e.g., the first level (individual subject level), second level (intragroup level of subjects within a certain dataset) and third level (intergroup level of subjects across different datasets), based only on the feature maps extracted from the fMRI datasets. The FMICA was presented as a hierarchical framework, which effectively made ICA and constrained ICA as a whole to identify the BFNs from the feature maps. The simulated and real experimental results demonstrated that FMICA had the excellent ability to identify the intergroup BFNs and to characterize subject-specific and group-specific difference of BFNs from the independent component feature maps, which sharply reduced the size of fMRI datasets. Compared with traditional ICAs, FMICA as a more generalized framework could efficiently and simultaneously identify the variant BFNs at the subject-specific, intragroup, intragroup-specific and intergroup levels, implying that FMICA was able to handle big neuroimaging datasets in neuroscience research.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa