Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Transl Med ; 21(1): 690, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37840136

RESUMO

BACKGROUND: Dilated cardiomyopathy (DCM) is a severe, non-ischemic heart disease which ultimately results in heart failure (HF). Decades of research on DCM have revealed diverse aetiologies. Among them, familial DCM is the major form of DCM, with pathogenic variants in LMNA being the second most common form of autosomal dominant DCM. LMNA DCM is a multifactorial and complex disease with no specific treatment thus far. Many studies have demonstrated that perturbing candidates related to various dysregulated pathways ameliorate LMNA DCM. However, it is unknown whether these candidates could serve as potential therapeutic targets especially in long term efficacy. METHODS: We evaluated 14 potential candidates including Lmna gene products (Lamin A and Lamin C), key signaling pathways (Tgfß/Smad, mTor and Fgf/Mapk), calcium handling, proliferation regulators and modifiers of LINC complex function in a cardiac specific Lmna DCM model. Positive candidates for improved cardiac function were further assessed by survival analysis. Suppressive roles and mechanisms of these candidates in ameliorating Lmna DCM were dissected by comparing marker gene expression, Tgfß signaling pathway activation, fibrosis, inflammation, proliferation and DNA damage. Furthermore, transcriptome profiling compared the differences between Lamin A and Lamin C treatment. RESULTS: Cardiac function was restored by several positive candidates (Smad3, Yy1, Bmp7, Ctgf, aYAP1, Sun1, Lamin A, and Lamin C), which significantly correlated with suppression of HF/fibrosis marker expression and cardiac fibrosis in Lmna DCM. Lamin C or Sun1 shRNA administration achieved consistent, prolonged survival which highly correlated with reduced heart inflammation and DNA damage. Importantly, Lamin A treatment improved but could not reproduce long term survival, and Lamin A administration to healthy hearts itself induced DCM. Mechanistically, we identified this lapse as caused by a dose-dependent toxicity of Lamin A, which was independent from its maturation. CONCLUSIONS: In vivo candidate evaluation revealed that supplementation of Lamin C or knockdown of Sun1 significantly suppressed Lmna DCM and achieve prolonged survival. Conversely, Lamin A supplementation did not rescue long term survival and may impart detrimental cardiotoxicity risk. This study highlights a potential of advancing Lamin C and Sun1 as therapeutic targets for the treatment of LMNA DCM.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Humanos , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Fibrose , Inflamação/complicações , Fator de Crescimento Transformador beta , Mutação
2.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008948

RESUMO

Myotonic dystrophy type 1 (DM1) is a hereditary and multisystemic disease characterized by myotonia, progressive distal muscle weakness and atrophy. The molecular mechanisms underlying this disease are still poorly characterized, although there are some hypotheses that envisage to explain the multisystemic features observed in DM1. An emergent hypothesis is that nuclear envelope (NE) dysfunction may contribute to muscular dystrophies, particularly to DM1. Therefore, the main objective of the present study was to evaluate the nuclear profile of DM1 patient-derived and control fibroblasts and to determine the protein levels and subcellular distribution of relevant NE proteins in these cell lines. Our results demonstrated that DM1 patient-derived fibroblasts exhibited altered intracellular protein levels of lamin A/C, LAP1, SUN1, nesprin-1 and nesprin-2 when compared with the control fibroblasts. In addition, the results showed an altered location of these NE proteins accompanied by the presence of nuclear deformations (blebs, lobes and/or invaginations) and an increased number of nuclear inclusions. Regarding the nuclear profile, DM1 patient-derived fibroblasts had a larger nuclear area and a higher number of deformed nuclei and micronuclei than control-derived fibroblasts. These results reinforce the evidence that NE dysfunction is a highly relevant pathological characteristic observed in DM1.


Assuntos
Biomarcadores , Fibroblastos/metabolismo , Membrana Nuclear/metabolismo , Núcleo Celular/metabolismo , Imunofluorescência , Humanos , Espaço Intracelular/metabolismo , Lamina Tipo A/metabolismo , Proteínas de Membrana/metabolismo , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Miotonina Proteína Quinase/metabolismo , Proteínas Nucleares/metabolismo
3.
Genes Cells ; 25(11): 730-740, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32931086

RESUMO

The nucleolar structure is highly dynamic and strictly regulated in response to internal cues, such as metabolic rates, and to external cues, such as mechanical forces applied to cells. Although the multilayered nucleolar structure is largely determined by the liquid-like properties of RNA and proteins, the mechanisms regulating the morphology and number of nucleoli remain elusive. The linker of the nucleoskeleton and cytoskeleton (LINC) complex comprises inner nuclear membrane Sad1/UNC-84 (SUN) proteins and outer nuclear membrane-localized nesprins. We previously showed that the depletion of SUN1 proteins affects nucleolar morphologies. This study focuses on the function of SUN1 splicing variants in determining nucleolar morphology. An RNA interference strategy showed that the predominantly expressed variants, SUN1_888 and SUN1_916, were crucial for nucleolar morphology but functionally distinct. In addition, the depletion of either SUN1_888 or SUN1_916 altered the chromatin structure and affected the distribution of histone modifications. Based on these results, we propose a model in which the LINC complex plays a role in modulating nucleolar morphology and numbers via chromatin.


Assuntos
Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Matriz Nuclear/metabolismo , Proteínas Nucleares/genética , Processamento Alternativo/genética , Linhagem Celular , Citoesqueleto/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Splicing de RNA/genética
4.
Int J Mol Sci ; 22(4)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671248

RESUMO

Cyclin-dependent kinases (CDKs) are crucial regulators of the eukaryotic cell cycle. The critical role of CDK2 in the progression of meiosis was demonstrated in a single mammalian species, the mouse. We used immunocytochemistry to study the localization of CDK2 during meiosis in seven rodent species that possess hetero- and homomorphic male sex chromosomes. To compare the distribution of CDK2 in XY and XX male sex chromosomes, we performed multi-round immunostaining of a number of marker proteins in meiotic chromosomes of the rat and subterranean mole voles. Antibodies to the following proteins were used: RAD51, a member of the double-stranded DNA break repair machinery; MLH1, a component of the DNA mismatch repair system; and SUN1, which is involved in the connection between the meiotic telomeres and nuclear envelope, alongside the synaptic protein SYCP3 and kinetochore marker CREST. Using an enhanced protocol, we were able to assess the distribution of as many as four separate proteins in the same meiotic cell. We showed that during prophase I, CDK2 localizes to telomeric and interstitial regions of autosomes in all species investigated (rat, vole, hamster, subterranean mole voles, and mole rats). In sex bivalents following synaptic specificity, the CDK2 signals were distributed in three different modes. In the XY bivalent in the rat and mole rat, we detected numerous CDK2 signals in asynaptic regions and a single CDK2 focus on synaptic segments, similar to the mouse sex chromosomes. In the mole voles, which have unique XX sex chromosomes in males, CDK2 signals were nevertheless distributed similarly to the rat XY sex chromosomes. In the vole, sex chromosomes did not synapse, but demonstrated CDK2 signals of varying intensity, similar to the rat X and Y chromosomes. In female mole voles, the XX bivalent had CDK2 pattern similar to autosomes of all species. In the hamster, CDK2 signals were revealed in telomeric regions in the short synaptic segment of the sex bivalent. We found that CDK2 signals colocalize with SUN1 and MLH1 signals in meiotic chromosomes in rats and mole voles, similar to the mouse. The difference in CDK2 manifestation at the prophase I sex chromosomes can be considered an example of the rapid chromosome evolution in mammals.


Assuntos
Quinase 2 Dependente de Ciclina/metabolismo , Mamíferos/metabolismo , Prófase Meiótica I , Cromossomos Sexuais/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Feminino , Masculino , Modelos Biológicos , Estágio Paquíteno , Ratos , Espermatócitos/metabolismo
5.
Genes Chromosomes Cancer ; 58(6): 341-356, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30474255

RESUMO

Immortalizing primary cells with human telomerase reverse transcriptase (hTERT) has been common practice to enable primary cells to be of extended use in the laboratory because they avoid replicative senescence. Studying exogenously expressed hTERT in cells also affords scientists models of early carcinogenesis and telomere behavior. Control and the premature ageing disease-Hutchinson-Gilford progeria syndrome (HGPS) primary dermal fibroblasts, with and without the classical G608G mutation have been immortalized with exogenous hTERT. However, hTERT immortalization surprisingly elicits genome reorganization not only in disease cells but also in the normal control cells, such that whole chromosome territories normally located at the nuclear periphery in proliferating fibroblasts become mislocalized in the nuclear interior. This includes chromosome 18 in the control fibroblasts and both chromosomes 18 and X in HGPS cells, which physically express an isoform of the LINC complex protein SUN1 that has previously only been theoretical. Additionally, this HGPS cell line has also become genomically unstable and has a tetraploid karyotype, which could be due to the novel SUN1 isoform. Long-term treatment with the hTERT inhibitor BIBR1532 enabled the reduction of telomere length in the immortalized cells and resulted that these mislocalized internal chromosomes to be located at the nuclear periphery, as assessed in actively proliferating cells. Taken together, these findings reveal that elongated telomeres lead to dramatic chromosome mislocalization, which can be restored with a drug treatment that results in telomere reshortening and that a novel SUN1 isoform combined with elongated telomeres leads to genomic instability. Thus, care should be taken when interpreting data from genomic studies in hTERT-immortalized cell lines.


Assuntos
Cariótipo Anormal , Instabilidade Genômica , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Nucleares/genética , Progéria/genética , Telomerase/genética , Homeostase do Telômero , Linhagem Celular , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Telomerase/metabolismo
6.
J Virol ; 92(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29643244

RESUMO

Human immunodeficiency virus type 1 (HIV-1) can infect nondividing cells via passing through the nuclear pore complex. The nuclear membrane-imbedded protein SUN2 was recently reported to be involved in the nuclear import of HIV-1. Whether SUN1, which shares many functional similarities with SUN2, is involved in this process remained to be explored. Here we report that overexpression of SUN1 specifically inhibited infection by HIV-1 but not that by simian immunodeficiency virus (SIV) or murine leukemia virus (MLV). Overexpression of SUN1 did not affect reverse transcription but led to reduced accumulation of the 2-long-terminal-repeat (2-LTR) circular DNA and integrated viral DNA, suggesting a block in the process of nuclear import. HIV-1 CA was mapped as a determinant for viral sensitivity to SUN1. Treatment of SUN1-expressing cells with cyclosporine (CsA) significantly reduced the sensitivity of the virus to SUN1, and an HIV-1 mutant containing CA-G89A, which does not interact with cyclophilin A (CypA), was resistant to SUN1 overexpression. Downregulation of endogenous SUN1 inhibited the nuclear entry of the wild-type virus but not that of the G89A mutant. These results indicate that SUN1 participates in the HIV-1 nuclear entry process in a manner dependent on the interaction of CA with CypA.IMPORTANCE HIV-1 infects both dividing and nondividing cells. The viral preintegration complex (PIC) can enter the nucleus through the nuclear pore complex. It has been well known that the viral protein CA plays an important role in determining the pathways by which the PIC enters the nucleus. In addition, the interaction between CA and the cellular protein CypA has been reported to be important in the selection of nuclear entry pathways, though the underlying mechanisms are not very clear. Here we show that both SUN1 overexpression and downregulation inhibited HIV-1 nuclear entry. CA played an important role in determining the sensitivity of the virus to SUN1: the regulatory activity of SUN1 toward HIV-1 relied on the interaction between CA and CypA. These results help to explain how SUN1 is involved in the HIV-1 nuclear entry process.


Assuntos
Capsídeo/metabolismo , Núcleo Celular/metabolismo , Ciclofilina A/metabolismo , Infecções por HIV/virologia , HIV-1/patogenicidade , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Transporte Ativo do Núcleo Celular , Células HeLa , Humanos , Integração Viral
7.
Biochem Biophys Res Commun ; 496(4): 1337-1343, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29408528

RESUMO

LINC complexes span across the nuclear envelope and are assembled by SUN and KASH proteins. SUN1 and SUN2 are the two most abundant SUN proteins in mammals. In SUN2, the predicted coiled-coil domain preceding the SUN domain forms a three-helix bundle that constitutes an autoinhibitory domain (AID) to lock down the SUN domain. Here, we found that SUN1 also contains an AID preceding the SUN domain and solved the structure of the AID-SUN tandem of SUN1. SUN1 AID also adopts a three-helix bundle conformation that interacts with the SUN domain and keeps it in an autoinhibited state. Disruptions of the interaction interface in the AID-SUN tandem restored the SUN domain activity for binding to the KASH peptide. Structural comparison further demonstrated that the autoinhibited conformations of the AID-SUN tandems from SUN1 and SUN2 are similar and the intramolecular interdomain packing in SUN1 is slightly more compact than that in SUN2 due to minor variations of the residues in the interaction interface. Thus, AID is a conserved functional domain in SUN proteins and this work provides the structural evidence to support the conversation of the AID-mediated autoinhibition of SUN proteins.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas de Membrana/química , Proteínas de Membrana/ultraestrutura , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/ultraestrutura , Modelos Químicos , Simulação de Acoplamento Molecular , Proteínas Nucleares/química , Proteínas Nucleares/ultraestrutura , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
8.
J Virol ; 91(19)2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28747499

RESUMO

Human immunodeficiency virus type 1 (HIV-1) infection of dividing and nondividing cells involves regulatory interactions with the nuclear pore complex (NPC), followed by translocation to the nucleus and preferential integration into genomic areas in proximity to the inner nuclear membrane (INM). To identify host proteins that may contribute to these processes, we performed an overexpression screen of known membrane-associated NE proteins. We found that the integral transmembrane proteins SUN1/UNC84A and SUN2/UNC84B are potent or modest inhibitors of HIV-1 infection, respectively, and that suppression corresponds to defects in the accumulation of viral cDNA in the nucleus. While laboratory strains (HIV-1NL4.3 and HIV-1IIIB) are sensitive to SUN1-mediated inhibition, the transmitted founder viruses RHPA and ZM247 are largely resistant. Using chimeric viruses, we identified the HIV-1 capsid (CA) protein as a major determinant of sensitivity to SUN1, and in vitro-assembled capsid-nucleocapsid (CANC) nanotubes captured SUN1 and SUN2 from cell lysates. Finally, we generated SUN1-/- and SUN2-/- cells by using CRISPR/Cas9 and found that the loss of SUN1 had no effect on HIV-1 infectivity, whereas the loss of SUN2 had a modest suppressive effect. Taken together, these observations suggest that SUN1 and SUN2 may function redundantly to modulate postentry, nuclear-associated steps of HIV-1 infection.IMPORTANCE HIV-1 causes more than 1 million deaths per year. The life cycle of HIV-1 has been studied extensively, yet important steps that occur between viral capsid release into the cytoplasm and the expression of viral genes remain elusive. We propose here that the INM components SUN1 and SUN2, two members of the linker of nucleoskeleton and cytoskeleton (LINC) complex, may interact with incoming HIV-1 replication complexes and affect key steps of infection. While overexpression of these proteins reduces HIV-1 infection, disruption of the individual SUN2 and SUN1 genes leads to a mild reduction or no effect on infectivity, respectively. We speculate that SUN1/SUN2 may function redundantly in early HIV-1 infection steps and therefore influence HIV-1 replication and pathogenesis.


Assuntos
Proteínas do Capsídeo/genética , Infecções por HIV/prevenção & controle , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Transporte Ativo do Núcleo Celular/genética , Transporte Ativo do Núcleo Celular/fisiologia , Sistemas CRISPR-Cas/genética , Linhagem Celular , DNA Viral/genética , Inativação Gênica , Células HEK293 , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/patogenicidade , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Poro Nuclear/metabolismo , Proteínas Nucleares/genética
9.
J Cell Sci ; 128(1): 88-99, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25380821

RESUMO

In most organisms, telomeres attach to the nuclear envelope at the onset of meiosis to promote the crucial processes of pairing, recombination and synapsis during prophase I. This attachment of meiotic telomeres is mediated by the specific distribution of several nuclear envelope components that interact with the attachment plates of the synaptonemal complex. We have determined by immunofluorescence and electron microscopy that the ablation of the kinase CDK2 alters the nuclear envelope in mouse spermatocytes, and that the proteins SUN1, KASH5 (also known as CCDC155) and lamin C2 show an abnormal cap-like distribution facing the centrosome. Strikingly, some telomeres are not attached to the nuclear envelope but remain at the nuclear interior where they are associated with SUN1 and with nuclear-envelope-detached vesicles. We also demonstrate that mouse testis CDK2 phosphorylates SUN1 in vitro. We propose that during mammalian prophase I the kinase CDK2 is a key factor governing the structure of the nuclear envelope and the telomere-led chromosome movements essential for homolog pairing.


Assuntos
Quinase 2 Dependente de Ciclina/metabolismo , Prófase Meiótica I/fisiologia , Membrana Nuclear/metabolismo , Espermatócitos/metabolismo , Telômero/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Quinase 2 Dependente de Ciclina/genética , Proteínas do Citoesqueleto , Laminina/genética , Laminina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Membrana Nuclear/genética , Proteínas Nucleares/genética , Fosforilação/fisiologia , Espermatócitos/citologia , Telômero/genética
10.
J Cell Sci ; 127(Pt 8): 1792-804, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24522183

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a human progeroid disease caused by a point mutation on the LMNA gene. We reported previously that the accumulation of the nuclear envelope protein SUN1 contributes to HGPS nuclear aberrancies. However, the mechanism by which interactions between mutant lamin A (also known as progerin or LAΔ50) and SUN1 produce HGPS cellular phenotypes requires further elucidation. Using light and electron microscopy, this study demonstrated that SUN1 contributes to progerin-elicited structural changes in the nuclear envelope and the endoplasmic reticulum (ER) network. We further identified two domains through which full-length lamin A associates with SUN1, and determined that the farnesylated cysteine within the CaaX motif of lamin A has a stronger affinity for SUN1 than does the lamin A region containing amino acids 607 to 656. Farnesylation of progerin enhanced its interaction with SUN1 and reduced SUN1 mobility, thereby promoting the aberrant recruitment of progerin to the ER membrane during postmitotic assembly of the nuclear envelope, resulting in the accumulation of SUN1 over consecutive cellular divisions. These results indicate that the dysregulated interaction of SUN1 and progerin in the ER during nuclear envelope reformation determines the progression of HGPS.


Assuntos
Retículo Endoplasmático/metabolismo , Lamina Tipo A/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Progéria/patologia , Retículo Endoplasmático/patologia , Fibroblastos/metabolismo , Células HeLa , Humanos , Lamina Tipo A/genética , Mitose , Membrana Nuclear/patologia , Mutação Puntual , Prenilação , Progéria/genética , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico , Pele/patologia
11.
Dev Biol ; 392(1): 108-16, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24797635

RESUMO

Telomere clustering is a widespread phenomenon among eukaryotes. However, the molecular mechanisms that regulate formation of telomere clustering in mammalian meiotic prophase I, are still largely unknown. Here, we show that CDK2, especially p39(cdk2), as a potential meiosis-specific connector interaction with SUN1 mediates formation of telomere clustering during mouse meiosis. The transition from CDK2 to p-CDK2 also regulates the progression from homologous recombination to desynapsis by interacting with MLH1. In addition, disappearance of CDK2 on the telomeres and of p-CDK2 on recombination sites, were observed in Sun1(-/-) mice and in pachytene-arrested hybrid sterile mice (pwk×C57BL/6 F1), respectively. These results suggest that transition from CDK2 to p-CDK2 plays a critical role for regulating meiosis progression.


Assuntos
Quinase 2 Dependente de Ciclina/metabolismo , Prófase Meiótica I/genética , Proteínas Associadas aos Microtúbulos/genética , Estágio Paquíteno/genética , Telômero/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Infertilidade Masculina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 1 Homóloga a MutL , Proteínas Nucleares/metabolismo , Fosforilação
12.
Hum Mutat ; 35(4): 452-61, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24375709

RESUMO

Mutations in several genes encoding nuclear envelope (NE) associated proteins cause Emery-Dreifuss muscular dystrophy (EDMD). We analyzed fibroblasts from a patient who had a mutation in the EMD gene (p.L84Pfs*6) leading to loss of Emerin and a heterozygous mutation in SUN1 (p.A203V). The second patient harbored a heterozygous mutation in LAP2alpha (p.P426L) and a further mutation in SUN1 (p.A614V). p.A203V is located in the N-terminal domain of SUN1 facing the nucleoplasm and situated in the vicinity of the Nesprin-2 and Emerin binding site. p.A614V precedes the SUN domain, which interacts with the KASH domain of Nesprins in the periplasmic space and forms the center of the LINC complex. At the cellular level, we observed alterations in the amounts for several components of the NE in patient fibroblasts and further phenotypic characteristics generally attributed to laminopathies such as increased sensitivity to heat stress. The defects were more severe than observed in EDMD cells with mutations in a single gene. In particular, in patient fibroblasts carrying the p.A203V mutation in SUN1, the alterations were aggravated. Moreover, SUN1 of both patient fibroblasts exhibited reduced interaction with Lamin A/C and when expressed ectopically in wild-type fibroblasts, the SUN1 mutant proteins exhibited reduced interactions with Emerin as well.


Assuntos
Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Timopoietinas/genética , Proteínas de Ligação a DNA/genética , Feminino , Fibroblastos/metabolismo , Humanos , Lamina Tipo A/metabolismo , Masculino , Mutação , Membrana Nuclear/metabolismo , Timopoietinas/metabolismo
13.
EBioMedicine ; 104: 105167, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38805852

RESUMO

BACKGROUND: Tumour-infiltrating lymphocytes (TILs) are crucial for effective immune checkpoint blockade (ICB) therapy in solid tumours. However, ∼70% of these tumours exhibit poor lymphocyte infiltration, rendering ICB therapies less effective. METHODS: We developed a bioinformatics pipeline integrating multiple previously unconsidered factors or datasets, including tumour cell immune-related pathways, copy number variation (CNV), and single tumour cell sequencing data, as well as tumour mRNA-seq data and patient survival data, to identify targets that can potentially improve T cell infiltration and enhance ICB efficacy. Furthermore, we conducted wet-lab experiments and successfully validated one of the top-identified genes. FINDINGS: We applied this pipeline in solid tumours of the Cancer Genome Atlas (TCGA) and identified a set of genes in 18 cancer types that might potentially improve lymphocyte infiltration and ICB efficacy, providing a valuable drug target resource to be further explored. Importantly, we experimentally validated SUN1, which had not been linked to T cell infiltration and ICB therapy previously, but was one of the top-identified gene targets among 3 cancer types based on the pipeline, in a mouse colon cancer syngeneic model. We showed that Sun1 KO could significantly enhance antigen presentation, increase T-cell infiltration, and improve anti-PD1 treatment efficacy. Moreover, with a single-cell multiome analysis, we identified subgene regulatory networks (sub-GRNs) showing Stat proteins play important roles in enhancing the immune-related pathways in Sun1-KO cancer cells. INTERPRETATION: This study not only established a computational pipeline for discovering new gene targets and signalling pathways in cancer cells that block T-cell infiltration, but also provided a gene target pool for further exploration in improving lymphocyte infiltration and ICB efficacy in solid tumours. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.


Assuntos
Biologia Computacional , Inibidores de Checkpoint Imunológico , Linfócitos do Interstício Tumoral , Neoplasias , Transdução de Sinais , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Humanos , Biologia Computacional/métodos , Animais , Camundongos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Modelos Animais de Doenças
14.
Cells ; 13(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891038

RESUMO

Eukaryotic cells tether the nucleoskeleton to the cytoskeleton via a conserved molecular bridge, called the LINC complex. The core of the LINC complex comprises SUN-domain and KASH-domain proteins that directly associate within the nuclear envelope lumen. Intra- and inter-chain disulphide bonds, along with KASH-domain protein interactions, both contribute to the tertiary and quaternary structure of vertebrate SUN-domain proteins. The significance of these bonds and the role of PDIs (protein disulphide isomerases) in LINC complex biology remains unclear. Reducing and non-reducing SDS-PAGE analyses revealed a prevalence of SUN2 homodimers in non-tumorigenic breast epithelia MCF10A cells, but not in the invasive triple-negative breast cancer MDA-MB-231 cell line. Furthermore, super-resolution microscopy revealed SUN2 staining alterations in MCF10A, but not in MDA-MB-231 nuclei, upon reducing agent exposure. While PDIA1 levels were similar in both cell lines, pharmacological inhibition of PDI activity in MDA-MB-231 cells led to SUN-domain protein down-regulation, as well as Nesprin-2 displacement from the nucleus. This inhibition also caused changes in perinuclear cytoskeletal architecture and lamin downregulation, and increased the invasiveness of PDI-inhibited MDA-MB-231 cells in space-restrictive in vitro environments, compared to untreated cells. These results emphasise the key roles of PDIs in regulating LINC complex biology, cellular architecture, biomechanics, and invasion.


Assuntos
Invasividade Neoplásica , Isomerases de Dissulfetos de Proteínas , Humanos , Linhagem Celular Tumoral , Isomerases de Dissulfetos de Proteínas/metabolismo , Feminino , Regulação para Baixo/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Membrana Nuclear/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Peptídeos e Proteínas de Sinalização Intracelular
15.
Aging Cell ; 22(9): e13925, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37476844

RESUMO

Neurons decline in their functionality over time, and age-related neuronal alterations are associated with phenotypes of neurodegenerative diseases. In nonneural tissues, an infolded nuclear shape has been proposed as a hallmark of aged cells and neurons with infolded nuclei have also been reported to be associated with neuronal activity. Here, we performed time-lapse imaging in the visual cortex of Nex-Cre;SUN1-GFP mice. Nuclear infolding was observed within 10 min of stimulation in young nuclei, while the aged nuclei were already infolded pre-stimulation and showed reduced dynamics of the morphology. In young nuclei, the depletion of the stimuli restored the nucleus to a spherical shape and reduced the dynamic behavior, suggesting that nuclear infolding is a reversible process. We also found the aged nucleus to be stiffer than the young one, further relating to the age-associated loss of nuclear shape dynamics. We reveal temporal changes in the nuclear shape upon external stimulation and observe that these morphological dynamics decrease with age.


Assuntos
Neurônios , Córtex Visual , Camundongos , Animais , Córtex Visual/fisiologia
16.
Front Cell Dev Biol ; 11: 1144277, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37416798

RESUMO

The LINC complex, consisting of interacting SUN and KASH proteins, mechanically couples nuclear contents to the cytoskeleton. In meiosis, the LINC complex transmits microtubule-generated forces to chromosome ends, driving the rapid chromosome movements that are necessary for synapsis and crossing over. In somatic cells, it defines nuclear shape and positioning, and has a number of specialised roles, including hearing. Here, we report the X-ray crystal structure of a coiled-coiled domain of SUN1's luminal region, providing an architectural foundation for how SUN1 traverses the nuclear lumen, from the inner nuclear membrane to its interaction with KASH proteins at the outer nuclear membrane. In combination with light and X-ray scattering, molecular dynamics and structure-directed modelling, we present a model of SUN1's entire luminal region. This model highlights inherent flexibility between structured domains, and raises the possibility that domain-swap interactions may establish a LINC complex network for the coordinated transmission of cytoskeletal forces.

17.
J Radiat Res ; 64(2): 358-368, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36694940

RESUMO

The linker of nucleoskeleton and cytoskeleton (LINC) complex has been implicated in various functions of the nuclear envelope, including nuclear migration, mechanotransduction and DNA repair. We previously revealed that the LINC complex component Sad1 and UNC84 domain containing 1 (SUN1) is required for sublethal-dose X-ray-enhanced cell migration and invasion. This study focused on epithelial-mesenchymal transition (EMT), which contributes to cell migration. Hence, the present study aimed to examine whether sublethal-dose X-irradiation induces EMT and whether LINC complex component SUN1 is involved in low-dose X-ray-induced EMT. This study showed that low-dose (0.5 Gy or 2 Gy) X-irradiation induced EMT in human breast cancer MDA-MB-231 cells. Additionally, X-irradiation increased the expression of SUN1. Therefore, SUN1 was depleted using siRNA. In SUN1-depleted cells, low-dose X-irradiation did not induce EMT. In addition, although the SUN1 splicing variant SUN1_916-depleted cells (containing 916 amino acids [AA] of SUN1) were induced EMT by low-dose X-irradiation like as non-transfected control cells, SUN1_888-depleted cells (which encodes 888 AA) were not induced EMT by low-dose X-irradiation. Moreover, since the Wnt/ß-catenin signaling pathway regulates E-cadherin expression via the expression of the E-cadherin repressor Snail, the expression of ß-catenin after X-irradiation was examined. After 24 hours of irradiation, ß-catenin expression increased in non-transfected cells or SUN1_916-depleted cells, whereas ß-catenin expression remained unchanged and did not increase in SUN1- or SUN1_888-depleted cells. Therefore, in this study, we found that low-dose X-irradiation induces EMT, and LINC complex component SUN1, especially SUN1_888, is required for X-ray-induced EMT via activation of the Wnt/ß-catenin signaling pathway.


Assuntos
Transição Epitelial-Mesenquimal , beta Catenina , Humanos , beta Catenina/metabolismo , Raios X , Mecanotransdução Celular , Citoesqueleto/metabolismo , Matriz Nuclear/metabolismo , Movimento Celular , Linhagem Celular Tumoral , Caderinas/metabolismo
18.
Elife ; 122023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36989130

RESUMO

Endothelial cells line all blood vessels, where they coordinate blood vessel formation and the blood-tissue barrier via regulation of cell-cell junctions. The nucleus also regulates endothelial cell behaviors, but it is unclear how the nucleus contributes to endothelial cell activities at the cell periphery. Here, we show that the nuclear-localized linker of the nucleoskeleton and cytoskeleton (LINC) complex protein SUN1 regulates vascular sprouting and endothelial cell-cell junction morphology and function. Loss of murine endothelial Sun1 impaired blood vessel formation and destabilized junctions, angiogenic sprouts formed but retracted in SUN1-depleted sprouts, and zebrafish vessels lacking Sun1b had aberrant junctions and defective cell-cell connections. At the cellular level, SUN1 stabilized endothelial cell-cell junctions, promoted junction function, and regulated contractility. Mechanistically, SUN1 depletion altered cell behaviors via the cytoskeleton without changing transcriptional profiles. Reduced peripheral microtubule density, fewer junction contacts, and increased catastrophes accompanied SUN1 loss, and microtubule depolymerization phenocopied effects on junctions. Depletion of GEF-H1, a microtubule-regulated Rho activator, or the LINC complex protein nesprin-1 rescued defective junctions of SUN1-depleted endothelial cells. Thus, endothelial SUN1 regulates peripheral cell-cell junctions from the nucleus via LINC complex-based microtubule interactions that affect peripheral microtubule dynamics and Rho-regulated contractility, and this long-range regulation is important for proper blood vessel sprouting and junction integrity.


Assuntos
Células Endoteliais , Proteínas Associadas aos Microtúbulos , Animais , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Células Endoteliais/metabolismo , Peixe-Zebra/metabolismo , Proteínas Nucleares/metabolismo , Microtúbulos/metabolismo , Junções Intercelulares/metabolismo
19.
Nucleus ; 13(1): 144-154, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35298348

RESUMO

Dictyostelium amoebae perform a semi-closed mitosis, in which the nuclear envelope is fenestrated at the insertion sites of the mitotic centrosomes and around the central spindle during karyokinesis. During late telophase the centrosome relocates to the cytoplasmic side of the nucleus, the central spindle disassembles and the nuclear fenestrae become closed. Our data indicate that Dictyostelium spastin (DdSpastin) is a microtubule-binding and severing type I membrane protein that plays a role in this process. Its mitotic localization is in agreement with a requirement for the removal of microtubules that would hinder closure of the fenestrae. Furthermore, DdSpastin interacts with the HeH/ LEM-family protein Src1 in BioID analyses as well as the inner nuclear membrane protein Sun1, and shows subcellular co-localizations with Src1, Sun1, the ESCRT component CHMP7 and the IST1-like protein filactin, suggesting that the principal pathway of mitotic nuclear envelope remodeling is conserved between animals and Dictyostelium amoebae.


Assuntos
Dictyostelium , Membrana Nuclear , Animais , Divisão do Núcleo Celular , Dictyostelium/metabolismo , Mitose , Membrana Nuclear/metabolismo , Espastina/metabolismo
20.
Aging (Albany NY) ; 13(7): 10490-10516, 2021 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-33820871

RESUMO

Telomere length homeostasis is essential for maintaining genomic stability and cancer proliferation. Telomerase-negative cancer cells undergo recombination-mediated alternative lengthening of telomeres. Telomeres associate with the nuclear envelope through the shelterin RAP1 and nuclear envelope SUN1 proteins. However, how the associations between telomeres and the nuclear envelope affect the progression of telomere recombination is not understood. Here, we show that telomere anchorage might inhibit telomere-telomere recombination. SUN1 depletion stimulates the formation of alternative lengthening of telomeres-associated promyelocytic leukemia bodies in ALT cells. In contrast, overexpression of a telomere-nuclear envelope-tethering chimera protein, RAP1-SUN1, suppresses APB formation. Moreover, inhibition of this nuclear envelope attachment alleviates the requirement of TOP3α for resolving the supercoiling pressure during telomere recombination. A coimmunoprecipitation assay revealed that the SUN1 N-terminal nucleoplasmic domain interacts with the RAP1 middle coil domain, and phosphorylation-mimetic mutations in RAP1 inhibit this interaction. However, abolishing the RAP1-SUN1 interaction does not hinder APB formation, which hints at the existence of another SUN1-dependent telomere anchorage pathway. In summary, our results reveal an inhibitory role of telomere-nuclear envelope association in telomere-telomere recombination and imply the presence of redundant pathways for the telomere-nuclear envelope association in ALT cells.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Homeostase do Telômero/fisiologia , Proteínas de Ligação a Telômeros/metabolismo , Linhagem Celular Tumoral , Humanos , Proteína da Leucemia Promielocítica/metabolismo , Complexo Shelterina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa