Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cereb Cortex ; 31(1): 48-61, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32954410

RESUMO

The evolution and development of anatomical-functional relationships in the cerebral cortex is of major interest in neuroscience. Here, we leveraged the fact that a functional region selective for visual scenes is located within a sulcus in the medial ventral temporal cortex (VTC) in both humans and macaques to examine the relationship between sulcal depth and place selectivity in the medial VTC across species and age groups. To do so, we acquired anatomical and functional magnetic resonance imaging scans in 9 macaques, 26 human children, and 28 human adults. Our results revealed a strong structural-functional coupling between sulcal depth and place selectivity across age groups and species in which selectivity was strongest near the deepest sulcal point (the sulcal pit). Interestingly, this coupling between sulcal depth and place selectivity strengthens from childhood to adulthood in humans. Morphological analyses suggest that the stabilization of sulcal-functional coupling in adulthood may be due to sulcal deepening and areal expansion with age as well as developmental differences in cortical curvature at the pial, but not the white matter surfaces. Our results implicate sulcal features as functional landmarks in high-level visual cortex and highlight that sulcal-functional relationships in the medial VTC are preserved between macaques and humans despite differences in cortical folding.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Lobo Temporal/anatomia & histologia , Lobo Temporal/fisiologia , Adolescente , Adulto , Envelhecimento/fisiologia , Envelhecimento/psicologia , Animais , Mapeamento Encefálico , Criança , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
2.
Brain Topogr ; 32(6): 1035-1048, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31583493

RESUMO

Cortical folding is a hallmark of brain topography whose variability across individuals remains a puzzle. In this paper, we call for an effort to improve our understanding of the pli de passage phenomenon, namely annectant gyri buried in the depth of the main sulci. We suggest that plis de passage could become an interesting benchmark for models of the cortical folding process. As an illustration, we speculate on the link between modern biological models of cortical folding and the development of the Pli de Passage Frontal Moyen (PPFM) in the middle of the central sulcus. For this purpose, we have detected nine interrupted central sulci in the Human Connectome Project dataset, which are used to explore the organization of the hand sensorimotor areas in this rare configuration of the PPFM.


Assuntos
Córtex Cerebral/anatomia & histologia , Lobo Occipital/anatomia & histologia , Córtex Cerebral/fisiologia , Conectoma , Mãos , Humanos , Imageamento por Ressonância Magnética , Masculino , Modelos Biológicos , Lobo Occipital/fisiologia , Córtex Sensório-Motor/anatomia & histologia , Córtex Sensório-Motor/fisiologia
3.
Neuroimage ; 100: 206-18, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24945660

RESUMO

Sulcal pits, the locally deepest points in sulci of the highly convoluted and variable cerebral cortex, are found to be spatially consistent across human adult individuals. It is suggested that sulcal pits are genetically controlled and have close relationships with functional areas. To date, the existing imaging studies of sulcal pits are mainly focused on adult brains, yet little is known about the spatial distribution and temporal development of sulcal pits in the first 2 years of life, which is the most dynamic and critical period of postnatal brain development. Studying sulcal pits during this period would greatly enrich our limited understandings of the origins and developmental trajectories of sulcal pits, and would also provide important insights into many neurodevelopmental disorders associated with abnormal cortical foldings. In this paper, by using surface-based morphometry, for the first time, we systemically investigated the spatial distribution and temporal development of sulcal pits in major cortical sulci from 73 healthy infants, each with three longitudinal 3T MR scans at term birth, 1 year, and 2 years of age. Our results suggest that the spatially consistent distributions of sulcal pits in major sulci across individuals have already existed at term birth and this spatial distribution pattern keeps relatively stable in the first 2 years of life, despite that the cerebral cortex expands dramatically and the sulcal depth increases considerably during this period. Specially, the depth of sulcal pits increases regionally heterogeneously, with more rapid growth in the high-order association cortex, including the prefrontal and temporal cortices, than the sensorimotor cortex in the first 2 years of life. Meanwhile, our results also suggest that there exist hemispheric asymmetries of the spatial distributions of sulcal pits in several cortical regions, such as the central, superior temporal and postcentral sulci, consistently from birth to 2 years of age, which likely has close relationships with the lateralization of brain functions of these regions. This study provides detailed insights into the spatial distribution and temporal development of deep sulcal landmarks in infants.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/crescimento & desenvolvimento , Desenvolvimento Infantil/fisiologia , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Feminino , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Adulto Jovem
4.
AIMS Neurosci ; 11(1): 25-38, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617038

RESUMO

Auditory verbal hallucinations (AVHs) are among the most common and disabling symptoms of schizophrenia. They involve the superior temporal sulcus (STS), which is associated with language processing; specific STS patterns may reflect vulnerability to auditory hallucinations in schizophrenia. STS sulcal pits are the deepest points of the folds in this region and were investigated here as an anatomical landmark of AVHs. This study included 53 patients diagnosed with schizophrenia and past or present AVHs, as well as 100 healthy control volunteers. All participants underwent a 3-T magnetic resonance imaging T1 brain scan, and sulcal pit differences were compared between the two groups. Compared with controls, patients with AVHs had a significantly different distributions for the number of sulcal pits in the left STS, indicating a less complex morphological pattern. The association of STS sulcal morphology with AVH suggests an early neurodevelopmental process in the pathophysiology of schizophrenia with AVHs.

5.
CNS Neurosci Ther ; 27(3): 299-307, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32762149

RESUMO

AIM: Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder associated with widespread brain morphological abnormalities. Here, we utilized a sulcal pits-based method to provide new insight into the atypical cortical folding morphology in ADHD. METHODS: Sulcal pits, the locally deepest points in each fold, were first extracted from magnetic resonance imaging data of 183 boys with ADHD (10.62 ± 1.96 years) and 167 age- and gender-matched typically developing controls (10.70 ± 1.73 years). Then, the geometrical properties of sulcal pits were statistically compared between ADHD and controls. RESULTS: Our results demonstrated that the number of sulcal pits was reduced and confined to the superficial secondary sulci in the ADHD group relative to controls (P < .05). We also found that ADHD boys were associated with significantly increased pit depth in the left superior frontal junction, circular insular sulcus, right inferior frontal junction, and bilateral cingulate sulcus, as well as significantly decreased pit depth in the bilateral orbital sulcus (P < .05, corrected). CONCLUSION: The experimental findings reveal atypical sulcal anatomy in boys with ADHD and support the feasibility of sulcal pits as anatomic landmarks for disease diagnosis.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal/diagnóstico por imagem , Adolescente , Córtex Cerebral/diagnóstico por imagem , Criança , Humanos , Masculino
6.
Med Image Anal ; 66: 101749, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32877840

RESUMO

Sulcal pits are the points of maximal depth within the folds of the cortical surface. These shape descriptors give a unique opportunity to access to a rich, fine-scale representation of the geometry and the developmental milestones of the cortical surface. However, using sulcal pits analysis at group level requires new numerical tools to establish inter-subject correspondences. Here, we address this issue by taking advantage of the geometrical information carried by sulcal basins that are the local patches of surfaces surrounding each sulcal pit. Our framework consists in two phases. First, we present a new method to generate a population-specific atlas of this sulcal basins organi- zation as a fold-level parcellation of the cortical surface. Then, we address the labeling of individual sulcal pits and corresponding basins with respect to this atlas. To assess their validity, we applied these methodological advances on two different populations of healthy subjects. The first database of 137 adults allowed us to compare our method to the state-of-the-art and the second database of 209 children, aged between 0 and 18 years, illustrates the adaptability and relevance of our method in the context of pediatric data showing strong variations in cortical volume and folding.


Assuntos
Córtex Cerebral , Imageamento por Ressonância Magnética , Adolescente , Adulto , Córtex Cerebral/diagnóstico por imagem , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido
7.
Med Image Anal ; 35: 32-45, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27310172

RESUMO

Studying the topography of the cortex has proved valuable in order to characterize populations of subjects. In particular, the recent interest towards the deepest parts of the cortical sulci - the so-called sulcal pits - has opened new avenues in that regard. In this paper, we introduce the first fully automatic brain morphometry method based on the study of the spatial organization of sulcal pits - Structural Graph-Based Morphometry (SGBM). Our framework uses attributed graphs to model local patterns of sulcal pits, and further relies on three original contributions. First, a graph kernel is defined to provide a new similarity measure between pit-graphs, with few parameters that can be efficiently estimated from the data. Secondly, we present the first searchlight scheme dedicated to brain morphometry, yielding dense information maps covering the full cortical surface. Finally, a multi-scale inference strategy is designed to jointly analyze the searchlight information maps obtained at different spatial scales. We demonstrate the effectiveness of our framework by studying gender differences and cortical asymmetries: we show that SGBM can both localize informative regions and estimate their spatial scales, while providing results which are consistent with the literature. Thanks to the modular design of our kernel and the vast array of available kernel methods, SGBM can easily be extended to include a more detailed description of the sulcal patterns and solve different statistical problems. Therefore, we suggest that our SGBM framework should be useful for both reaching a better understanding of the normal brain and defining imaging biomarkers in clinical settings.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Algoritmos , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
8.
Artigo em Inglês | MEDLINE | ID: mdl-29560874

RESUMO

BACKGROUND: Recent neuroimaging studies suggest that autism spectrum disorder results from abnormalities in the cortical folding pattern. Usual morphometric measurements have failed to provide reliable neuroanatomic markers. Here, we propose that sulcal pits, which are the deepest points in each fold, are suitable candidates to uncover this atypical cortical folding. METHODS: Sulcal pits were extracted from a magnetic resonance imaging database of 102 children (1.5-10 years old) distributed in three groups: children with autistic disorder (n = 59), typically developing children (n = 22), and children with pervasive developmental disorder not otherwise specified (n = 21). The geometrical properties of sulcal pits were compared between these three groups. RESULTS: Fold-level analyses revealed a reduced pit depth in the left ascending ramus of the Sylvian fissure in children with autistic disorder only. The depth of this central fold of Broca's area was correlated with the social communication impairments that are characteristic of the pathology. CONCLUSIONS: Our findings support an atypical gyrogenesis of this specific fold in autistic disorder that could be used for differential diagnosis. Sulcal pits constitute valuable markers of the cortical folding dynamics and could help for the early detection of atypical brain maturation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa