Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mater Lett ; 244: 203-206, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31871366

RESUMO

In this study, the effect of grain size and precipitates on tensile properties of Zn-1.0Cu alloy were investigated. The alloy was cold rolled and annealed to manipulate the grain size and precipitation of CuZn4 particles at grain boundaries. Cold rolling resulted in an almost ultrafinegrained structure alongside precipitation of nano-sized CuZn4 particles. Strain induced precipitates triggered room temperature superplasticity through activation of Zn/CuZn4 boundary sliding, exhibiting maximum elongation of 470% at the strain rate of 1.0 × 10-4 s-1. Short-time annealing led to significantly reduced strain rate sensitivity due to the reduction of CuZn4 fraction, while the grain size remained nearly intact. This suggests that precipitates rather than grain size mainly influence the mechanical properties of Zn alloys.

2.
Nano Lett ; 18(4): 2492-2497, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29489376

RESUMO

Effective protection from environmental degradation relies on the integrity of oxide as diffusion barriers. Ideally, the passivation layer can repair its own breaches quickly under deformation. While studies suggest that the native aluminum oxide may manifest such properties, it has yet to be experimentally proven because direct observations of the air-environmental deformation of aluminum oxide and its initial formation at room temperature are challenging. Here, we report in situ experiments to stretch pure aluminum nanotips under O2 gas environments in a transmission electron microscope (TEM). We discovered that aluminum oxide indeed deforms like liquid and can match the deformation of Al without any cracks/spallation at moderate strain rate. At higher strain rate, we exposed fresh metal surface, and visualized the self-healing process of aluminum oxide at atomic resolution. Unlike traditional thin-film growth or nanoglass consolidation processes, we observe seamless coalescence of new oxide islands without forming any glass-glass interface or surface grooves, indicating greatly accelerated glass kinetics at the surface compared to the bulk.

3.
Materials (Basel) ; 17(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38998392

RESUMO

The last two decades have witnessed significant progress in the development of severe plastic deformation techniques to produce ultrafine-grained materials with new and superior properties. This review examines works and achievements related to the low-temperature superplasticity of ultrafine-grained aluminum alloys. The examples are provided of the possibility to observe low-temperature superplasticity in aluminum alloys at temperatures less than 0.5 Tmelt and even at room temperature, and herein, we demonstrate the cases of achieving high ductility and high strength in aluminum alloys from processing utilizing severe plastic deformation. Special emphasis is placed on recent studies of the formation of segregations of alloying elements at grain boundaries in UFG Al alloys and their influence on the development of grain boundary sliding and manifestation of low-temperature superplasticity. In addition, the current status and innovative potential of low-temperature superplasticity in aluminum alloys are observed.

4.
Materials (Basel) ; 17(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38591455

RESUMO

A homogenized, supersaturated AlZnMgZr alloy was processed via severe plastic deformation (SPD) using a high-pressure torsion (HPT) technique for different revolutions at room temperature to obtain an ultrafine-grained (UFG) microstructure. The microstructure and mechanical properties of the UFG samples were then studied using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and tensile and hardness measurements. The main purpose was to study the effect of shear strain on the evolution of the microstructure of the investigated alloy. We found a very interesting evolution of the decomposed microstructure in a wide range of shear strains imposed by HPT. While the global properties, such as the average grain size (~200 nm) and hardness (~2200 MPa) appeared unchanged, the local microstructure was continuously transformed. After 1 turn of HPT, the decomposed UFG structure contained relatively large precipitates inside grains. In the sample processed by five turns in HPT, the segregation of Zn atoms into grain boundaries (GBs) was also observed. After 10 turns, more Zn atoms were segregated into GBs and only smaller-sized precipitates were observed inside grains. The intensive solute segregations into GBs may significantly affect the ductility of the material, leading to its ultralow-temperature superplasticity. Our findings pave the way for achieving advanced microstructural and mechanical properties in nanostructured metals and alloys by engineering their precipitation and segregation by means of applying different HPT regimes.

5.
Materials (Basel) ; 16(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614782

RESUMO

This study focused on the microstructural analysis, superplasticity, modeling of superplastic deformation behavior, and superplastic forming tests of the Al-Mg-Si-Cu-based alloy modified with Fe, Ni, Sc, and Zr. The effect of the thermomechanical treatment with various proportions of hot/cold rolling degrees on the secondary particle distribution and deformation behavior was studied. The increase in hot rolling degree increased the homogeneity of the particle distribution in the aluminum-based solid solution that improved superplastic properties, providing an elongation of ~470-500% at increased strain rates of (0.5-1) × 10-2 s-1. A constitutive model based on Arrhenius and Beckofen equations was used to describe and predict the superplastic flow behavior of the alloy studied. Model complex-shaped parts were processed by superplastic forming at two strain rates. The proposed strain rate of 1 × 10-2 s-1 provided a low thickness variation and a high quality of the experimental parts. The residual cavitation after superplastic forming was also large at the low strain rate of 2 × 10-3 s-1 and significantly smaller at 1 × 10-2 s-1. Coarse Al9FeNi particles did not stimulate the cavitation process and were effective to provide the superplasticity of alloys studied at high strain rates, whereas cavities were predominately observed near coarse Mg2Si particles, which act as nucleation places for cavities during superplastic deformation and forming.

6.
Materials (Basel) ; 16(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36676462

RESUMO

This study aims to achieve an ultrafine-grained (UFG) Al 2024 alloy superplasticity at temperatures lower than the traditional ones for commercial Al alloys (400-500 °C). The UFG structure with a mean grain size of 100 nm produced in the alloy by high-pressure torsion at room temperature provided a very high strength-microhardness (HV0.1) of 286 ± 4, offset yield strength (σ0.2) of 828 ± 9 MPa, and ultimate tensile strength (σUTS) of 871 ± 6 MPa at elongation to failure (δ) of 7 ± 0.2%. Complex tensile tests were performed at temperatures from 190 to 270 °C and strain rates from 10-2 to 5 × 10-5 s-1, and the values of flow stress, total elongation and strain rate-sensitivity coefficient were determined. The UFG alloy was shown to exhibit superplastic behavior at test temperatures of 240 and 270 °C. For the first time, 400% elongation was achieved in the alloy at an unusually low temperature of 270 °C (0.56 Tm) and strain rate of 10-3 s-1. The UFG 2024 alloy after superplastic deformation was found to have higher strength (150-160 HV) than that after the standard strengthening heat treatment T6.

7.
Adv Sci (Weinh) ; 10(12): e2207535, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36802138

RESUMO

Superplastic metals that exhibit exceptional ductility (>300%) are appealing for use in high-quality engineering components with complex shapes. However, the wide application of most superplastic alloys has been constrained due to their poor strength, the relatively long superplastic deformation period, and the complex and high-cost grain refinement processes. Here these issues are addressed by the coarse-grained superplasticity of high-strength lightweight medium entropy alloy (Ti43.3 V28 Zr14 Nb14 Mo0.7 , at.%) with a microstructure of ultrafine particles embedded in the body-centered-cubic matrix. The results demonstrate that the alloy reached a high coarse-grained superplasticity greater than ≈440% at a high strain rate of 10-2 s-1 at 1173 K and with a gigapascal residual strength. A consecutively triggered deformation mechanism that sequences of dislocation slip, dynamic recrystallization, and grain boundary sliding in such alloy differs from conventional grain-boundary sliding in fine-grained materials. The present results open a pathway for highly efficient superplastic forming, broaden superplastic materials to the high-strength field, and guide the development of new alloys.

8.
Materials (Basel) ; 16(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37241341

RESUMO

The decrease of superplastic forming temperature and improvement of post-forming mechanical properties are important issues for titanium-based alloys. Ultrafine-grained and homogeneous microstructure are required to improve both processing and mechanical properties. This study focuses on the influence of 0.01-2 wt.% B (boron) on the microstructure and properties of Ti-4Al-3Mo-1V (wt.%) alloys. The microstructure evolution, superplasticity, and room temperature mechanical properties of boron-free and boron-modified alloys were investigated using light optical microscopy, scanning electron microscopy, electron backscatter diffraction, X-ray diffraction analysis, and uniaxial tensile tests. A trace addition of 0.01 to 0.1 wt.% B significantly refined prior ß-grains and improved superplasticity. Alloys with minor B and B-free alloy exhibited similar superplastic elongations of 400-1000% in a temperature range of 700-875 °C and strain rate sensitivity coefficient m of 0.4-0.5. Along with this, a trace boron addition provided a stable flow and effectively reduced flow stress values, especially at low temperatures, that was explained by the acceleration of the recrystallization and globularization of the microstructure at the initial stage of superplastic deformation. Recrystallization-induced decrease in yield strength from 770 MPa to 680 MPa was observed with an increase in boron content from 0 to 0.1%. Post-forming heat treatment, including quenching and ageing, increased strength characteristics of the alloys with 0.01 and 0.1% boron by 90-140 MPa and insignificantly decreased ductility. Alloys with 1-2% B exhibited an opposite behavior. For the high-boron alloys, the refinement effect of the prior ß-grains was not detected. A high fraction of borides of ~5-11% deteriorated the superplastic properties and drastically decreased ductility at room temperature. The alloy with 2% B demonstrated non-superplastic behavior and low level of strength properties; meanwhile, the alloy with 1% B exhibited superplasticity at 875 °C with elongation of ~500%, post-forming yield strength of 830 MPa, and ultimate tensile strength of 1020 MPa at room temperature. The differences between minor boron and high boron influence on the grain structure and properties were discussed and the mechanisms of the boron influence were suggested.

9.
Materials (Basel) ; 16(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36984225

RESUMO

Magnesium-lithium alloy is the lightest alloy to date. To explore its room temperature strength and high-temperature ductility, a plate of a new fine-grained Mg-9.13Li-3.74Al-0.31Sr-0.11Y alloy was fabricated by asymmetric rolling, and the rolled plate was subjected to friction stir processing (FSP). The microstructure and mechanical properties at room and elevated temperatures were investigated by optical microscopy, X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and tensile tester. Grain refinement with an average grain size in the α-Mg phase of 1.65 µm and an average grain size in the ß-Li phase of 4.24 µm was achieved in the water-cooled FSP alloy. For room temperature behavior, the ultimate tensile strength of 208 ± 4 MPa, yield strength of 193 ± 2 MPa, and elongation of 48.2% were obtained in the water-cooled FSP alloy. XRD and EDS analyses revealed that the present alloy consists of α-Mg and ß-Li phases, Al2Y, Al4Sr, MgLi2Al, and AlLi intermetallic compounds. For high-temperature behavior, the maximum superplasticity or ductility of 416% was demonstrated in this fine-grained alloy with an average grain size of 10 µm at 573 K and 1.67 × 10-3 s-1. A power-law constitutive equation was established. The stress exponent was 2.29 (≈2) (strain rate sensitivity 0.44), and the deformation activation energy was 162.02 kJ/mol. This evidence confirmed that the dominant deformation mechanism at elevated temperatures is grain boundary and interphase boundary sliding controlled by lattice diffusion.

10.
Materials (Basel) ; 16(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36837067

RESUMO

In this paper, the superplastic behavior of the two-phase titanium alloy VT6 with an ultrafine-grained (UFG) structure produced by equal-channel angular pressing is examined. The deformation of specimens with a UFG structure was performed by upsetting in a temperature range of 650-750 °C and strain rate range of 1 × 10-4-5 × 10-1 s-1. Under these conditions, an increased strain-rate sensitivity coefficient m was observed. The calculation of apparent activation energy showed values in a range of 160-200 kJ/mol while the superplastic flow of the VT6 alloy was occurring. When superplastic behavior (SPB) was impeded, the energy Q grew considerably, indicating a change in mechanism from grain-boundary sliding (GBS) to bulk diffusion. A change in temperature and strain rate influenced the development of superplastic flow and the balance of relaxation processes. Microstructural analysis shows that the UFG state is preserved at upsetting temperatures of 650 and 700 °C. A decrease in strain rate and/or an increase in upsetting temperature promoted a more active development of recrystallization and grain growth, as well as α2-phase formation. In a certain temperature and strain-rate range of the UFG VT6 alloy, α2-phase plates were found, the formation of which was controlled by diffusion. The effect of the α2-phase on the alloy's mechanical behavior is discussed.

11.
Materials (Basel) ; 15(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36234327

RESUMO

The paper reports on the features of low-temperature superplasticity of the heat-treatable aluminum Al-Mg-Si alloy in the ultrafine-grained state at temperatures below 0.5 times the melting point as well as on its post-deformation microstructure and tensile strength. We show that the refined microstructure is retained after superplastic deformation in the range of deformation temperatures of 120-180 °C and strain rates of 5 × 10-3 s-1-10-4 s-1. In the absence of noticeable grain growth, the ultrafine-grained alloy maintains the strength up to 380 MPa after SP deformation, which considerably exceeds the value (250 MPa) for the alloy in the peak-aged coarse-grain state. This finding opens pathways to form high-strength articles of Al-Mg-Si alloys after superplastic forming.

12.
Materials (Basel) ; 15(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269039

RESUMO

The superplastic tensile test was carried out on SP700 (Ti-4.5Al-3V-2Mo-2Fe) titanium alloy sheet at 760 °C by the method of maximum m value, and the microstructure characteristics were investigated to understand the deformation mechanism. The results indicated that the examined alloy showed an extremely fine grain size of ~1.3 µm and an excellent superplasticity with fracture elongation of up to 3000%. The grain size and the volume fraction of the ß phase increased as the strain increased, accompanied by the elements' diffusion. The ß-stabilizing elements (Mo, Fe, and V) were mainly dissolved within the ß phase and diffused from α to ß phase furthermore during deformation. The increase in strain leads to the accumulation of dislocations, which results in the increase in the proportion of low angle grain boundaries by 15%. As the deformation process, the crystal of α grains rotated, and the texture changed, accompanied by the accumulation of dislocations. The phase boundary (α/ß) sliding accommodated by dislocation slip was the predominant mechanism for SP700 alloy during superplastic deformation.

13.
Materials (Basel) ; 15(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35207936

RESUMO

The superplastic behavior of alumina-based nanostructured ceramics (Al2O3) is an important issue in the world of materials. The main body of this paper is an analysis of the creep behavior of polycrystals, with grain boundary sliding as the main deformation mechanism at high temperatures. Concomitant accommodation of grain shapes to preserve spatial continuity has a comparatively small effect on the strain rate. The constitutive equations for small deformations, relating strain and strain rate, derived from two models for grain sliding, are compared with the experimental data with their respective uncertainties. The data follow from experiments on the plastic deformation of alumina composites reinforced, on the one hand by graphene oxide, and on the other hand by carbon nanofibers sintered by SPS. The results show good agreement between experiment and theory for these advanced ceramics, particularly for one of the assumed models. The values obtained of ξ2 for model A were in the interval 0.0002-0.1189, and for model B were in the interval 0.000001-0.0561. The values obtained of R2 for model A were in the interval 0.9122-0.9994, and for model B were in the interval 0.9586-0.9999. The threshold stress was between (3.05 · 10-15-25.68) MPa.

14.
Materials (Basel) ; 15(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36363136

RESUMO

To explore new approaches to severe plastic deformation and the ductility of a multicomponent magnesium-lithium alloy, an ultralight microduplex Mg-9.55Li-2.92Al-0.027Y-0.026Mn alloy was made by novel multidirectional forging and asymmetrical rolling, and the superplasticity behavior was investigated by optical microscope, hot tensile test, and modeling. The average grain size is 1.9 µm in this alloy after multidirectional forging and asymmetrical rolling. Remarkable grain refinement caused by such a forming, which turns the as-cast grain size of 144.68 µm into the as-rolled grain size of 1.9 µm, is achieved. The elongation to failure of 228.05% is obtained at 523 K and 1 × 10-2 s-1, which demonstrates the high strain rate quasi-superplasticity. The maximum elongation to failure of 287.12% was achieved in this alloy at 573 K and 5 × 10-4 s-1. It was found that strain-induced grain coarsening at 523 K is much weaker than the strain-induced grain coarsening at 573 K. Thus, the ductility of 228.05% is suitable for application in high strain rate superplastic forming. The stress exponent of 3 and the average activation energy for deformation of 50.06 kJ/mol indicate that the rate-controlling deformation mechanism is dislocation-glide controlled by pipe diffusion.

15.
Materials (Basel) ; 15(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35160830

RESUMO

The tensile behavior of Sn-Bi-Cu and Sn-Bi-Ni alloys has been widely investigated. Reportedly, the addition of small amounts of a third element can refine the microstructures of the eutectic Sn-58mass% Bi solder and improve its ductility. However, the superplasticity mechanism of Sn-based alloys has not been clearly established. Therefore, in this study, the effects of Sb and Zn addition on the microstructures and tensile properties of Sn-Bi-based alloys were investigated. The alloys were subjected to tensile tests under various strain rates and temperatures. We found that Zn- and Sb-added Sn-Bi-based alloys demonstrated superplastic deformation at high temperatures and low strain rates. Sb addition significantly affected the elongation of the Sn-Bi-Sb alloys because the metal dissolves in both the primary Sn phase and the eutectic Sn-Bi matrix. The segregation of Zn and formation of needle-like Zn particles at the eutectic Sn-Bi phase boundary affected the superplastic deformation of the alloys. The deformation of the Sn-40Bi-based alloys at high temperatures and low strain rates led to dynamic recovery, dynamic recrystallization, and/or grain boundary slip because of the accumulation of voids.

16.
Materials (Basel) ; 14(4)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33672859

RESUMO

The present study focuses on the effect of 1% Zr addition on the microstructure, tensile properties and superplasticity of a forged SP700 alloy. The results demonstrated that Zr has a significant effect on inhibiting the microstructural segregation and increasing the volume fraction of ß-phase in the forged SP700 alloy. After annealing at 820 °C for 1 h and aging at 500 °C for 6 h, the SP700 alloy with 1% Zr showed a completely globular and fine microstructure. The yield strength, ultimate tensile strength and tensile elongation of the alloy with optimized microstructure were 1185 MPa, 1296 MPa and 10%, respectively. The superplastic deformation was performed at 750 °C with an elongation of 1248%. The improvement of tensile properties and superplasticity of the forged SP700 alloy by Zr addition was mainly attributed to the uniform and fine globular microstructures.

17.
Materials (Basel) ; 14(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201474

RESUMO

High plasticity of bioabsorbable stents, either cardiac or ureteral, is of great importance in terms of implants' fabrication and positioning. Zn-Cu constitutes a promising group of materials in terms of feasible deformation since the superplastic effect has been observed in them, yet its origin remains poorly understood. Therefore, it is crucial to inspect the microstructural evolution of processed material to gain an insight into the mechanisms leading to such an extraordinary property. Within the present study, cold-rolled Zn-Cu alloys, i.e., Zn with addition of 1 wt.% and 5 wt.% of Cu, have been extensively investigated using scanning electron microscopy as well as transmission electron microscopy, so as to find out the possible explanation of superior plasticity of the Zn-Cu alloys. It has been stated that the continuous dynamic recrystallization has a tremendous impact on superior plasticity reported for Zn-1Cu alloy processed by rolling to 90% of reduction rate. The effect might be supported by static recrystallization, provoking grain growth and thereby yielding non-homogeneous microstructures. Such heterogeneous microstructure enables better formability since it increases the mean free path for dislocation movement.

18.
Materials (Basel) ; 14(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34772094

RESUMO

Designers' efforts to use the lightest possible materials with very good mechanical properties mean that in recent years magnesium alloys have been increasingly used. It is well-known that the use of various plastic working processes allows achieving even better strength properties of the material, often without significant loss of plastic properties in relation to the properties of products obtained in the casting process. The article presents the results of research on microstructural changes and mechanical properties of the alloy AZ91 (MgAl9Zn1) occurring in samples subjected to conventional plastic deformation and the KOBO method. The obtained results were compared to the properties of reference samples, i.e., cast samples. The article presents the advantage of using the low-temperature KOBO method compared to the high-temperature deformation in a conventional manner. Moreover, it has been shown that the use of KOBO extrusion allows the alloy AZ91 (MgAl9Zn1) to obtain superplasticity properties with an elongation of up to 577% compared to the cast reference sample, which is generally classified as difficult for plastic deformation.

19.
Nanomaterials (Basel) ; 11(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34443940

RESUMO

High strength and ductility, often mutually exclusive properties of a structural material, are also responsible for damage tolerance. At low temperatures, due to high surface energy, single element metallic nanowires such as Ag usually transform into a more preferred phase via nucleation and propagation of partial dislocation through the nanowire, enabling superplasticity. In high entropy alloy (HEA) CoNiCrFeMn nanowires, the motion of the partial dislocation is hindered by the friction due to difference in the lattice parameter of the constituent atoms which is responsible for the hardening and lowering the ductility. In this study, we have examined the temperature-dependent superplasticity of single component Ag and multicomponent CoNiCrFeMn HEA nanowires using molecular dynamics simulations. The results demonstrate that Ag nanowires exhibit apparent temperature-dependent superplasticity at cryogenic temperature due to (110) to (100) cross-section reorientation behavior. Interestingly, HEA nanowires can perform exceptional strength-ductility trade-offs at cryogenic temperatures. Even at high temperatures, HEA nanowires can still maintain good flow stress and ductility prior to failure. Mechanical properties of HEA nanowires are better than Ag nanowires due to synergistic interactions of deformation twinning, FCC-HCP phase transformation, and the special reorientation of the cross-section. Further examination reveals that simultaneous activation of twining induced plasticity and transformation induced plasticity are responsible for the plasticity at different stages and temperatures. These findings could be very useful for designing nanowires at different temperatures with high stability and superior mechanical properties in the semiconductor industry.

20.
Exploration (Beijing) ; 1(2): 20210021, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37323211

RESUMO

Applications for metal-organic frameworks (MOFs) demand their assembly into three-dimensional (3D) macroscopic architectures. The capability of sustaining structural integrity with considerable deformation is important to allow a monolithic material to work reliably. Nevertheless, it remains a significant challenge to introduce superplasticity in 3D MOF networks. Here, we report a general procedure for synthesizing 3D superplastic MOF aerogels inspired by the hierarchical architecture of natural corks. The resultant MOFs exhibited excellent superplasticity that can recover fully and rapidly to its original dimension after 50% strain compression and unloading for >2000 cycles. The 3D superplastic architecture is achieved by successively assembling one-dimensional (1D) to two-dimensional (2D) and then 3D, in a variety of MOFs with different transition metal active sites (Co-, NiMn-, NiCo-, NiCoMn-) and organic ligands (2-thiophenecarboxylic acid and glutaric acid). Latent applications have been demonstrated for NiMn-MOF aerogels to serve as a new generation of flexible electrocatalysts for hydrogen evolution reaction (HER) from seawater splitting, which requires a low overpotential of 243 mV to achieve a current density of 10 mA·cm-2. Notably, the electrocatalyst remains stable even being deformed, as the overpotential to achieve a current density of 10 mA·cm-2 increases slightly to 270, 264, and 258 mV after one-, two-, and threefold, respectively. In great contrast, traditional MOF powder-electrodes demonstrate significant activity decay under similar conditions. This work opens up enormous opportunities for exploring new applications of MOFs in a freestanding, structurally adaptive, and macroscopic form.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa