Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 335
Filtrar
1.
Cell ; 187(2): 331-344.e17, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38194964

RESUMO

Enhancers are distal DNA elements believed to loop and contact promoters to control gene expression. Recently, we found diffraction-sized transcriptional condensates at genes controlled by clusters of enhancers (super-enhancers). However, a direct function of endogenous condensates in controlling gene expression remains elusive. Here, we develop live-cell super-resolution and multi-color 3D-imaging approaches to investigate putative roles of endogenous condensates in the regulation of super-enhancer controlled gene Sox2. In contrast to enhancer distance, we find instead that the condensate's positional dynamics are a better predictor of gene expression. A basal gene bursting occurs when the condensate is far (>1 µm), but burst size and frequency are enhanced when the condensate moves in proximity (<1 µm). Perturbations of cohesin and local DNA elements do not prevent basal bursting but affect the condensate and its burst enhancement. We propose a three-way kissing model whereby the condensate interacts transiently with gene locus and regulatory DNA elements to control gene bursting.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição SOXB1 , Super Intensificadores , Transcrição Gênica , DNA/genética , Elementos Facilitadores Genéticos , Fatores de Transcrição SOXB1/genética , Animais , Camundongos , Células-Tronco Embrionárias/metabolismo , Microscopia/métodos
2.
Cell ; 186(5): 1066-1085.e36, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36868209

RESUMO

A generalizable strategy with programmable site specificity for in situ profiling of histone modifications on unperturbed chromatin remains highly desirable but challenging. We herein developed a single-site-resolved multi-omics (SiTomics) strategy for systematic mapping of dynamic modifications and subsequent profiling of chromatinized proteome and genome defined by specific chromatin acylations in living cells. By leveraging the genetic code expansion strategy, our SiTomics toolkit revealed distinct crotonylation (e.g., H3K56cr) and ß-hydroxybutyrylation (e.g., H3K56bhb) upon short chain fatty acids stimulation and established linkages for chromatin acylation mark-defined proteome, genome, and functions. This led to the identification of GLYR1 as a distinct interacting protein in modulating H3K56cr's gene body localization as well as the discovery of an elevated super-enhancer repertoire underlying bhb-mediated chromatin modulations. SiTomics offers a platform technology for elucidating the "metabolites-modification-regulation" axis, which is widely applicable for multi-omics profiling and functional dissection of modifications beyond acylations and proteins beyond histones.


Assuntos
Cromatina , Proteoma , Acilação , Mapeamento Cromossômico , Histonas , Sobrevivência Celular
3.
Cell ; 176(4): 816-830.e18, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30595451

RESUMO

The temporal order of DNA replication (replication timing [RT]) is highly coupled with genome architecture, but cis-elements regulating either remain elusive. We created a series of CRISPR-mediated deletions and inversions of a pluripotency-associated topologically associating domain (TAD) in mouse ESCs. CTCF-associated domain boundaries were dispensable for RT. CTCF protein depletion weakened most TAD boundaries but had no effect on RT or A/B compartmentalization genome-wide. By contrast, deletion of three intra-TAD CTCF-independent 3D contact sites caused a domain-wide early-to-late RT shift, an A-to-B compartment switch, weakening of TAD architecture, and loss of transcription. The dispensability of TAD boundaries and the necessity of these "early replication control elements" (ERCEs) was validated by deletions and inversions at additional domains. Our results demonstrate that discrete cis-regulatory elements orchestrate domain-wide RT, A/B compartmentalization, TAD architecture, and transcription, revealing fundamental principles linking genome structure and function.


Assuntos
Período de Replicação do DNA/fisiologia , Replicação do DNA/genética , Replicação do DNA/fisiologia , Animais , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Cromatina , DNA/genética , Período de Replicação do DNA/genética , Células-Tronco Embrionárias , Elementos Facilitadores Genéticos/genética , Mamíferos/genética , Mamíferos/metabolismo , Camundongos , Proteínas Repressoras/metabolismo , Análise Espaço-Temporal
4.
Cell ; 175(1): 171-185.e25, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30146162

RESUMO

CKIα ablation induces p53 activation, and CKIα degradation underlies the therapeutic effect of lenalidomide in a pre-leukemia syndrome. Here we describe the development of CKIα inhibitors, which co-target the transcriptional kinases CDK7 and CDK9, thereby augmenting CKIα-induced p53 activation and its anti-leukemic activity. Oncogene-driving super-enhancers (SEs) are highly sensitive to CDK7/9 inhibition. We identified multiple newly gained SEs in primary mouse acute myeloid leukemia (AML) cells and demonstrate that the inhibitors abolish many SEs and preferentially suppress the transcription elongation of SE-driven oncogenes. We show that blocking CKIα together with CDK7 and/or CDK9 synergistically stabilize p53, deprive leukemia cells of survival and proliferation-maintaining SE-driven oncogenes, and induce apoptosis. Leukemia progenitors are selectively eliminated by the inhibitors, explaining their therapeutic efficacy with preserved hematopoiesis and leukemia cure potential; they eradicate leukemia in MLL-AF9 and Tet2-/-;Flt3ITD AML mouse models and in several patient-derived AML xenograft models, supporting their potential efficacy in curing human leukemia.


Assuntos
Caseína Quinase Ialfa/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Caseína Quinase Ialfa/fisiologia , Proliferação de Células/efeitos dos fármacos , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/fisiologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/fisiologia , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Elementos Facilitadores Genéticos/genética , Hematopoese , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Proteína Supressora de Tumor p53/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cell ; 169(1): 13-23, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28340338

RESUMO

Phase-separated multi-molecular assemblies provide a general regulatory mechanism to compartmentalize biochemical reactions within cells. We propose that a phase separation model explains established and recently described features of transcriptional control. These features include the formation of super-enhancers, the sensitivity of super-enhancers to perturbation, the transcriptional bursting patterns of enhancers, and the ability of an enhancer to produce simultaneous activation at multiple genes. This model provides a conceptual framework to further explore principles of gene control in mammals.


Assuntos
Regulação da Expressão Gênica , Modelos Biológicos , Transcrição Gênica , Animais , Elementos Facilitadores Genéticos , Células Eucarióticas/metabolismo , Humanos , Fatores de Transcrição/metabolismo , Ativação Transcricional
6.
Cell ; 168(6): 1000-1014.e15, 2017 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-28283057

RESUMO

Super-enhancers are an emerging subclass of regulatory regions controlling cell identity and disease genes. However, their biological function and impact on miRNA networks are unclear. Here, we report that super-enhancers drive the biogenesis of master miRNAs crucial for cell identity by enhancing both transcription and Drosha/DGCR8-mediated primary miRNA (pri-miRNA) processing. Super-enhancers, together with broad H3K4me3 domains, shape a tissue-specific and evolutionarily conserved atlas of miRNA expression and function. CRISPR/Cas9 genomics revealed that super-enhancer constituents act cooperatively and facilitate Drosha/DGCR8 recruitment and pri-miRNA processing to boost cell-specific miRNA production. The BET-bromodomain inhibitor JQ1 preferentially inhibits super-enhancer-directed cotranscriptional pri-miRNA processing. Furthermore, super-enhancers are characterized by pervasive interaction with DGCR8/Drosha and DGCR8/Drosha-regulated mRNA stability control, suggesting unique RNA regulation at super-enhancers. Finally, super-enhancers mark multiple miRNAs associated with cancer hallmarks. This study presents principles underlying miRNA biology in health and disease and an unrecognized higher-order property of super-enhancers in RNA processing beyond transcription.


Assuntos
Elementos Facilitadores Genéticos , MicroRNAs/metabolismo , Animais , Azepinas/farmacologia , Regulação da Expressão Gênica , Código das Histonas , Humanos , Camundongos , Neoplasias/genética , Especificidade de Órgãos , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Transcrição Gênica , Triazóis/farmacologia
7.
Mol Cell ; 82(4): 803-815.e5, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35077705

RESUMO

The hormone-stimulated glucocorticoid receptor (GR) modulates transcription by interacting with thousands of enhancers and GR binding sites (GBSs) throughout the genome. Here, we examined the effects of GR binding on enhancer dynamics and investigated the contributions of individual GBSs to the hormone response. Hormone treatment resulted in genome-wide reorganization of the enhancer landscape in breast cancer cells. Upstream of the DDIT4 oncogene, GR bound to four sites constituting a hormone-dependent super enhancer. Three GBSs were required as hormone-dependent enhancers that differentially promoted histone acetylation, transcription frequency, and burst size. Conversely, the fourth site suppressed transcription and hormone treatment alleviated this suppression. GR binding within the super enhancer promoted a loop-switching mechanism that allowed interaction of the DDIT4 TSS with the active GBSs. The unique functions of each GR binding site contribute to hormone-induced transcriptional heterogeneity and demonstrate the potential for targeted modulation of oncogene expression.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Dexametasona/farmacologia , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Receptores de Glucocorticoides/agonistas , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Sítios de Ligação , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética
8.
Immunity ; 52(6): 1119-1132.e4, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32362325

RESUMO

The contribution of FOXP3-expressing naturally occurring regulatory T (Treg) cells to common polygenic autoimmune diseases remains ambiguous. Here, we characterized genome-wide epigenetic profiles (CpG methylation and histone modifications) of human Treg and conventional T (Tconv) cells in naive and activated states. We found that single-nucleotide polymorphisms (SNPs) associated with common autoimmune diseases were predominantly enriched in CpG demethylated regions (DRs) specifically present in naive Treg cells but much less enriched in activation-induced DRs common in Tconv and Treg cells. Naive Treg cell-specific DRs were largely included in Treg cell-specific super-enhancers and closely associated with transcription and other epigenetic changes in naive and effector Treg cells. Thus, naive Treg cell-specific CpG hypomethylation had a key role in controlling Treg cell-specific gene transcription and epigenetic modification. The results suggest possible contribution of altered function or development of natural Treg cells to the susceptibility to common autoimmune diseases.


Assuntos
Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Epigênese Genética , Epigenômica , Predisposição Genética para Doença , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Biomarcadores , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Biologia Computacional , Ilhas de CpG , Metilação de DNA , Epigenômica/métodos , Perfilação da Expressão Gênica , Variação Genética , Humanos , Imunofenotipagem , Polimorfismo de Nucleotídeo Único , Subpopulações de Linfócitos T , Linfócitos T Reguladores/citologia , Transcriptoma
9.
Mol Cell ; 81(5): 969-982.e13, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33482114

RESUMO

Many genes are regulated by multiple enhancers that often simultaneously activate their target gene. However, how individual enhancers collaborate to activate transcription is not well understood. Here, we dissect the functions and interdependencies of five enhancer elements that together activate Fgf5 expression during exit from naive murine pluripotency. Four intergenic elements form a super-enhancer, and most of the elements contribute to Fgf5 induction at distinct time points. A fifth, poised enhancer located in the first intron contributes to Fgf5 expression at every time point by amplifying overall Fgf5 expression levels. Despite low individual enhancer activity, together these elements strongly induce Fgf5 expression in a super-additive fashion that involves strong accumulation of RNA polymerase II at the intronic enhancer. Finally, we observe a strong anti-correlation between RNA polymerase II levels at enhancers and their distance to the closest promoter, and we identify candidate elements with properties similar to the intronic enhancer.


Assuntos
Elementos Facilitadores Genéticos , Fator 5 de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Murinas/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/genética , Animais , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Éxons , Fator 5 de Crescimento de Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histonas/genética , Histonas/metabolismo , Íntrons , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , RNA Polimerase II/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única , Transcrição Gênica , Proteína Vermelha Fluorescente
10.
Mol Cell ; 81(10): 2166-2182.e6, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33765415

RESUMO

The metazoan-specific acetyltransferase p300/CBP is involved in activating signal-induced, enhancer-mediated transcription of cell-type-specific genes. However, the global kinetics and mechanisms of p300/CBP activity-dependent transcription activation remain poorly understood. We performed genome-wide, time-resolved analyses to show that enhancers and super-enhancers are dynamically activated through p300/CBP-catalyzed acetylation, deactivated by the opposing deacetylase activity, and kinetic acetylation directly contributes to maintaining cell identity at very rapid (minutes) timescales. The acetyltransferase activity is dispensable for the recruitment of p300/CBP and transcription factors but essential for promoting the recruitment of TFIID and RNAPII at virtually all enhancers and enhancer-regulated genes. This identifies pre-initiation complex assembly as a dynamically controlled step in the transcription cycle and reveals p300/CBP-catalyzed acetylation as the signal that specifically promotes transcription initiation at enhancer-regulated genes. We propose that p300/CBP activity uses a "recruit-and-release" mechanism to simultaneously promote RNAPII recruitment and pause release and thereby enables kinetic activation of enhancer-mediated transcription.


Assuntos
Elementos Facilitadores Genéticos , RNA Polimerase II/metabolismo , Iniciação da Transcrição Genética , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Animais , Biocatálise , Cromatina/metabolismo , Regulação para Baixo/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Camundongos , Modelos Biológicos , Proteínas Nucleares/metabolismo , Ligação Proteica , Fator de Transcrição TFIID/metabolismo , Fatores de Transcrição/metabolismo
11.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38994775

RESUMO

Super-enhancers (SEs) are expansive regions of genomic DNA that regulate the expression of genes involved in cell identity and cell fate. We recently identified developmental stage- and cell type-specific modules within the murine Vsx2 SE. Here, we show that the human VSX2 SE modules have similar developmental stage- and cell type-specific activity in reporter gene assays. By inserting the human sequence of one VSX2 SE module into a mouse with microphthalmia, eye size was rescued. To understand the function of these SE modules during human retinal development, we deleted individual modules in human embryonic stem cells and generated retinal organoids. Deleting one module results in small organoids, recapitulating the small-eyed phenotype of mice with microphthalmia, while deletion of the other module led to disruptions in bipolar neuron development. This prototypical SE serves as a model for understanding developmental stage- and cell type-specific effects of neurogenic transcription factors with complex expression patterns. Moreover, by elucidating the gene regulatory mechanisms, we can begin to examine how dysregulation of these mechanisms contributes to phenotypic diversity and disease.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio , Retina , Fatores de Transcrição , Animais , Humanos , Camundongos , Elementos Facilitadores Genéticos/genética , Evolução Molecular , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Microftalmia/genética , Microftalmia/patologia , Neurogênese/genética , Organoides/metabolismo , Retina/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
12.
Proc Natl Acad Sci U S A ; 121(29): e2401834121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38976739

RESUMO

Lung adenocarcinoma (LUAD) is the leading cause of cancer-related death worldwide, but the underlying molecular mechanisms remain largely unclear. The transcription factor (TF) specificity protein 1 (SP1) plays a crucial role in the development of various cancers, including LUAD. Recent studies have indicated that master TFs may form phase-separated macromolecular condensates to promote super-enhancer (SE) assembly and oncogene expression. In this study, we demonstrated that SP1 undergoes phase separation and that its zinc finger 3 in the DNA-binding domain is essential for this process. Through Cleavage Under Targets & Release Using Nuclease (CUT&RUN) using antibodies against SP1 and H3K27ac, we found a significant correlation between SP1 enrichment and SE elements, identified the regulator of the G protein signaling 20 (RGS20) gene as the most likely target regulated by SP1 through SE mechanisms, and verified this finding using different approaches. The oncogenic activity of SP1 relies on its phase separation ability and RGS20 gene activation, which can be abolished by glycogen synthase kinase J4 (GSK-J4), a demethylase inhibitor. Together, our findings provide evidence that SP1 regulates its target oncogene expression through phase separation and SE mechanisms, thereby promoting LUAD cell progression. This study also revealed an innovative target for LUAD therapies through intervening in SP1-mediated SE formation.


Assuntos
Adenocarcinoma de Pulmão , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Proteínas RGS , Fator de Transcrição Sp1 , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Humanos , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Proteínas RGS/metabolismo , Proteínas RGS/genética , Linhagem Celular Tumoral , Animais , Elementos Facilitadores Genéticos , Progressão da Doença , Camundongos , Separação de Fases
13.
Mol Cell ; 72(4): 636-649.e8, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30293785

RESUMO

Class switch recombination (CSR) is a DNA recombination reaction that diversifies the effector component of antibody responses. CSR is initiated by activation-induced cytidine deaminase (AID), which targets transcriptionally active immunoglobulin heavy chain (Igh) switch donor and acceptor DNA. The 3' Igh super-enhancer, 3' regulatory region (3'RR), is essential for acceptor region transcription, but how this function is regulated is unknown. Here, we identify the chromatin reader ZMYND8 as an essential regulator of the 3'RR. In B cells, ZMYND8 binds promoters and super-enhancers, including the Igh enhancers. ZMYND8 controls the 3'RR activity by modulating the enhancer transcriptional status. In its absence, there is increased 3'RR polymerase loading and decreased acceptor region transcription and CSR. In addition to CSR, ZMYND8 deficiency impairs somatic hypermutation (SHM) of Igh, which is also dependent on the 3'RR. Thus, ZMYND8 controls Igh diversification in mature B lymphocytes by regulating the activity of the 3' Igh super-enhancer.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Switching de Imunoglobulina/genética , Cadeias Pesadas de Imunoglobulinas/genética , Proteínas Supressoras de Tumor/genética , Animais , Linfócitos B , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , DNA/genética , Elementos Facilitadores Genéticos , Rearranjo Gênico , Humanos , Domínios MYND , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Hipermutação Somática de Imunoglobulina/genética , Proteínas Supressoras de Tumor/metabolismo
14.
Trends Genet ; 38(12): 1199-1203, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35803787

RESUMO

The heterogeneity of transcriptional regulations by super-enhancers (SEs) is poorly understood in human cancers. Herein, we summarize a bioinformatics workflow for genome-wide SE profiling and identification of subtype-specific SEs and regulatory networks. Dissecting SE heterogeneity provides new insights into cancer biology and alternative therapeutic strategies for cancer precision medicine.


Assuntos
Neoplasias , Sequências Reguladoras de Ácido Nucleico , Humanos , Neoplasias/genética , Biologia Computacional , Regulação da Expressão Gênica , Elementos Facilitadores Genéticos/genética
15.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36960780

RESUMO

The analysis of super-enhancers (SEs) has recently attracted attention in elucidating the molecular mechanisms of cancer and other diseases. SEs are genomic structures that strongly induce gene expression and have been reported to contribute to the overexpression of oncogenes. Because the analysis of SEs and integrated analysis with other data are performed using large amounts of genome-wide data, artificial intelligence technology, with machine learning at its core, has recently begun to be utilized. In promoting precision medicine, it is important to consider information from SEs in addition to genomic data; therefore, machine learning technology is expected to be introduced appropriately in terms of building a robust analysis platform with a high generalization performance. In this review, we explain the history and principles of SE, and the results of SE analysis using state-of-the-art machine learning and integrated analysis with other data are presented to provide a comprehensive understanding of the current status of SE analysis in the field of medical biology. Additionally, we compared the accuracy between existing machine learning methods on the benchmark dataset and attempted to explore the kind of data preprocessing and integration work needed to make the existing algorithms work on the benchmark dataset. Furthermore, we discuss the issues and future directions of current SE analysis.


Assuntos
Algoritmos , Inteligência Artificial , Aprendizado de Máquina , Genômica , Elementos Facilitadores Genéticos
16.
FASEB J ; 38(8): e23610, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38661000

RESUMO

Variants at the SLC30A8 locus are associated with type 2 diabetes (T2D) risk. The lead variant, rs13266634, encodes an amino acid change, Arg325Trp (R325W), at the C-terminus of the secretory granule-enriched zinc transporter, ZnT8. Although this protein-coding variant was previously thought to be the sole driver of T2D risk at this locus, recent studies have provided evidence for lowered expression of SLC30A8 mRNA in protective allele carriers. In the present study, we examined multiple variants that influence SLC30A8 allele-specific expression. Epigenomic mapping has previously identified an islet-selective enhancer cluster at the SLC30A8 locus, hosting multiple T2D risk and cASE associations, which is spatially associated with the SLC30A8 promoter and additional neighboring genes. Here, we show that deletion of variant-bearing enhancer regions using CRISPR-Cas9 in human-derived EndoC-ßH3 cells lowers the expression of SLC30A8 and several neighboring genes and improves glucose-stimulated insulin secretion. While downregulation of SLC30A8 had no effect on beta cell survival, loss of UTP23, RAD21, or MED30 markedly reduced cell viability. Although eQTL or cASE analyses in human islets did not support the association between these additional genes and diabetes risk, the transcriptional regulator JQ1 lowered the expression of multiple genes at the SLC30A8 locus and enhanced stimulated insulin secretion.


Assuntos
Diabetes Mellitus Tipo 2 , Elementos Facilitadores Genéticos , Células Secretoras de Insulina , Transportador 8 de Zinco , Humanos , Transportador 8 de Zinco/genética , Transportador 8 de Zinco/metabolismo , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Sobrevivência Celular/genética , Variação Genética , Insulina/metabolismo , Linhagem Celular
17.
EMBO Rep ; 24(2): e54977, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36416237

RESUMO

High-risk neuroblastoma patients have poor survival rates and require better therapeutic options. High expression of a multifunctional DNA and RNA-binding protein, NONO, in neuroblastoma is associated with poor patient outcome; however, there is little understanding of the mechanism of NONO-dependent oncogenic gene regulatory activity in neuroblastoma. Here, we used cell imaging, biochemical and genome-wide molecular analysis to reveal complex NONO-dependent regulation of gene expression. NONO forms RNA- and DNA-tethered condensates throughout the nucleus and undergoes phase separation in vitro, modulated by nucleic acid binding. CLIP analyses show that NONO mainly binds to the 5' end of pre-mRNAs and modulates pre-mRNA processing, dependent on its RNA-binding activity. NONO regulates super-enhancer-associated genes, including HAND2 and GATA2. Abrogating NONO RNA binding, or phase separation activity, results in decreased expression of HAND2 and GATA2. Thus, future development of agents that target RNA-binding activity of NONO may have therapeutic potential in this cancer context.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas de Ligação a DNA , Neuroblastoma , Humanos , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
18.
Mol Ther ; 32(3): 572-579, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38327048

RESUMO

Metabolic reprogramming is an essential hallmark of tumors, and metabolic abnormalities are strongly associated with the malignant phenotype of tumor cells. This is closely related to transcriptional dysregulation. Super-enhancers are extremely active cis-regulatory regions in the genome, and can amalgamate a complex set of transcriptional regulatory components that are crucial for establishing tumor cell identity, promoting tumorigenesis, and enhancing aggressiveness. In addition, alterations in metabolic signaling pathways are often accompanied by changes in super-enhancers. Presently, there is a surge in interest in the potential pathogenesis of various tumors through the transcriptional regulation of super-enhancers and oncogenic mutations in super-enhancers. In this review, we summarize the functions of super-enhancers, oncogenic signaling pathways, and tumor metabolic reprogramming. In particular, we focus on the role of the super-enhancer in tumor metabolism and its impact on metabolic reprogramming. This review also discusses the prospects and directions in the field of super-enhancer and metabolic reprogramming.


Assuntos
Reprogramação Metabólica , Neoplasias , Humanos , Elementos Facilitadores Genéticos , Neoplasias/genética , Neoplasias/terapia , Regulação da Expressão Gênica , Super Intensificadores
19.
Bioessays ; 45(10): e2200239, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37350339

RESUMO

The human and mouse genomes are complex from a genomic standpoint. Each cell has the same genomic sequence, yet a wide array of cell types exists due to the presence of a plethora of regulatory elements in the non-coding genome. Recent advances in epigenomic profiling have uncovered non-coding gene proximal promoters and distal enhancers of transcription genome-wide. Extension of promoter-associated H3K4me3 histone mark across the gene body, known as a broad H3K4me3 domain (H3K4me3-BD), is a signature of constitutive expression of cell-type-specific regulation and of tumour suppressor genes in healthy cells. Recently, it has been discovered that the presence of H3K4me3-BDs over oncogenes is a cancer-specific feature associated with their dysregulated gene expression and tumourigenesis. Moreover, it has been shown that the hijacking of clusters of enhancers, known as super-enhancers (SE), by proto-oncogenes results in the presence of H3K4me3-BDs over the gene body. Therefore, H3K4me3-BDs and SE crosstalk in healthy and cancer cells therefore represents an important mechanism to identify future treatments for patients with SE driven cancers.


Assuntos
Elementos Facilitadores Genéticos , Neoplasias , Humanos , Animais , Camundongos , Elementos Facilitadores Genéticos/genética , Histonas/genética , Histonas/metabolismo , Regiões Promotoras Genéticas/genética , Código das Histonas/genética , Neoplasias/genética
20.
Bioessays ; 45(10): e2300047, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37404089

RESUMO

Despite ever-increasing accumulation of genomic data, the fundamental question of how individual genes are switched on during development, lineage-specification and differentiation is not fully answered. It is widely accepted that this involves the interaction between at least three fundamental regulatory elements: enhancers, promoters and insulators. Enhancers contain transcription factor binding sites which are bound by transcription factors (TFs) and co-factors expressed during cell fate decisions and maintain imposed patterns of activation, at least in part, via their epigenetic modification. This information is transferred from enhancers to their cognate promoters often by coming into close physical proximity to form a 'transcriptional hub' containing a high concentration of TFs and co-factors. The mechanisms underlying these stages of transcriptional activation are not fully explained. This review focuses on how enhancers and promoters are activated during differentiation and how multiple enhancers work together to regulate gene expression. We illustrate the currently understood principles of how mammalian enhancers work and how they may be perturbed in enhanceropathies using expression of the α-globin gene cluster during erythropoiesis, as a model.


Assuntos
Elementos Facilitadores Genéticos , alfa-Globinas , Animais , Elementos Facilitadores Genéticos/genética , alfa-Globinas/genética , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas/genética , Biologia , Mamíferos/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa