Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(10): 105161, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37586588

RESUMO

Chorismate mutase (CM) and cyclohexadienyl dehydratase (CDT) catalyze two subsequent reactions in the intracellular biosynthesis of l-phenylalanine (Phe). Here, we report the discovery of novel and extremely rare bifunctional fusion enzymes, consisting of fused CM and CDT domains, which are exported from the cytoplasm. Such enzymes were found in only nine bacterial species belonging to non-pathogenic γ- or ß-Proteobacteria. In γ-proteobacterial fusion enzymes, the CM domain is N-terminal to the CDT domain, whereas the order is inverted in ß-Proteobacteria. The CM domains share 15% to 20% sequence identity with the AroQγ class CM holotype of Mycobacterium tuberculosis (∗MtCM), and the CDT domains 40% to 60% identity with the exported monofunctional enzyme of Pseudomonas aeruginosa (PheC). In vitro kinetics revealed a Km <7 µM, much lower than for ∗MtCM, whereas kinetic parameters are similar for CDT domains and PheC. There is no feedback inhibition of CM or CDT by the pathway's end product Phe, and no catalytic benefit of the domain fusion compared with engineered single-domain constructs. The fusion enzymes of Aequoribacter fuscus, Janthinobacterium sp. HH01, and Duganella sacchari were crystallized and their structures refined to 1.6, 1.7, and 2.4 Å resolution, respectively. Neither the crystal structures nor the size-exclusion chromatography show evidence for substrate channeling or higher oligomeric structure that could account for the cooperation of CM and CDT active sites. The genetic neighborhood with genes encoding transporter and substrate binding proteins suggests that these exported bifunctional fusion enzymes may participate in signaling systems rather than in the biosynthesis of Phe.

2.
Plant J ; 114(5): 1080-1092, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36906885

RESUMO

Metabolons are temporary structural-functional complexes of sequential enzymes of a metabolic pathway that are distinct from stable multi-enzyme complexes. Here we provide a brief history of the study of enzyme-enzyme assemblies with a particular focus on those that mediate substrate channeling in plants. Large numbers of protein complexes have been proposed for both primary and secondary metabolic pathways in plants. However, to date only four substrate channels have been demonstrated. We provide an overview of current knowledge concerning these four metabolons and explain the methodologies that are currently being applied to unravel their functions. Although the assembly of metabolons has been documented to arise through diverse mechanisms, the physical interaction within the characterized plant metabolons all appear to be driven by interaction with structural elements of the cell. We therefore pose the question as to what methodologies could be brought to bear to enhance our knowledge of plant metabolons that assemble via different mechanisms? In addressing this question, we review recent findings in non-plant systems concerning liquid droplet phase separation and enzyme chemotaxis and propose strategies via which such metabolons could be identified in plants. We additionally discuss the possibilities that could be opened up by novel approaches based on: (i) subcellular-level mass spectral imaging, (ii) proteomics, and (iii) emergent methods in structural and computational biology.


Assuntos
Redes e Vias Metabólicas , Plantas
3.
Chemistry ; 30(41): e202401256, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38719746

RESUMO

Hydrogen-bonded organic frameworks (HOF) represent an emerging category of organic structures with high crystallinity and metal-free, which are not commonly observed in alternative porous organic frameworks. These needle-like porous structure can help in stabilizing enzymes and allow transfer of molecules between enzymes participating in cascade reactions for enhanced substrate channelling. Herein, we systematically synthesized and investigated the stability of HOF at extreme conditions followed by one-pot encapsulation of single and bi-enzyme systems. Firstly, we observed HOF to be stable at pH 1 to 14 and at high temperatures (up to 115 °C). Secondly, the encapsulated glucose oxidase enzyme (GOX) showed 80 % and 90 % of its original activity at 70 °C and pH 11, respectively. Thirdly, transient time close to 0 seconds was observed for HOF encapsulated bi-enzyme cascade reaction system demonstrating a 4.25-fold improvement in catalytic activity when compared to free enzymes with enhanced substrate channelling. Our findings showcase a facile system synthesized under ambient conditions to encapsulate and stabilize enzymes at extreme conditions.


Assuntos
Glucose Oxidase , Ligação de Hidrogênio , Estruturas Metalorgânicas , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Estruturas Metalorgânicas/química , Porosidade , Concentração de Íons de Hidrogênio , Temperatura , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Catálise
4.
Crit Rev Biochem Mol Biol ; 56(1): 1-16, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33179964

RESUMO

The focus of this review is the human de novo purine biosynthetic pathway. The pathway enzymes are enumerated, as well as the reactions they catalyze and their physical properties. Early literature evidence suggested that they might assemble into a multi-enzyme complex called a metabolon. The finding that fluorescently-tagged chimeras of the pathway enzymes form discrete puncta, now called purinosomes, is further elaborated in this review to include: a discussion of their assembly; the role of ancillary proteins; their locus at the microtubule/mitochondria interface; the elucidation that at endogenous levels, purinosomes function to channel intermediates from phosphoribosyl pyrophosphate to AMP and GMP; and the evidence for the purinosomes to exist as a protein condensate. The review concludes with a consideration of probable signaling pathways that might promote the assembly and disassembly of the purinosome, in particular the identification of candidate kinases given the extensive phosphorylation of the enzymes. These collective findings substantiate our current view of the de novo purine biosynthetic metabolon whose properties will be representative of how other metabolic pathways might be organized for their function.


Assuntos
Complexos Multienzimáticos/metabolismo , Proteínas/metabolismo , Purinas/biossíntese , Transdução de Sinais/fisiologia , Monofosfato de Adenosina/metabolismo , Vias Biossintéticas , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Guanosina Monofosfato/metabolismo , Humanos , Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Fosforribosil Pirofosfato/metabolismo , Fosforilação
5.
Small ; 19(5): e2206127, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36440672

RESUMO

The pursuit of single-assembled molecular cage reactors for complex tandem reactions is a long-standing target in biomimetic catalysis but still a grand challenge. Herein, nanozyme-like organic cages are reported by engineering air-stable radicals into the skeleton upon photoinduced electron transfer. The generation of radicals is accompanied by single-crystal structural transformation and exhibits superior stability over six months in air. Impressively, the radicals throughout the cage skeleton can mimic the peroxidase of natural enzymes to decompose H2 O2 into OH· and facilitate oxidation reactions. Furthermore, an integrated catalyst by encapsulating Au clusters (glucose oxidase mimics) into the cage has been developed, in which the dual active sites (Au cluster and radical) are spatially isolated and can work as cascade nanozymes to prominently promote the enzyme-like tandem reaction via a substrate channeling effect.

6.
Small ; 19(26): e2301413, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36929203

RESUMO

In multienzymes cascade reaction, the inter-enzyme spacing is supposed to be a factor affecting the cascade activity. Here, a simple and efficient Y-shaped DNA scaffold is assembled using two partially complementary DNA single strands on magnetic microspheres, which is used to coimmobilize glucose oxidase (GOD) and horseradish peroxidase (HRP). As a result, on poly(vinyl acetate) magnetic microspheres (PVAC), GOD/HRP-DNA@PVAC multienzyme system is obtained, which can locate GOD and HRP accurately and control the inter-enzyme distance precisely. The distance between GOD and HRP is regulated by changing the length of DNA strand. It showed that the cascade activity is significantly distance-dependent. Moreover, the inter-enzyme spacing is not the closer the better, and too short distance would generate steric hindrance between enzymes. The cascade activity reached the maximum value of 967 U mg-1 at 13.6 nm, which is 3.5 times higher than that of free enzymes. This is ascribed to the formation of substrate channeling.


Assuntos
Enzimas Imobilizadas , Glucose Oxidase , Peroxidase do Rábano Silvestre , Microesferas , DNA
7.
Chembiochem ; 24(19): e202300425, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37368451

RESUMO

An enzyme cascade was established previously consisting of a recycling system with an l-amino acid oxidase (hcLAAO4) and a catalase (hCAT) for different α-keto acid co-substrates of (S)-selective amine transaminases (ATAs) in kinetic resolutions of racemic amines. Only 1 mol % of the co-substrate was required and l-amino acids instead of α-keto acids could be applied. However, soluble enzymes cannot be reused easily. Immobilization of hcLAAO4, hCAT and the (S)-selective ATA from Vibrio fluvialis (ATA-Vfl) was addressed here. Immobilization of the enzymes together rather than on separate beads showed higher reaction rates most likely due to fast co-substrate channeling between ATA-Vfl and hcLAAO4 due to their close proximity. Co-immobilization allowed further reduction of the co-substrate amount to 0.1 mol % most likely due to a more efficient H2 O2 -removal caused by the stabilized hCAT and its proximity to hcLAAO4. Finally, the co-immobilized enzyme cascade was reused in 3 cycles of preparative kinetic resolutions to produce (R)-1-PEA with high enantiomeric purity (97.3 %ee). Further recycling was inefficient due to the instability of ATA-Vfl, while hcLAAO4 and hCAT revealed high stability. An engineered ATA-Vfl-8M was used in the co-immobilized enzyme cascade to produce (R)-1-(3-ethoxy-4-methoxyphenyl)-2-(methylsulfonyl)ethanamine, an apremilast-intermediate, with a 1,000 fold lower input of the co-substrate.


Assuntos
Aminas , Transaminases , Aminas/química , Transaminases/química , L-Aminoácido Oxidase , Enzimas Imobilizadas/química , Catalase , Cetoácidos
8.
Am J Physiol Cell Physiol ; 322(5): C991-C1010, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35385324

RESUMO

Although great effort has been expended to understand cancer's origins, less attention has been given to the primary cause of cancer deaths-cancer recurrences and their sequelae. This interdisciplinary review addresses mechanistic features of aggressive cancer by studying metabolic enzyme patterns within ductal carcinoma in situ (DCIS) of the breast lesions. DCIS lesions from patients who did or did not experience a breast cancer recurrence were compared. Several proteins, including phospho-Ser226-glucose transporter type 1, phosphofructokinase type L and phosphofructokinase/fructose 2,6-bisphosphatase type 4 are found in nucleoli of ductal epithelial cells in samples from patients who will not subsequently recur, but traffic to the cell periphery in samples from patients who will experience a cancer recurrence. Large coclusters of enzymes near plasmalemmata will enhance product formation because enzyme concentrations in clusters are very high while solvent molecules and solutes diffuse through small channels. These structural changes will accelerate aerobic glycolysis. Agglomerations of pentose phosphate pathway and glutathione synthesis enzymes enhance GSH formation. As aggressive cancer lesions are incomplete at early stages, they may be unrecognizable. We have found that machine learning provides superior analyses of tissue images and may be used to identify biomarker patterns associated with recurrent and nonrecurrent patients with high accuracy. This suggests a new prognostic test to predict patients with DCIS who are likely to recur and those who are at low risk for recurrence. Mechanistic interpretations provide a deeper understanding of anticancer drug action and suggest that aggressive metastatic cancer cells are sensitive to reductive chemotherapy.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Neoplasias da Mama/patologia , Células Epiteliais/metabolismo , Feminino , Humanos , Recidiva Local de Neoplasia/patologia , Fosfofrutoquinase-2
9.
Chembiochem ; 23(3): e202100251, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34351671

RESUMO

Protein engineering has been used to enhance the activities, selectivities, and stabilities of enzymes. Frequently tradeoffs are observed, where improvements in some features can come at the expense of others. Nature uses modular assembly of active sites for complex, multi-step reactions, and natural "swing arm" mechanisms have evolved to transfer intermediates between active sites. Biomimetic polyethylene glycol (PEG) swing arms modified with NAD(H) have been explored to introduce synthetic swing arms into fused oxidoreductases. Here we report that increasing NAD(H)-PEG swing arms can improve the activity of synthetic formate:malate oxidoreductases as well as the thermal and operational stabilities of the biocatalysts. The modular assembly approach enables the KM values of new enzymes to be predictable, based on the parental enzymes. We describe four unique synthetic transhydrogenases that have no native homologs, and this platform could be easily extended for the predictive design of additional synthetic cofactor-independent transhydrogenases.


Assuntos
NADP Trans-Hidrogenases/metabolismo , NAD/metabolismo , Polietilenoglicóis/metabolismo , Estabilidade Enzimática , Modelos Moleculares , NAD/química , NADP Trans-Hidrogenases/química , Polietilenoglicóis/química , Engenharia de Proteínas
10.
Proc Natl Acad Sci U S A ; 116(13): 6069-6074, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30850536

RESUMO

Membrane-bound mitochondrial trifunctional protein (TFP) catalyzes ß-oxidation of long chain fatty acyl-CoAs, employing 2-enoyl-CoA hydratase (ECH), 3-hydroxyl-CoA dehydrogenase (HAD), and 3-ketothiolase (KT) activities consecutively. Inherited deficiency of TFP is a recessive genetic disease, manifesting in hypoketotic hypoglycemia, cardiomyopathy, and sudden death. We have determined the crystal structure of human TFP at 3.6-Å resolution. The biological unit of the protein is α2ß2 The overall structure of the heterotetramer is the same as that observed by cryo-EM methods. The two ß-subunits make a tightly bound homodimer at the center, and two α-subunits are bound to each side of the ß2 dimer, creating an arc, which binds on its concave side to the mitochondrial innermembrane. The catalytic residues in all three active sites are arranged similarly to those of the corresponding, soluble monofunctional enzymes. A structure-based, substrate channeling pathway from the ECH active site to the HAD and KT sites is proposed. The passage from the ECH site to the HAD site is similar to those found in the two bacterial TFPs. However, the passage from the HAD site to the KT site is unique in that the acyl-CoA intermediate can be transferred between the two sites by passing along the mitochondrial inner membrane using the hydrophobic nature of the acyl chain. The 3'-AMP-PPi moiety is guided by the positively charged residues located along the "ceiling" of the channel, suggesting that membrane integrity is an essential part of the channel and is required for the activity of the enzyme.


Assuntos
Ácidos Graxos/metabolismo , Proteína Mitocondrial Trifuncional/química , Cristalografia por Raios X , Escherichia coli/genética , Humanos , Microrganismos Geneticamente Modificados , Mitocôndrias/metabolismo , Oxirredução
11.
Prep Biochem Biotechnol ; 52(6): 611-617, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34550864

RESUMO

We previously reported an in vitro enzymatic pathway for conversion of nonfood cellulose to starch (PNAS,110 (18): 7182-7187, 2013), in which the two sequential enzymes cellobiose phosphorylase (CBP) from Clostridium thermocellum and potato alpha-glucan phosphorylase (PGP) from Solanum tuberosum were the two key enzymes responsible for the whole conversion rate. In this work CBP and PGP were fused to form a large enzyme and it turned out that the fusion protein could exhibit a good bifunctionality when PGP moiety was put at the N-terminus and CBP moiety at the C-terminus (designated as PGP-CBP). Although the coupled reaction rate of PGP-CBP was decreased by 23.0% compared with the free enzymes, substrate channeling between the two active sites in PGP-CBP was formed, demonstrated by the introduction of the competing enzyme of PGP to the reaction system. The potential of PGP-CBP fusion enzyme being applied to the conversion of cellulose to amylose was discussed.


Assuntos
Celobiose , Solanum tuberosum , Celobiose/metabolismo , Celulose/metabolismo , Glucosiltransferases , Fosforilases/química , Fosforilases/genética , Solanum tuberosum/metabolismo , Amido
12.
J Struct Biol ; 213(4): 107802, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34606906

RESUMO

While cryo-electron microscopy (cryo-EM) has revolutionized the structure determination of supramolecular protein complexes that are refractory to structure determination by X-ray crystallography, structure determination by cryo-EM can nonetheless be complicated by excessive conformational flexibility or structural heterogeneity resulting from weak or transient protein-protein association. Since such transient complexes are often critical for function, specialized approaches must be employed for the determination of meaningful structure-function relationships. Here, we outline examples in which transient protein-protein interactions have been visualized successfully by cryo-EM in the biosynthesis of fatty acids, polyketides, and terpenes. These studies demonstrate the utility of chemical crosslinking to stabilize transient protein-protein complexes for cryo-EM structural analysis, as well as the use of partial signal subtraction and localized reconstruction to extract useful structural information out of cryo-EM data collected from inherently dynamic systems. While these approaches do not always yield atomic resolution insights on protein-protein interactions, they nonetheless enable direct experimental observation of complexes in assembly-line biosynthesis that would otherwise be too fleeting for structural analysis.


Assuntos
Domínio Catalítico , Microscopia Crioeletrônica/métodos , Enzimas/ultraestrutura , Ácidos Graxos/biossíntese , Complexos Multiproteicos/ultraestrutura , Policetídeos/metabolismo , Terpenos/metabolismo , Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Alquil e Aril Transferases/ultraestrutura , Cristalografia por Raios X , Enzimas/química , Enzimas/metabolismo , Ácido Graxo Sintases/química , Ácido Graxo Sintases/metabolismo , Ácido Graxo Sintases/ultraestrutura , Imageamento Tridimensional/métodos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Policetídeo Sintases/química , Policetídeo Sintases/metabolismo , Policetídeo Sintases/ultraestrutura , Ligação Proteica , Reprodutibilidade dos Testes
13.
J Biol Chem ; 295(7): 2148-2159, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31919098

RESUMO

PlsX is the first enzyme in the pathway that produces phosphatidic acid in Gram-positive bacteria. It makes acylphosphate from acyl-acyl carrier protein (acyl-ACP) and is also involved in coordinating phospholipid and fatty acid biosyntheses. PlsX is a peripheral membrane enzyme in Bacillus subtilis, but how it associates with the membrane remains largely unknown. In the present study, using fluorescence microscopy, liposome sedimentation, differential scanning calorimetry, and acyltransferase assays, we determined that PlsX binds directly to lipid bilayers and identified its membrane anchoring moiety, consisting of a hydrophobic loop located at the tip of two amphipathic dimerization helices. To establish the role of the membrane association of PlsX in acylphosphate synthesis and in the flux through the phosphatidic acid pathway, we then created mutations and gene fusions that prevent PlsX's interaction with the membrane. Interestingly, phospholipid synthesis was severely hampered in cells in which PlsX was detached from the membrane, and results from metabolic labeling indicated that these cells accumulated free fatty acids. Because the same mutations did not affect PlsX transacylase activity, we conclude that membrane association is required for the proper delivery of PlsX's product to PlsY, the next enzyme in the phosphatidic acid pathway. We conclude that PlsX plays a dual role in phospholipid synthesis, acting both as a catalyst and as a chaperone protein that mediates substrate channeling into the pathway.


Assuntos
Proteínas de Bactérias/genética , Redes e Vias Metabólicas/genética , Ácidos Fosfatídicos/metabolismo , Fosfolipídeos/biossíntese , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Catálise , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos/metabolismo , Lipogênese/genética , Ácidos Fosfatídicos/genética , Fosfolipídeos/genética
14.
J Biol Chem ; 295(17): 5751-5760, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32198136

RESUMO

In cyanobacteria, metabolic pathways that use the nitrogen-rich amino acid arginine play a pivotal role in nitrogen storage and mobilization. The N-terminal domains of two recently identified bacterial enzymes: ArgZ from Synechocystis and AgrE from Anabaena, have been found to contain an arginine dihydrolase. This enzyme provides catabolic activity that converts arginine to ornithine, resulting in concomitant release of CO2 and ammonia. In Synechocystis, the ArgZ-mediated ornithine-ammonia cycle plays a central role in nitrogen storage and remobilization. The C-terminal domain of AgrE contains an ornithine cyclodeaminase responsible for the formation of proline from ornithine and ammonia production, indicating that AgrE is a bifunctional enzyme catalyzing two sequential reactions in arginine catabolism. Here, the crystal structures of AgrE in three different ligation states revealed that it has a tetrameric conformation, possesses a binding site for the arginine dihydrolase substrate l-arginine and product l-ornithine, and contains a binding site for the coenzyme NAD(H) required for ornithine cyclodeaminase activity. Structure-function analyses indicated that the structure and catalytic mechanism of arginine dihydrolase in AgrE are highly homologous with those of a known bacterial arginine hydrolase. We found that in addition to other active-site residues, Asn-71 is essential for AgrE's dihydrolase activity. Further analysis suggested the presence of a passage for substrate channeling between the two distinct AgrE active sites, which are situated ∼45 Šapart. These results provide structural and functional insights into the bifunctional arginine dihydrolase-ornithine cyclodeaminase enzyme AgrE required for arginine catabolism in Anabaena.


Assuntos
Amônia-Liases/química , Anabaena/química , Proteínas de Bactérias/química , Hidrolases/química , Amônia-Liases/genética , Amônia-Liases/metabolismo , Anabaena/genética , Anabaena/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Hidrolases/genética , Hidrolases/metabolismo , Modelos Moleculares , Mutação , Conformação Proteica , Multimerização Proteica , Especificidade por Substrato
15.
J Biol Chem ; 295(23): 8078-8095, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32303640

RESUMO

2-Oxoadipate dehydrogenase (E1a, also known as DHTKD1, dehydrogenase E1, and transketolase domain-containing protein 1) is a thiamin diphosphate-dependent enzyme and part of the 2-oxoadipate dehydrogenase complex (OADHc) in l-lysine catabolism. Genetic findings have linked mutations in the DHTKD1 gene to several metabolic disorders. These include α-aminoadipic and α-ketoadipic aciduria (AMOXAD), a rare disorder of l-lysine, l-hydroxylysine, and l-tryptophan catabolism, associated with clinical presentations such as developmental delay, mild-to-severe intellectual disability, ataxia, epilepsy, and behavioral disorders that cannot currently be managed by available treatments. A heterozygous missense mutation, c.2185G→A (p.G729R), in DHTKD1 has been identified in most AMOXAD cases. Here, we report that the G729R E1a variant when assembled into OADHc in vitro displays a 50-fold decrease in catalytic efficiency for NADH production and a significantly reduced rate of glutaryl-CoA production by dihydrolipoamide succinyl-transferase (E2o). However, the G729R E1a substitution did not affect any of the three side-reactions associated solely with G729R E1a, prompting us to determine the structure-function effects of this mutation. A multipronged systematic analysis of the reaction rates in the OADHc pathway, supplemented with results from chemical cross-linking and hydrogen-deuterium exchange MS, revealed that the c.2185G→A DHTKD1 mutation affects E1a-E2o assembly, leading to impaired channeling of OADHc intermediates. Cross-linking between the C-terminal region of both E1a and G729R E1a with the E2o lipoyl and core domains suggested that correct positioning of the C-terminal E1a region is essential for the intermediate channeling. These findings may inform the development of interventions to counter the effects of pathogenic DHTKD1 mutations.


Assuntos
Variação Genética , Cetona Oxirredutases/química , Cetona Oxirredutases/metabolismo , Lisina/metabolismo , Fibroblastos/química , Fibroblastos/metabolismo , Variação Genética/genética , Humanos , Complexo Cetoglutarato Desidrogenase , Cetona Oxirredutases/genética , Cinética , Lisina/química , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
16.
J Struct Biol ; 210(3): 107494, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32171906

RESUMO

Degradation of fatty acids by the ß-oxidation pathway results in the formation of acetyl-CoA which enters the TCA cycle for the production of ATP. In E. coli, the last three steps of the ß-oxidation are catalyzed by two heterotetrameric α2ß2 enzymes namely the aerobic trifunctional enzyme (EcTFE) and the anaerobic TFE (anEcTFE). The α-subunit of TFE has 2E-enoyl-CoA hydratase (ECH) and 3S-hydroxyacyl-CoA dehydrogenase (HAD) activities whereas the ß-subunit is a thiolase with 3-ketoacyl-CoA thiolase (KAT) activity. Recently, it has been shown that the two TFEs have complementary substrate specificities allowing for the complete degradation of long chain fatty acyl-CoAs into acetyl-CoA under aerobic conditions. Also, it has been shown that the tetrameric EcTFE and anEcTFE assemblies are similar to the TFEs of Pseudomans fragi and human, respectively. Here the properties of the EcTFE subunits are further characterized. Strikingly, it is observed that when expressed separately, EcTFE-α is a catalytically active monomer whereas EcTFE-ß is inactive. However, when mixed together active EcTFE tetramer is reconstituted. The crystal structure of the EcTFE-α chain is also reported, complexed with ATP, bound in its HAD active site. Structural comparisons show that the EcTFE hydratase active site has a relatively small fatty acyl tail binding pocket when compared to other TFEs in good agreement with its preferred specificity for short chain 2E-enoyl-CoA substrates. Furthermore, it is observed that millimolar concentrations of ATP destabilize the EcTFE complex, and this may have implications for the ATP-mediated regulation of ß-oxidation in E. coli.


Assuntos
Enoil-CoA Hidratase/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Complexos Multienzimáticos/metabolismo , Enoil-CoA Hidratase/química , Enoil-CoA Hidratase/genética , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Oxirredução , Especificidade por Substrato
17.
J Biol Chem ; 293(52): 20051-20061, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30381394

RESUMO

Monoallelic point mutations in the gene encoding the cytosolic, NADP+-dependent enzyme isocitrate dehydrogenase 1 (IDH1) cause increased production of the oncometabolite 2-hydroxyglutarate (2-HG) in multiple cancers. Most IDH1 mutant tumors retain one wildtype (WT) IDH1 allele. Several studies have proposed that retention of this WT allele is protumorigenic by facilitating substrate channeling through a WT-mutant IDH1 heterodimer, with the WT subunit generating a local supply of α-ketoglutarate and NADPH that is then consumed by the mutant subunit to produce 2-HG. Here, we confirmed that coexpression of WT and mutant IDH1 subunits leads to formation of WT-mutant hetero-oligomers and increases 2-HG production. An analysis of a recently reported crystal structure of the WT-R132H IDH1 heterodimer and of in vitro kinetic parameters for 2-HG production, however, indicated that substrate channeling between the subunits is biophysically implausible. We also found that putative carbon-substrate flux between WT and mutant IDH1 subunits is inconsistent with the results of isotope tracing experiments in cancer cells harboring an endogenous monoallelic IDH1 mutation. Finally, using a mathematical model of WT-mutant IDH1 heterodimers, we estimated that the NADPH:NADP+ ratio is higher in the cytosol than in the mitochondria, suggesting that NADPH is unlikely to be limiting for 2-HG production in the cytosol. These findings argue against supply of either substrate being limiting for 2-HG production by a cytosolic IDH1 mutant and suggest that the retention of a WT allele in IDH1 mutant tumors is not due to a requirement for carbon or cofactor flux between WT and mutant IDH1.


Assuntos
Hidroxibutiratos/metabolismo , Isocitrato Desidrogenase , Modelos Biológicos , Mutação , Proteínas de Neoplasias , Neoplasias , Linhagem Celular Tumoral , Células HEK293 , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , NADP/genética , NADP/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Multimerização Proteica
18.
Chembiochem ; 20(14): 1827-1837, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30859665

RESUMO

The enzymatic microenvironment can impact biocatalytic activity; however, these effects can be difficult to investigate as mutations and fusions can introduce multiple variables and overlapping effects. The fusion of a supercharged protein is a potentially facile means to alter the enzymatic microenvironment. We have investigated complexes made between a thermostable alcohol dehydrogenase (AdhD) and superfolding green fluorescent protein (sfGFP) mutants with extreme surface charges. Three charged sfGFP variants, -30, 0, and +36 were covalently attached to AdhD through the SpyCatcher/SpyTag system. Specific rates for the NAD+ -dependent oxidation of butane-2,3-diol were significantly increased in the -30 sfGFP complex, a mixed effect was seen for the 0 sfGFP complexes, and the rates were unaffected by +36 sfGFP complexation. Reactions performed at various pH values (7.8-9.8) and salt concentrations (7.75-500 mm) showed that there was a complex interplay between these effects that was consistent with fusion proteins affecting the local ionic strength, as opposed to the local pH. Steady-state kinetic analyses were performed with the -30 and 0 AdhD-sfGFP complexes. The overall catalytic efficiency was dependent on the charge of the fused sfGFP variant; the -30 sfGFP fusions exhibited the largest beneficial effects at pH 8.8. The impact of the fusions on the apparent ionic strength provides further insight into the effects of charged patches observed on metabolon-forming enzyme complexes.


Assuntos
Álcool Desidrogenase/química , Biocatálise , Proteínas de Fluorescência Verde/química , Animais , Proteínas Arqueais/química , Butileno Glicóis/química , Hidrozoários/química , Cinética , Oxirredução , Peptídeos/química , Pyrococcus furiosus/enzimologia , Termodinâmica
19.
Metab Eng ; 52: 243-252, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30578862

RESUMO

The high-value ketocarotenoid astaxanthin, a natural red colorant with powerful antioxidant activity, is synthesised from ß-carotene by a hydroxylase and an oxygenase enzyme, which perform the addition of two hydroxyl and keto moieties, respectively. Several routes of intermediates, depending on the sequence of action of these enzymes, lead to the formation of astaxanthin. In the present study, the enzyme activities of 3, 3' ß-carotene hydroxylase (CRTZ) and 4, 4' ß-carotene oxygenase (CRTW) have been combined through the creation of "new to nature" enzyme fusions in order to overcome leakage of non-endogenous intermediates and pleotropic effects associated with their high levels in plants. The utility of flexible linker sequences of varying size has been assessed in the construction of pZ-W enzyme fusions. Frist, in vivo color complementation assays in Escherichia coli have been used to evaluate the potential of the fusion enzymes. Analysis of the carotenoid pigments present in strains generated indicated that the enzyme fusions only possess both catalytic activities when CRTZ is attached as the N-terminal module. Astaxanthin levels in E. coli cells were increased by 1.4-fold when the CRTZ and CRTW enzymes were fused compared to the individual enzymes. Transient expression in Nicotiana benthamiana was then performed in order to assess the potential of the fusions in a plant system. The production of valuable ketocarotenoids was achieved using this plant-based transient expression system. This revealed that CRTZ and CRTW, transiently expressed as a fusion, accumulated similar levels of astaxanthin compared to the expression of the individual enzymes whilst being associated with reduced ketocarotenoid intermediate levels (e.g. phoenicoxanthin, canthaxanthin and 3-OH-echinenone) and a reduced rate of leaf senescence after transformation. Therefore, the quality of the plant material producing the ketocarotenoids was enhanced due to a reduction in the stress induced by the accumulation of high levels of heterologous ketocarotenoid intermediates. The size of the linkers appeared to have no effect upon activity. The potential of the approach to production of valuable plant derived products is discussed.


Assuntos
Carotenoides/biossíntese , Cetoses/biossíntese , Plantas/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Fusão Gênica , Engenharia Metabólica/métodos , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Folhas de Planta/metabolismo , Plantas/genética , Plantas Geneticamente Modificadas , Plasmídeos/genética , Nicotiana/genética , Nicotiana/metabolismo , Xantofilas/biossíntese
20.
Proc Natl Acad Sci U S A ; 113(45): 12691-12696, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27791059

RESUMO

Methanol is an important feedstock derived from natural gas and can be chemically converted into commodity and specialty chemicals at high pressure and temperature. Although biological conversion of methanol can proceed at ambient conditions, there is a dearth of engineered microorganisms that use methanol to produce metabolites. In nature, methanol dehydrogenase (Mdh), which converts methanol to formaldehyde, highly favors the reverse reaction. Thus, efficient coupling with the irreversible sequestration of formaldehyde by 3-hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloseisomerase (Phi) serves as the key driving force to pull the pathway equilibrium toward central metabolism. An emerging strategy to promote efficient substrate channeling is to spatially organize pathway enzymes in an engineered assembly to provide kinetic driving forces that promote carbon flux in a desirable direction. Here, we report a scaffoldless, self-assembly strategy to organize Mdh, Hps, and Phi into an engineered supramolecular enzyme complex using an SH3-ligand interaction pair, which enhances methanol conversion to fructose-6-phosphate (F6P). To increase methanol consumption, an "NADH Sink" was created using Escherichia coli lactate dehydrogenase as an NADH scavenger, thereby preventing reversible formaldehyde reduction. Combination of the two strategies improved in vitro F6P production by 97-fold compared with unassembled enzymes. The beneficial effect of supramolecular enzyme assembly was also realized in vivo as the engineered enzyme assembly improved whole-cell methanol consumption rate by ninefold. This approach will ultimately allow direct coupling of enhanced F6P synthesis with other metabolic engineering strategies for the production of many desired metabolites from methanol.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa