Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
J Environ Manage ; 353: 120113, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38286069

RESUMO

The growing incidence of urban flood disasters poses a major challenge to urban sustainability in China. Previous studies have reported that climate change and urbanization exacerbate urban flood risk in some major cities of China. However, few assessments have quantified the contributions of these two factors to urban flood changes in recent decades at the nationwide scale. Here, surface runoff caused by precipitation extremes was used as the urban flood hazard to evaluate the impacts of climate change and urbanization in China's 293 major cities. This study assessed the contributions of these drivers to urban flood hazard changes and identified the hotspot cities with increased trends under both factors during the past four decades (1980-2019). The results showed that approximately 70% of the cities analyzed have seen an increase of urban flood hazard in the latest decade. Urbanization made a positive contribution to increased urban flood hazards in more than 90% of the cities. The contribution direction of climate change showed significant variations across China. Overall, the absolute contribution rate of climate change far outweighed that of urbanization. In half of the cities (mainly distributed in eastern China), both climate change and urbanization led to increased urban flood hazard over the past decade. Among them, 33 cities have suffered a consecutive increase in urban flood hazard driven by both factors.


Assuntos
Inundações , Urbanização , Cidades , Mudança Climática , Crescimento Sustentável , China
2.
J Environ Manage ; 363: 121438, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38861885

RESUMO

The ubiquitous nature and environmental impacts of microplastic particles and fibers demand effective solutions to remove such micropollutants from sizable point sources, including wastewater treatment plants and road runoff facilities. While advanced methods, e.g., microfiltration and ultrafiltration, have shown high removal efficiencies of small-sized microplastics (<150 µm), the low flux encountered in these systems implies high operation costs and makes them less effective in high-capacity wastewater facilities. The issue presents new opportunities for developing cheap high-flux membrane systems, deployable in low-to high-income economies, to remove small-sized microplastic and nanoplastics in wastewater. Here, we report on developing an ultra-high flux gravity-driven fabric membrane system, assessed through a laboratory-scale filtration and large-scale performance in an actual wastewater treatment plant (WWTP). The method followed a carefully designed water sampling, pre-treatment protocol, and analytical measurements involving Fourier transform infrared (FTIR) spectroscopy and laser direct infrared (LDIR) imaging. The result shows that the ultra-high flux (permeance = 550,000 L/m2h⋅bar) fabric membrane system can effectively remove small-sized microplastics (10-300 µm) in the secondary effluent of an actual WWTP at high efficiency greater than 96 %. The pilot system demonstrated a continuous treatment capacity of 300,000 L/day through a 1 m2 surface area disc, with steady removal rates of microplastics. These findings demonstrate the practical, cheap, and sustainable removal of small-sized microplastics in wastewater treatment plants, and their potential value for other large-scale point sources, e.g., stormwater treatment facilities.


Assuntos
Microplásticos , Eliminação de Resíduos Líquidos , Águas Residuárias , Microplásticos/análise , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Membranas Artificiais , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Filtração , Gravitação
3.
J Environ Manage ; 368: 122110, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39116813

RESUMO

Managing diffuse pollution from agricultural land requires a spatially explicit risk assessment that can be applied over large areas. Major components of such assessments are the precise definition of both channel networks that often originate as small channels and streams, and Hydrologically Sensitive Areas (HSAs) of storm runoff that occur on land surfaces. Challenges relate to regions of complex topography and land use patterns, particularly those which have been heavily modified by arterial drainage. In this study, a national scale, transferrable workflow and analysis were developed using a specifically commissioned LiDAR survey. Research on the first half of Northern Ireland (6927 km2) is reported where field-edge drain to major river channels were mapped from 1 m (16 points per metre) digital terrain models, and in-field HSAs were defined across over 400,000 fields with a median field size of 0.86 ha. Manual drainage mapping supplemented with a novel automated drainage channel correction process resulted in an unparalleled high-resolution national drainage network with 37,320 km of channels, increasing mapped channel density from 0.9 km km-2 to 5.5 km km-2. The HSAs were based on a Soil Topographic Index (STI) system using hillslope and contributing area models combined with soil hydraulic characteristics. In all, 249 km2 of runoff risk HSAs were identified by extracting the top 95th percentile of the modelled STI as the areas with the highest propensity to generate in-field runoff. At field and individual farm scale these targeted risk maps of diffuse pollution were delivered to over 13,000 farmers and form part of the nationwide Soil Nutrient Health Scheme programme.

4.
J Environ Manage ; 362: 121284, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838538

RESUMO

Future changes in land use/land cover (LULC) and climate (CC) affect watershed hydrology. Despite past research on estimating such changes, studies on the impacts of both these nonstationary stressors on urban watersheds have been limited. Urban watersheds have several important details such as hydraulic infrastructure that call for fine-scale models to predict the impacts of LULC and CC on watershed hydrology. In this paper, a fine-scale hydrologic model-Personal Computer Storm Water Management Model (PCSWMM)-was applied to predict the individual and joint impacts of LULC changes and CC on surface runoff attributes (peak and volume) in 3800 urban subwatersheds in Midwest Florida. The subwatersheds a range of characteristics in terms of drainage area, surface imperviousness, ground slope and LULC distribution. The PCSWMM also represented several hydraulic structures (e.g., ponds and pipes) across the subwatersheds. We analyzed changes in the runoff attributes to determine which stressor is most responsible for the changes and what subwatersheds are mostly sensitive to such changes. Six 24-h design rainfall events (5- to 200-year recurrence intervals) were studied under historical (2010) and future (year 2070) climate and LULC. We evaluated the response of the subwatersheds in terms of runoff peak and volume to the design rainfall events using the PCSWMM. The results indicated that, overall, CC has a greater impact on the runoff attributes than LULC change. We also found that LULC and climate induced changes in runoff are generally more pronounced in greater recurrence intervals and subwatersheds with smaller drainage areas and milder slopes. However, no relationship was found between the changes in runoff and original subwatershed imperviousness; this can be due to the small increase in urban land cover projected for the study area. This research helps urban planners and floodplain managers identify the required strategies to protect urban watersheds against future LULC change and CC.


Assuntos
Hidrologia , Florida , Mudança Climática , Modelos Teóricos , Movimentos da Água , Clima , Chuva
5.
Water Sci Technol ; 89(8): 2164-2176, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38678416

RESUMO

To assess the viability and effectiveness of bioretention cell in enhancing rainwater resource utilization within sponge cities, this study employs field monitoring, laboratory testing, and statistical analysis to evaluate the water purification capabilities of bioretention cell. Findings indicate a marked purification impact on surface runoff, with removal efficiencies of 59.81% for suspended solids (SS), 39.01% for chemical oxygen demand (COD), 37.53% for ammonia nitrogen (NH3-N), and 30.49% for total phosphorus (TP). The treated water largely complies with rainwater reuse guidelines and tertiary sewage discharge standards. Notably, while previous research in China has emphasized water volume control in sponge city infrastructures, less attention has been given to the qualitative aspects and field-based evaluations. This research not only fills that gap but also offers valuable insights and practical implications for bioretention cell integration into sponge city development. Moreover, the methodology and outcomes of this study serve as a benchmark for future sponge city project assessments, offering guidance to relevant authorities.


Assuntos
Cidades , Análise da Demanda Biológica de Oxigênio , China , Fósforo/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Purificação da Água/métodos
6.
Environ Monit Assess ; 196(6): 532, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727964

RESUMO

WetSpass-M model and multi-technique baseflow separation (MTBS) were applied to estimate spatio-temporal groundwater recharge (GWR) to be used to comprehend and enhance sustainable water resource development in the data-scarce region. Identification of unit Hydrographs And Component flows from Rainfall, Evaporation, and Streamflow (IHACRES) techniques outperform the existing 13 MTBS techniques to separate baseflow depending on the correlation matrix; mean baseflow was 5.128 m3/s. The WetSpass-M model performance evaluated by Nash-Sutcliff Efficiency (NSE) was 0.95 and 0.89; R2 was 0.90 and 0.85 in comparison to observed and simulated mean monthly baseflow and runoff (m3/s), respectively. The estimated mean annual water balance was 608.2 mm for actual evapotranspiration, 221.42 mm for the surface runoff, 87.42 mm for interception rate, and 177.66 mm for GWR, with an error of - 3.29 mm/year. The highest annual actual evapotranspiration was depicted in areas covered by vegetation, whereas lower in the settlement. The peak annual interception rates have been noticed in areas covered with forests and shrublands, whereas the lowest in settlement and bare land. The maximum annual runoff was depicted in settlement and bare land, while the lowest was in forest-covered areas. The annual recharge rates were low in bare land due to high runoff and maximum in forest-covered areas due to low surface runoff. The watershed's downstream areas receive scanty annual rainfall, which causes low recharge and drought. The findings point the way ahead in terms of selecting the best approach across multi-technique baseflow separations.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Movimentos da Água , Água Subterrânea/química , Etiópia , Monitoramento Ambiental/métodos , Chuva , Modelos Teóricos , Abastecimento de Água/estatística & dados numéricos , Hidrologia
7.
Ecotoxicol Environ Saf ; 268: 115728, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38000303

RESUMO

Phosphorus and nitrogen pollution from agricultural nonpoint sources heavily burden the water environment, and a scientific calculating system is needed to calculate the pollutant loads under the water pollution treatment. This study established a system to calculate the coefficients of agricultural nonpoint source pollutants into water bodies in the subregion in Poyang Lake basin in the middle reach of the Yangtze River combining with multiple driving factors. Validation results showed that the errors of the typical unit were 30.58% for total phosphorus (TP), 13.43% for total nitrogen (TN) and 33.93% for ammonia nitrogen (NH3-N), respectively. The errors of the subregion were 26.92% for TP, 31.83% for TN and 29.15% for NH3-N, respectively. Besides, there were higher TP and TN loads in the east area of subregion in both units and county scales, which indicated the heavy phosphorus and nitrogen burden on water environment. In contrast, higher NH3-N loads occurred in the north area of subregion. The establishment of coefficient system for agricultural pollutants into water bodies and the pollutant loads calculation would provide enlightenment for water pollution treatment and agricultural nonpoint source pollution controlling.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Rios , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Nitrogênio/análise , Fósforo/análise , Água , China
8.
J Environ Manage ; 325(Pt B): 116631, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36347186

RESUMO

Rapid urbanization changes landscape patterns and results in frequent urban waterlogging issues, which affect citizens' daily lives and cause economic loss. Understanding the spatial patterns and impact factors associated with urban waterlogging under different rainfall intensities has significant implications for mitigating this hazard. In this study, the runoff depth calculated according to the Storm Water Management Model (SWMM) simulation results was used to investigate the spatial characteristics of urban waterlogging. Multiple scenario-based designs, a correlation analysis, and a stepwise regression model were employed to detect the relationship between surface runoff depth and landscape patterns under different rainfall intensities. The results show that when the rainfall intensity reached 12.5 mm/12 h, the conversion rate of rainfall to runoff increased significantly, indicating an increased waterlogging risk. Areas with impervious surface proportions of 25-50% and 75-100% were shown to require more attention due to the strong sensitivity of the surface runoff depth to an increase in the impervious surface. It is most cost-effective to maintain the original high-density vegetation or increase the vegetation density from 0-25% to 25-50% for urban green space. Additionally, the landscape configuration also affects the surface runoff depth. The fragmented, scattered, or regular shape of impervious surface patches can reduce surface runoff effectively; larger and less fragmented green space was also shown to have a surface runoff controlling. The adjusted R2 values were greater than 0.6 for all stepwise regression models, indicating that the landscape variables selected in the study can effectively predict the surface runoff depth. These models also showed that the landscape composition had a more profound contribution than the landscape configuration on runoff depth. These findings provide meaningful insights and perspectives for urban waterlogging hazard mitigation, quantitative landscape planning, and risk management. The method proposed by this study provides a referable framework for future studies on urban waterlogging and its response to the landscape in the context of global climate change.


Assuntos
Chuva , Movimentos da Água , Urbanização , Água , Parques Recreativos , China , Cidades
9.
J Environ Manage ; 339: 117838, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37027902

RESUMO

Extensive application of neonicotinoid insecticides (NNIs) in agricultural production has resulted in widespread contamination of multiple environmental media. To investigate the occurrence and fate of NNIs in the largest marsh distribution area in Northeast China, an integrated ecosystem covering farmlands, rivers, and marshes, referred to as the farmland-river-marsh continuum in this study, was chosen for soil, water, and sediment sampling. Five NNIs were detected, with imidacloprid (IMI), thiamethoxam (THM), and clothianidin (CLO) being the most frequently detected ones in different samples. Concentrations of target NNIs in soil, surface water, and sediment samples were 2.23-136 ng/g dry weight (dw), 3.20-51.7 ng/L, and 1.53-8.40 ng/g dw, respectively. In soils, NNIs were detected more often and at higher concentrations in upland fields, while the concentration of NNIs in the soybean-growing soils (71.5 ng/g dw) was significantly higher than in the rice-growing soils (18.5 ng/g dw) (p < 0.05). Total concentration of NNIs in surface water was lower in the Qixing River channel than inside the marsh, while that in sediments showed an opposite trend. Total migration mass of IMI from approximately 157,000 ha of farmland soil by surface runoff was estimated to be 2636-3402 kg from the application time to the sampling period. The storage of NNIs in sediments was estimated to range from 45.9 to 252 ng/cm2. The estimated environmental risks, calculated as the risk quotients (RQs), revealed low risks to aquatic organisms (RQs <0.1) from the residual concentrations of NNIs in water.


Assuntos
Inseticidas , Poluentes Químicos da Água , Inseticidas/análise , Áreas Alagadas , Ecossistema , Neonicotinoides/análise , Água , Solo , China , Poluentes Químicos da Água/análise
10.
J Environ Manage ; 334: 117361, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36842366

RESUMO

Veterinary medicines are routinely used within modern animal husbandry, which results in frequent detections within animal manures and slurries. The application of manures to land as a form of organic fertiliser presents a pathway by which these bioactive chemicals can enter the environment. However, to date, there is limited understanding regarding the influence of commonly used manure application methods on veterinary medicine fate in soil systems. To bridge this knowledge gap, a semi-field study was conducted to assess the influence of commonly used application methods such as, broadcast, chisel sweep, and incorporation on veterinary medicine losses to waters. A range of veterinary medicines were selected and applied as a mixture; these were enrofloxacin, florfenicol, lincomycin, meloxicam, oxytetracycline, sulfadiazine, trimethoprim and tylosin. All the assessed veterinary medicines were detected within surface runoff and leachates, and the concentrations generally decreased throughout the irrigation period. The surface runoff concentrations ranged from 0.49 to 183.47 µg/L and 2.26-236.83 µg/L for the bare soil and grass assessments respectively. The leachate concentrations ranged from 0.04 to 309.66 µg/L and 0.33-37.79 µg/L for the bare soil and grass assessments respectively. More advanced application methods (chisel sweep) were found to significantly reduce the mass loads of veterinary medicines transported to surface runoff and leachate by 13-56% and 49-88% over that of broadcast. Incorporating pig slurries reduced the losses further with surface runoff and leachate losses being 13-56% and 49-88% lower than broadcast. Our results show that manure application techniques have a significant effect on veterinary medicine fate in the environment and as such these effects should be considered in the decision-making processes for the management of manures as well as from a risk mitigation perspective for aquatic compartments.


Assuntos
Esterco , Drogas Veterinárias , Animais , Suínos , Água , Solo , Tilosina , Trimetoprima
11.
Environ Sci Technol ; 56(21): 14972-14981, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35839145

RESUMO

Compared to surface application, manure subsurface injection reduces surface runoff of nutrients, antibiotic resistant microorganisms, and emerging contaminants. Less is known regarding the impact of both manure application methods on surface transport of antibiotic resistance genes (ARGs) in manure-amended fields. We applied liquid dairy manure to field plots by surface application and subsurface injection and simulated rainfall on the first or seventh day following application. The ARG richness, relative abundance (normalized to 16s rRNA), and ARG profiles in soil and surface runoff were monitored using shotgun metagenomic sequencing. Within 1 day of manure application, compared to unamended soils, soils treated with manure had 32.5-70.5% greater ARG richness and higher relative abundances of sulfonamide (6.5-129%) and tetracycline (752-3766%) resistance genes (p ≤ 0.05). On day 7, soil ARG profiles in the surface-applied plots were similar to, whereas subsurface injection profiles were different from, that of the unamended soils. Forty-six days after manure application, the soil ARG profiles in manure injection slits were 37% more diverse than that of the unamended plots. The abundance of manure-associated ARGs were lower in surface runoff from manure subsurface injected plots and carried a lower resistome risk score in comparison to surface-applied plots. This study demonstrated, for the first time, that although manure subsurface injection reduces ARGs in the runoff, it can create potential long-term hotspots for elevated ARGs within injection slits.


Assuntos
Esterco , Solo , Antibacterianos/farmacologia , RNA Ribossômico 16S/genética , Microbiologia do Solo , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos
12.
Environ Res ; 212(Pt E): 113594, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35679908

RESUMO

Arbuscular mycorrhizal fungi (AMF) are ubiquitous in farmland. But the knowledge on AMF impact on lead (Pb) migration in farmland is limited. A field experiment was conducted in the rainy season (May-October) for two years in a Pb-polluted farmland. Benomyl was used to specifically suppress the native AMF growth in the farmland. The effect of benomyl-induced AMF suppression on the Pb uptake in maize, and Pb loss via surface runoff and interflows (20 cm and 40 cm depth) from the farmland was investigated. The benomyl significantly inhibited the AMF growth, resulting in decreases in the colonization rate, spore number, and contents of total and easily extractable glomalin-related soil protein (GRSP); and promoted the Pb migration into maize shoots and mainly enriched in leaves. The particulate Pb accounted for 83.2%-90.6% of Pb loss via surface runoff, while the proportion of particulate Pb loss via interflow was decreased and the proportion of dissolved Pb loss increased with the increase of soil depth. The AMF suppression led to a decrease in dissolved Pb concentration and loss, but an increase in particulate Pb concentration and loss, and enhanced the total Pb loss via surface runoff and interflows. Moreover, significant or very significant negative correlations were observed between the AMF colonization rate in roots with the Pb uptake in leaves, and the content of easily extractable GRSP with the particulate Pb loss. These results indicated the native AMF contributed to immobilizing Pb in soil and inhibited its migration to crops and the surrounding environment.


Assuntos
Micorrizas , Poluentes do Solo , Benomilo/metabolismo , Benomilo/farmacologia , Fazendas , Chumbo/metabolismo , Micorrizas/química , Micorrizas/metabolismo , Folhas de Planta , Raízes de Plantas/metabolismo , Solo , Poluentes do Solo/análise , Zea mays/metabolismo
13.
J Environ Manage ; 304: 114272, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34915388

RESUMO

Increased agricultural surface runoff in rural watersheds is a leading cause of nonpoint source pollution. In this study, a new biomass concentrator reactor (BCR) is conducted to degrade simulated agricultural surface runoff for both start-up process and treatment process. The results show that both in the start-up phase and in the stable phase, BCR had a good degradation effect on simulated agricultural surface runoff. Within 13 days-15 days of completed start-up of BCR, degradation of COD can be considered to the first-order kinetics: lnCt=lnC0-0.1377t (R2 = 0.78). During the stabilization phase, the average removal rate of COD, NH4+-N, NO3--N, TN and TP from the effluents through the BCR membrane was 94.58%, 85.79%, 53.58%, 37.87%, and 60.62%, respectively, which was increased by 7.4%, 2.5%, 5.1%, 0.18% and 11.4%, respectively, compared to control experiment which the effluents without membrane. The pollutants degradation by BCR in stable phase show a partly relative model of Lawrence-McCarty equation, which the nitrogen and phosphorus degradation is vN=(4.1+S)/(2.53×S) (R2 = 0.69) and vP=(8.78+S)/(3.0×S) (R2 = 0.67), respectively. In the stable phase, the operation cost of BCR is about $0.08/(L•d). Future research on improved BCR maybe focus on the membrane pollution and cleaning, optimized operation conditions, new materials of membrane.


Assuntos
Movimentos da Água , Poluentes Químicos da Água , Biomassa , Monitoramento Ambiental , Nitrogênio/análise , Fósforo/análise , Poluentes Químicos da Água/análise , Poluição da Água
14.
J Environ Manage ; 319: 115701, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35834848

RESUMO

Surface runoff decrease (SRD) and sediment concentration change (SCC) are accountable for sediment reduction by anti-erosion strategies. Using a design of horizontal stages, contour trenches, fish-scale pits, as well as their combinations, this study evaluated the two components for sediment reduction after the implementation of various land management strategies on steep spoil tips. The study highlighted the interactions between SRD and SCC in reducing sediment, and characterized the temporal variations of sediment-reducing capacity by SRD and SCC. Results showed that slope erosion was well controlled with control ratios of sediment yield ranging from 0.4 to 0.59, 0.2 to 0.22, for horizontal stage- and contour trench-based strategies, respectively. Sediment-reducing benefit by SRD accounted for 52%-77% of the total sediment reduction and highly determined the performance of SCC. Quadratic relationships between sediment-reducing capacity by SCC and that by SRD were observed. The function of SCC only operated when the sediment-reducing capacity by SRD reached a certain threshold. These thresholds varied greatly in the range of 0.75 kg m-3-0.91 kg m-3 and 0.61 kg m-3-0.66 kg m-3 for horizontal stage- and contour trench-based strategies, respectively. The upper limits for sediment-reducing capacity by SCC varied in the range of 0.32 kg m-3-0.44 kg m-3 and 0.63 kg m-3-0.76 kg m-3 for horizontal stage- and contour trench-based strategies, respectively. An efficiency coefficient of 55% and an M-N ratio of 1:1 indicated that sediment-reducing benefits by SRD and SCC were effectively exerted by combining contour trenches and fish-scale pits. The findings emphasized that the application of land management strategies must be considered based on particular goals to restore spoil tips. In practice, if targeted to enhancing sediment-reducing efficiency, contour trenches and fish-scale pits should be primarily considered. However, if the aim is to decrease water consumed for sediment control, then horizontal stages should be principally considered.


Assuntos
Solo , Água , China , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental , Sedimentos Geológicos
15.
Environ Monit Assess ; 194(10): 717, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050517

RESUMO

Watershed-scale hydrology and soil erosion are the main environmental components that are greatly affected by environmental perturbations such as climate and land use and land cover (LULC) changes. The purpose of this study is to assess the impacts of scenario-based LULC change and climate change on hydrology and sediment at the watershed scale in Rib watershed, Ethiopia, using the empirical land-use change model, dynamic conversion of land use and its effects (Dyna-CLUE), and soil and water assessment tool (SWAT). Regional climate model (RCM) with Special Report on Emission Scenarios (SRES) and Representative Concentration Pathway (RCP) outputs were bias-corrected and future climate from 2025 to 2099 was analyzed to assess climate changes. Analysis of the LULC change indicated that there has been a high increase in cultivated land at the expense of mixed forest and shrublands and a low and gradual increase in plantation and urban lands in the historical periods (1984-2016) and in the predictions (2016-2049). In general, the predicted climate change indicated that there will be a decrease in precipitation in all of the SRES and RCP scenarios except in the Bega (dry) season and an increase in temperature in all of the scenarios. The impact analysis indicated that there might be an increase in runoff, evapotranspiration (ET), sediment yield, and a decrease in lateral flow, groundwater flow, and water yield. The changing climate and LULC result in an increase in soil erosion and changes in surface and groundwater flow, which might have an impact on reducing crop yield, the main source of livelihood in the area. Therefore, short- and long-term watershed-scale resource management activities have to be designed and implemented to minimize erosion and increase groundwater recharge.


Assuntos
Mudança Climática , Hidrologia , Monitoramento Ambiental , Etiópia , Costelas , Água
16.
Environ Monit Assess ; 194(4): 300, 2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35347464

RESUMO

Quantifying infiltration and surface runoff at the hillslope scale is indispensable for soil conservation studies. However, the spatial and temporal variability of infiltration imposes a major constraint on surface runoff estimation. Point infiltration values do not fully express the complexity of the surface runoff in the landscape. Considering the need to improve the estimation of runoff volume from infiltration data, this study aimed to measure the apparent infiltration at hillslope-scale and compare it with two methods of infiltration estimative derived from point information. The study was carried out in six hydrological monitoring units paired. A set of hyetographs and hydrographs allowed the determination of apparent infiltration [Formula: see text] to each monitoring unit as a function of precipitation rate P. The measured [Formula: see text] values were used: (1) to evaluate the efficiency of the different land management in increasing infiltration; and (2) to evaluate the efficiency of two methods of hillslope-scale infiltration estimation based on point data: (a) derived from concentric rings method ([Formula: see text]), and (b) derived from a physically-based modeling ([Formula: see text]). Regarding the differences in land managements, terraces proved to be the most efficient land management practice, followed by phytomass addition. Regarding the methods, for precipitation rates greater than 40 [Formula: see text] the point infiltration-based [Formula: see text] underestimates apparent infiltration [Formula: see text] with PBIAS ranging from [Formula: see text] to [Formula: see text]. Even so, [Formula: see text] proved efficient in representing [Formula: see text] at less intense rainfall events. Nonetheless, the point infiltration-based method [Formula: see text] properly represented [Formula: see text] to all rainfall intensities (Nash-Sutcliffe coefficient [Formula: see text]).


Assuntos
Solo , Água , Monitoramento Ambiental
17.
J Environ Manage ; 300: 113742, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34530361

RESUMO

Stormwater runoff is one critical urban issue that exemplifies the complexity in coupling human and natural systems. Innumerable studies have described and assessed the hydrological responses that result from land-use changes through a 'post land use change' hydrological analysis. Complex systems theory, however, suggests that the urban and ecological systems operate as an intertwined whole. This means that typical one-directional analysis can miss critical components of a bi-directional sociohydrological process. In addition, there is a difference in physical scales between hydrological analysis and policymaking that is often left unresolved. Typical hydrological models are limited to a watershed and are not easily applied to policymaking that is generally demarcated by a political boundary. These types of models also lack the spatial explicitness needed for physical design responses. To address these issues, we develop an integrated, finely scaled, spatially explicit sociohydrological modeling system. The coupled land use/stormwater model projects and assesses bi-directional sociohydrological impacts to changing land uses. We apply and test the system in McHenry County, Illinois, by modeling three scenarios to the year 2045. The results show that residential and commercial developments exhibit different responses to hydrological variables, resulting in varying patterns of land use locational choices. We also find that there is a conflict between developmental preferences that prefer to be located near water (housing) and those that prefer to be located away from runoff-prone water areas (commercial land uses). Our bi-directional modeling system simulates cell-to-cell interactions to produce quantifiable and practically useful outputs. The output for McHenry County, Illinois, includes specific, locational information on how to optimize developmental regulations in response to the contradictory developmental preferences and, more importantly, how to live with runoff in the context of resilience. This research supports the need for cell-based forward-looking modeling to better understand complex urban systems and strategically establish a resilient built environment.


Assuntos
Hidrologia , Movimentos da Água , Ecossistema , Humanos , Illinois , Água
18.
J Environ Manage ; 278(Pt 1): 111537, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33120090

RESUMO

Terracing and rainfall characteristics notably influence the water erosion processes. However, an extensive long term in situ quantitative evaluation of the approaches to control the water erosion in different orchard terraces has not yet been performed, especially considering the increasing frequency and severity of extreme rainfall events due to the global climate change. In this study, six types of orchard terraces, including slope land as the control (SLck), level terrace with bare (LTb) and vegetation taluses (LTv), outward (OTv) and inward terrace (ITv) with vegetation taluses and level terrace having front mounds and back ditches with vegetation taluses (MDLTv), were used to analyze the effects of extreme and ordinary rainfall events on the surface runoff and soil erosion. According to the measured data for twelve consecutive years, 356 natural rainfall events were divided into extreme and ordinary rainfall, based on the World Meteorological Organization standard. The results indicated that more severe surface runoff and sediment loss occurred under extreme rainfall: the runoff coefficient and soil loss under extreme rainfall were 2.6 and 11.5 times those under ordinary rainfall, respectively. The sediment yield (contribution rate, 42.9%) exhibited a higher sensitivity to extreme rainfall events compared to that of the surface runoff generation (contribution rate, 16.4%). Moreover, the reduction in the surface runoff and sediment in the extreme rainfall case differed for different orchard terraces. The average surface runoff coefficient and soil loss amount decreased in the following order: SLck>LTb>OTv>LTv>ITv>MDLTv. Nevertheless, the highest and lowest contributions of the extreme rainfall to the sediment yield occurred in the LTb (64.8%) and MDLTv (21.7%) plots, respectively. Therefore, severe talus erosion caused by extreme rainfall should be monitored, and a combination of vegetation taluses and front mounds and back ditches on the platforms is recommended as a sustainable strategy to prevent extreme water erosion when transforming slope land into orchard terraces.


Assuntos
Chuva , Movimentos da Água , China , Conservação dos Recursos Naturais , Monitoramento Ambiental , Sedimentos Geológicos , Solo , Água , Pesos e Medidas
19.
J Environ Manage ; 299: 113627, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34467857

RESUMO

Animal waste contains high numbers of microorganisms and therefore can present a potential biological threat to human health. During episodic rainfall events resulting in runoff, microorganisms in the waste and soil may migrate into surface runoff, contaminating surface water resources. A probabilistic human exposure (HE) model was created to determine exposure to faecal indicator bacteria (FIB): total coliforms (TC), E. coli and enterococci following application of bio-based fertiliser (dairy cattle slurry, digestate) to grassland; using a combination of experimental field results and literature-based data. This step was followed by a quantitative microbial risk assessment (QMRA) model for pathogenic E. coli based on a literature-based dose-response model. The results showed that the maximum daily HE (HEdaily) is associated with E. coli for unprocessed slurry (treatment T1) on day 1, the worst-case scenario where the simulated mean HEdaily was calculated as 2.84 CFU day -1. The results indicate that the overall annual probability of risk (Pannual) of illness from E. coli is very low or low based on the WHO safe-limit of Pannual as 10 -6. In the worst-case scenario, a moderate risk was estimated with simulated mean Pannual as 1.0 × 10 -5. Unpasteurised digestate application showed low risk on day 1 and 2 (1.651 × 10 -6, 1.167 × 10 -6, respectively). Pasteurised digestate showed very low risk in all scenarios. These results support the restriction imposed on applying bio-based fertiliser if there is any rain forecast within 48 h from the application time. This study proposes a future extension of the probabilistic model to include time, intensity, discharge, and distance-dependant dilution factor. The information generated from this model can help policymakers ensure the safety of surface water sources through the quality monitoring of FIB levels in bio-based fertiliser.


Assuntos
Escherichia coli , Fertilizantes , Pradaria , Microbiologia da Água , Animais , Bactérias , Bovinos , Exposição Ambiental , Fezes/microbiologia , Fertilizantes/microbiologia , Humanos , Medição de Risco
20.
Environ Monit Assess ; 193(10): 678, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34590169

RESUMO

This study evaluates the influence of physiographic characteristics on the peak flow to runoff volume ratio in watersheds belonging to the Cerrado and Atlantic Forest biomes, in the Center-South region of Brazil. Specifically, the peak flow and runoff volume values obtained in the outlet section are related to the physiographic characteristics of the watersheds. Using a geographic information system tool, 13 watersheds are delimited, and 38 variables are selected from each watershed. A recursive digital filter is used to separate the direct (surface) flow from base (groundwater) flow. Data are analyzed using multivariate statistics, which allows interpretation of the structure of a data set from the respective correlation matrices. The results indicate that the peak flow and runoff volume are strongly correlated with the physical characteristics of the watersheds and the types of anthropogenic activity in both biomes. Furthermore, the presence of woods and forests reduces the peak flow and runoff volume.


Assuntos
Monitoramento Ambiental , Florestas , Brasil , Ecossistema , Análise Multivariada
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa