Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 88: 31-45, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31862072

RESUMO

Since the early 1980's there have been several different strategies designed and applied to the remediation of subsurface environment including physical, chemical and biological approaches. They have had varying degrees of success in remediating contaminants from subsurface soils and groundwater. The objective of this review is to examine the range of technologies for the remediation of contaminants, particularly petroleum hydrocarbons, in subsurfaces with a specific focus on bioremediation and electrokinetic remediation. Further, this review examines the efficiency of remediation carried out by combining bioremediation and electrokinetic remediation. Surfactants, which are slowly becoming the selected chemicals for mobilizing contaminants, are also considered in this review. The current knowledge gaps of these technologies and techniques identified which could lead to development of more efficient ways of utilizing these technologies or development of a completely new technology.


Assuntos
Recuperação e Remediação Ambiental , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos , Solo
2.
Chemosphere ; 359: 142285, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723684

RESUMO

This study critically appraises employing chitosan as a composite with bentonite, biochar, or both materials as an alternative to conventional barrier materials. A comprehensive literature review was conducted to identify the studies reporting chitosan-bentonite composite (CBC), chitosan amended biochar (CAB), and chitosan-bentonite-biochar composite (CBBC) for effective removal of various contaminants. The study aims to review the synthesis of these composites, identify fundamental properties affecting their adsorption capacities, and examine how these properties affect or enhance the removal abilities of other materials within the composite. Notably, CBC composites have the advantage of adsorbing both cationic and anionic species, such as heavy metals and dyes, due to the cationic nature of chitosan and the anionic nature of montmorillonite, along with the increased accessible surface area due to the clay. CAB composites have the unique advantage of being low-cost sorbents with high specific surface area, affinity for a wide range of contaminants owing to the high surface area and microporosity of biochar, and abundant available functional groups from the chitosan. Limited studies have reported the utilization of CBBC composites to remove various contaminants. These composites can be prepared by combining the steps employed in preparing CBC and CAB composites. They can benefit from the favorable adsorption properties of all three materials while also satisfying the mechanical requirements of a barrier material. This study serves as a knowledge base for future research to develop novel composite barrier materials by incorporating chitosan and biochar as amendments to bentonite.


Assuntos
Bentonita , Carvão Vegetal , Quitosana , Quitosana/química , Carvão Vegetal/química , Bentonita/química , Adsorção , Recuperação e Remediação Ambiental/métodos , Metais Pesados/química , Poluentes Ambientais/química
3.
J Environ Radioact ; 237: 106711, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34388522

RESUMO

The remediation of co-located contaminants in the vadose zone can be challenging due to accessibility and responses of different contaminants to remedial actions. At the Hanford Site (WA, USA), multiple radionuclides and other hazardous contaminants are present in the vadose zone and groundwater, including iodine-129 (I), technetium-99 (Tc), uranium-238 (U), chromium (Cr), and nitrate (NO3-). We evaluated a layered Bi oxyhydroxide material for its potential to remove individual and co-located contaminants with a series of batch experiments that investigated a range of plume conditions, followed by solid phase characterization of the reacted bismuth material. The results demonstrated successful removal of four contaminants (>98% removal of I, Tc, U, and Cr from the aqueous phase after 30 days) when tested individually. When contaminants were combined, a slight decrease in Tc removal occurred (-6%p). The addition of sediment decreased the removal for Tc and I, but U and Cr removal was unaffected. The results of these batch tests demonstrated that the bismuth based oxy-hydroxide material is a promising material for sequestering multiple contaminants in situ.


Assuntos
Água Subterrânea , Monitoramento de Radiação , Poluentes Radioativos da Água , Bismuto , Poluentes Radioativos da Água/análise
4.
Sci Total Environ ; 791: 148210, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34412393

RESUMO

Soils and groundwater are often contaminated by complex organic mixtures also called Non Aqueous Phase Liquids (NAPLs). Several techniques such as drilling, monitoring of soil gas or injection of tracers are traditionally used to quantify NAPLs in aquifers but are complex to perform. The use of natural soil gas such as 222Rn could be an easy and cheap alternative. This method requires the knowledge of the radon NAPL-water partitioning coefficients (Kn-w.). Once spilled on soil, NAPL will undergo degradation (evaporation, effects of sun light among others) and this degradation could impact the Kn-w. This study aims at investigating the partitioning coefficients of complex NAPLs such as commercial diesel fuel and gasoline in relation to degradation such as evaporation and UV-degradation. For that purpose, batch experiments and GCMS investigations were carried out. The results show different Kn-w for the commercial diesel fuel (60.7 ± 6.1) and gasoline (37.4 ± 5.6). The results also show different Kn-w behaviors in relation with degradation. Degraded diesel fuel display opposite Kn-w values (74.8 ± 7.5 and 25.1 ± 2.5 for UV degraded and evaporated diesel fuel, respectively), compared to fresh one. Degraded gasoline shows no significant variations of the Kn-w compared to fresh one. The molecular investigation reveals the removal of the most volatile fraction for the evaporation treatment, whereas UV-degradation do not have pronounced effects on the chromatogram pattern. For the gasoline molecular investigation, no difference is observed between the treatments excepted a very slight removal of the lightest compounds under evaporation. These results show that NAPL degradation have effects on the Kn-w for diesel fuel and no significant effects for gasoline, at least with these degradation paths. This Kn-w variation will have in fine effects on 222Rn activity interpretation and NAPL subsurface quantification.


Assuntos
Água Subterrânea , Radônio , Gasolina , Radônio/análise , Solo
5.
Sci Total Environ ; 716: 132849, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32057506

RESUMO

The objective of this review is to evaluate materials for use as a barrier or other deployed technology to treat technetium-99 (Tc) in the subsurface. To achieve this, Tc interactions with different materials are considered within the context of remediation strategies. Several naturally occurring materials are considered for Tc immobilization, including iron oxides and low solubility sulfide phases. Synthetic materials are also considered, and include tin-based materials, sorbents (resins, activated carbon, modified clays), layered double hydroxides, metal organic frameworks, cationic polymeric networks and aerogels. All of the materials were evaluated for their potential in-situ and ex-situ performance with respect to long-term Tc uptake and immobilization, environmental impacts and deployability. Other factors such as the technology maturity, cost and availability were also considered. Given the difficulty of evaluating materials under different experimental conditions (e.g., solution chemistry, redox conditions, solution to solid ratio, Tc concentration etc.), a subset of these materials will be selected, on the basis of this review, for subsequent standardized batch loading tests.

6.
Sci Total Environ ; 716: 132820, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31982189

RESUMO

Radioiodine-129 (129I) in the subsurface is mobile and limited information is available on treatment technologies. Scientific literature was reviewed to compile information on materials that could potentially be used to immobilize 129I through sorption and redox-driven processes, with an emphasis on ex-situ processes. Candidate materials to immobilize 129I include iron minerals, sulfur-based materials, silver-based materials, bismuth-based materials, ion exchange resins, activated carbon, modified clays, and tailored materials (metal organic frameworks (MOFS), layered double hydroxides (LDHs) and aerogels). Where available, compiled information includes material performance in terms of (i) capacity for 129I uptake; (ii) long-term performance (i.e., solubility of a precipitated phase); (iii) technology maturity; (iv) cost; (v) available quantity; (vi) environmental impact; (vii) ability to emplace the technology for in situ use at the field-scale; and (viii) ex situ treatment (for media extracted from the subsurface or secondary waste streams). Because it can be difficult to compare materials due to differences in experimental conditions applied in the literature, materials will be selected for subsequent standardized batch loading tests.

7.
Sci Total Environ ; 691: 466-475, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31323591

RESUMO

Multiple processes affect the fate of the radioactive isotope 129I in the environment. Primary categories of these processes include electron transfer reactions mediated by minerals and microbes, adsorption to sediments, interactions with organic matter, co-precipitation, and volatilization. A description of dominant biogeochemical processes is provided to describe the interrelationship of these processes and the associated iodine chemical species. The majority of the subsurface iodine fate and transport studies in the United States have been conducted at U.S. Department of Energy (DOE) sites where radioisotopes of iodine are present in the environment and stored waste. The DOE Hanford Site and Savannah River Site (SRS) are used to illustrate how the iodine species and dominant processes at a site are controlled by the prevailing site biogeochemical conditions. These sites differ in terms of climate (arid vs. sub-tropical), major geochemical parameters (e.g., pH ~7.5 vs. 4), and mineralogy (carbonate vs. Fe/Al oxide dominated). The iodine speciation and dominant processes at a site also have implications for selection and implementation of suitable remedy approaches for 129I.

8.
Environ Sci Pollut Res Int ; 25(20): 20255-20263, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29860693

RESUMO

The applicability of radon (222Rn) measurements to delineate non-aqueous phase liquids (NAPL) contamination in subsoil is discussed at a site with lithological discontinuities through a blind test. Three alpha spectroscopy monitors were used to measure radon in soil air in a 25,000-m2 area, following a regular sampling design with a 20-m2 grid. Repeatability and reproducibility of the results were assessed by means of duplicate measurements in six sampling positions. Furthermore, three points not affected by oil spills were sampled to estimate radon background concentration in soil air. Data histograms, Q-Q plots, variograms, and cluster analysis allowed to recognize two data populations, associated with the possible path of a fault and a lithological discontinuity. Even though the concentration of radon in soil air was dominated by this discontinuity, the characterization of the background emanation in each lithological unit allowed to distinguish areas potentially affected by NAPL, thus justifying the application of radon emanometry as a screening technique for the delineation of NAPL plumes in sites with lithological discontinuities.


Assuntos
Poluentes Radioativos do Ar/análise , Monitoramento de Radiação , Poluentes Radioativos do Solo/análise , Portugal , Radônio , Reprodutibilidade dos Testes
9.
Chemosphere ; 181: 122-133, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28433930

RESUMO

Soil and groundwater are key components in the sustainable management of the subsurface environment. Source contamination is one of its main threats and is commonly addressed using established remediation techniques such as in-situ chemical oxidation (ISCO), in-situ chemical reduction (ISCR; most notably using zero-valent iron [ZVI]), enhanced in-situ bioremediation (EISB), phytoremediation, soil-washing, pump-and-treat, soil vapour extraction (SVE), thermal treatment, and excavation and disposal. Decades of field applications have shown that these techniques can successfully treat or control contaminants in higher permeability subsurface materials such as sands, but achieve only limited success at sites where low permeability soils, such as silts and clays, prevail. Electrokinetics (EK), a soil remediation technique mostly recognized in in-situ treatment of low permeability soils, has, for the last decade, been combined with more conventional techniques and can significantly enhance the performance of several of these remediation technologies, including ISCO, ISCR, EISB and phytoremediation. Herein, we discuss the use of emerging EK techniques in tandem with conventional remediation techniques, to achieve improved remediation performance. Furthermore, we highlight new EK applications that may come to play a role in the sustainable treatment of the contaminated subsurface.


Assuntos
Biodegradação Ambiental , Recuperação e Remediação Ambiental/métodos , Técnicas Eletroquímicas , Água Subterrânea , Solo , Poluentes do Solo/análise
10.
J Environ Radioact ; 135: 147-60, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24814749

RESUMO

Pertechnetate was slowly reduced in a natural, untreated arid sediment under anaerobic conditions (0.02 nmolg(-1)h(-1)), which could occur in low permeability zones in the field, most of which was quickly oxidized. A small portion of the surface Tc may be incorporated into slowly dissolving surface phases, so was not readily oxidized/remobilized into pore water. In contrast, pertechnetate reduction in an anaerobic sediment containing adsorbed ferrous iron as the reductant was rapid (15-600 nmolg(-1)h(-1)), and nearly all (96-98%) was rapidly oxidized/remobilized (2.6-6.8 nmolg(-1)h(-1)) within hours. Tc reduction in an anaerobic sediment containing 0.5-10mM sulfide showed a relatively slow reduction rate (0.01-0.03 nmolg(-1)h(-1)) that was similar to observations in the natural sediment. Pertechnetate infiltration into sediment with a highly alkaline water resulted in rapid reduction (0.07-0.2 nmolg(-1)h(-1)) from ferrous iron released during biotite or magnetite dissolution. Oxidation of NaOH-treated sediments resulted in slow Tc oxidation (∼0.05 nmolg(-1)h(-1)) of a small fraction of the surface Tc (13-23%). The Tc remaining on the surface was Tc(IV) (by XANES), and autoradiography and elemental maps of Tc (by electron microprobe) showed Tc was present associated with specific minerals, rather than being evenly distributed on the surface. Dissolution of quartz, montmorillonite, muscovite, and kaolinite also occurred in the alkaline water, resulting in significant aqueous silica and aluminum. Over time, aluminosilicates, cancrinite, zeolite and sodalite were precipitating. These precipitates may be coating surface Tc(IV) phases, limiting reoxidation.


Assuntos
Sedimentos Geológicos/química , Tecnécio/química , Adsorção , Pertecnetato Tc 99m de Sódio/química
11.
J Contam Hydrol ; 151: 155-75, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23851265

RESUMO

This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments have significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100 s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH2) resulted in a rapid (<10 h) increase in aqueous carbonate (with Ca(2+), Mg(2+)) and phosphate and a slow (100 s of hours) increase in silica, Al(3+), and K(+), likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH13) resulted in a rapid (<10h) increase in carbonate, followed by a slow (10 s to 100 s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in not only uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity.


Assuntos
Sedimentos Geológicos/química , Resíduos Radioativos , Urânio/química , Poluentes Radioativos da Água/química , Adsorção , Concentração de Íons de Hidrogênio , Minerais/química , Solubilidade , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa