Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
1.
Environ Res ; 245: 118062, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157959

RESUMO

Hydrothermal carbonization (HTC) is considered a promising technology for biomass waste management without pre-drying. This study explores the potential for swine manure management by comparing batch and continuous processes, emphasizing the benefits of the continuous mode, particularly for its potential full-scale application. The continuous process at low temperature (180 °C) resulted in a hydrochar with a lower degree of carbonization compared to the batch process, but similar characteristics were found in both hydrochars at higher operating temperatures (230-250 °C), such as C content (∼ 52 wt%), fixed carbon (∼ 24 wt%) and higher calorific value (21 MJ kg-1). Thermogravimetric and combustion analyses showed that hydrochars exhibited characteristics suitable as solid biofuels for industrial use. The process water showed a high content of organic matter as soluble chemical oxygen demand (7-22 g L-1) and total organic carbon (4-10 g L-1), although a high amount of refractory species such as N- and O-containing long aromatic compounds were detected in the process water from the batch process, while the process water from the continuous process presented more easily biodegradable compounds such as acids and alcohols, among others. The longer time required to reach operating temperature in the case of the batch system (longer heating time to reach operating temperature) resulted in lower H/C and O/C ratios compared to hydrochar from the continuous process. This indicates that the dehydration and decarboxylation reactions of the feedstock play a more important role in the batch process. This study shows the efficiency of the continuous process to obtain carbonaceous materials suitable for use as biofuel, providing a solution for swine manure management.


Assuntos
Carbono , Esterco , Animais , Suínos , Temperatura , Temperatura Alta , Biocombustíveis , Água
2.
J Environ Manage ; 366: 121864, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39018837

RESUMO

This research aimed to design an integrated aerobic-anaerobic reactor with dynamic aeration that was automatically regulated based on real-time oxygen concentration and investigate the aerobic pretreatment and subsequent dry co-anaerobic digestion (co-AD) characteristics of highly solids-loaded corn stover and swine manure in terms of temperature rise, physiochemical characteristics, and methane production. The high-temperature feedstocks from the aerobic pretreatment phase rapidly entered the AD phase without transportation and effectively improved the start-up and methane production of the co-AD. Oxygen concentration range, aeration rate, and pretreatment time affected the cumulative aeration time, temperature rise, and organic matter removal interactively during aerobic pretreatment, and a low aeration rate was relatively preferable. Although the lignocellulose removal increased with the increase in pretreatment duration, the maximal lignin elimination efficiency only reached 1.30%. The inoculum injection in the transition phase from aerobic pretreatment to co-AD and the leachate reflux during co-AD were also critical for producing methane steadily apart from aerobic pretreatment. The cold air weakened the temperature rise of aerobic pretreatment, and the low-temperature leachate reduced the methane production in the co-AD process. An oxygen concentration range of 13%-17%, aeration rate of 0.10 m3/(min·m3), pretreatment time of 84 h, inoculum loading of 40%, leachate refluxing thrice per day, and double-layer inoculation were optimum for improving the integrated aerobic-anaerobic digestion system's ability to resist low temperatures and achieving high methane production. The maximal cumulative and volatile solids (VS) methane yields of corn stover and swine manure reached 444.58 L and 266.30 L/kg VS.


Assuntos
Esterco , Metano , Temperatura , Zea mays , Zea mays/metabolismo , Animais , Metano/metabolismo , Suínos , Anaerobiose , Reatores Biológicos , Aerobiose , Lignina
3.
J Environ Manage ; 356: 120573, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479289

RESUMO

Anaerobic co-fermentation is a favorable way to convert agricultural waste, such as swine manure (SM) and apple waste (AW), into lactic acid (LA) through microbial action. However, the limited hydrolysis of organic matter remains a main challenge in the anaerobic co-fermentation process. Therefore, this work aims to deeply understand the impact of cellulase (C) and protease (P) ratios on LA production during the anaerobic co-fermentation of SM with AW. Results showed that the combined use of cellulase and protease significantly improved the hydrolysis during the enzymatic pretreatment, thus enhancing the LA production in anaerobic acidification. The highest LA reached 41.02 ± 2.09 g/L within 12 days at the ratio of C/P = 1:3, which was approximately 1.26-fold of that in the control. After a C/P = 1:3 pretreatment, a significant SCOD release of 45.34 ± 2.87 g/L was achieved, which was 1.13 times the amount in the control. Moreover, improved LA production was also attributed to the release of large amounts of soluble carbohydrates and proteins with enzymatic pretreated SM and AW. The bacterial community analysis revealed that the hydrolytic bacteria Romboutsia and Clostridium_sensu_stricto_1 were enriched after enzyme pretreatment, and Lactobacillus was the dominant bacteria for LA production. This study provides an eco-friendly technology to enhance hydrolysis by enzymatic pretreatment and improve LA production during anaerobic fermentation.


Assuntos
Celulases , Malus , Animais , Suínos , Fermentação , Esterco/microbiologia , Ácido Láctico , Bactérias , Peptídeo Hidrolases
4.
J Environ Manage ; 355: 120475, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447511

RESUMO

The production of biogas from organic waste has attracted considerable interest as a solution to current energy and waste management challenges. This study explored the methane (CH4) production potential of swine manure (SM), food waste (FW), and tomato waste (TW) and the changes in the microbial community involved in the anaerobic digestion process. The results revealed that the CH4 production potentials of the four kinds of SM samples were influenced by the characteristics of SM (e.g., age and storage period). Among the four kinds of SM samples, the CH4 yield from the manure directly sampled from primiparous sows (SM3) was the highest. The CH4 yield was significantly improved when SM3 was co-digested with FW, but not with TW. The addition of SM fostered a stable CH4 production community by enhancing the interaction between methanogens and syntrophic bacteria. Furthermore, the addition of FW as a co-substrate may improve the functional redundancy structure of the methanogenesis-associated network. Overall, the characteristics of SM must be considered to achieve consistent CH4 yield efficiency from anaerobic digestion since CH4 production potentials of SM can be different. Also, the contribution of co-substrate to the synergistic relationship between methanogens and syntrophic bacteria can be considered when a co-substrate is selected in order to enhace CH4 yield from SM.


Assuntos
Eliminação de Resíduos , Animais , Suínos , Feminino , Anaerobiose , Reatores Biológicos , Esterco/microbiologia , Alimentos , Perda e Desperdício de Alimentos , Metano , Biocombustíveis/análise , Bactérias , Digestão
5.
Environ Monit Assess ; 196(6): 534, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727864

RESUMO

Escherichia coli is one of the key bacteria responsible for a variety of diseases in humans and livestock-associated infections around the globe. It is the leading cause of mortality in neonatal and weaned piglets in pig husbandry, causing diarrhea and significant harm to the industry. Furthermore, the frequent and intensive use of antimicrobials for the prevention of diseases, particularly gastrointestinal diseases, may promote the selection of multidrug-resistant (MDR) strains. These resistant genotypes can be transmitted through the excrement of animals, including swine. It is common practice to use porcine manure processed by biodigesters as fertilizer. This study aimed to examine the antimicrobial susceptibility, the presence of virulence genes frequently associated with pathotypes of intestinal pathogenic E. coli (InPEC), and antimicrobial resistance genes (ARGs) of 28 E. coli isolates collected from swine manure fertilizers. In addition, the enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) technique was used to investigate the genetic relationship among the strains. Using disk diffusion, the antimicrobial susceptibility profiles of the strains were determined. Using polymerase chain reaction (PCR), 14 distinct virulence genes associated with the most prevalent diarrhea and intestinal pathogenic E. coli (DEC/InPEC) and five ARGs were analyzed. All isolates tested positive for multidrug resistance. There was no detection of any of the 14 virulence genes associated with InPECs, indicating the presence of an avirulent commensal microbiota. Molecular classification by ERIC-PCR revealed that the majority of isolates (27 isolates) coalesced into a larger cluster with a genetic similarity of 47.7%; only one strain did not cluster in this cluster, indicating a high level of genetic diversity among the analyzed isolates. Thus, it is of the utmost importance to conduct epidemiological surveillance of animal breeding facilities in order to determine their microbiota and formulate plans to reduce the use of antimicrobials and improve animal welfare.


Assuntos
Farmacorresistência Bacteriana Múltipla , Escherichia coli , Fertilizantes , Esterco , Animais , Suínos , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Esterco/microbiologia , Brasil , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia
6.
Microb Ecol ; 86(2): 947-958, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36326874

RESUMO

The emergence of the plasmid-mediated tigecycline resistance gene tetX family in pig farms has attracted worldwide attention. The use of tetracycline antibiotics in pig farms has a facilitating effect on the prevalence of the tetX family, but the relationship among its presence, expression, and resistance phenotype in resistant bacteria is unknown. In this study, the presence and expression characteristics of tetracycline resistance genes (TRGs) in 89 strains of doxycycline-resistant E. coli (DRE) isolated from pig manure samples from 20 pig farms under low concentrations of doxycycline stress (2 µg/mL) were analyzed. The detection rate of tetO was 96.63%, which is higher than those of other TRGs, such as tetA (94.38%), tetX (76.40%), tetB (73.03%), and tet(X4) (69.66%). At least three TRG types were present in DRE strains, which thus showed extensive resistance to tetracycline antibiotics, and 37% of these strains were resistant to tigecycline. In the presence of a low concentration of doxycycline, tetA played an important role, and the expression and existence ratio of TRGs indicated low expression of TRGs. Furthermore, the doxycycline resistance of DRE was jointly determined by the total absolute abundance of TRGs, and the absolute abundance of tetX and tet(X4) was significantly positively associated with tigecycline resistance in DRE (P < 0.05). Overall, DRE isolated from swine manure is an important reservoir of the tetX family, which suggests that DRE in swine manure has a high risk of tigecycline resistance, poses a potential threat to human health, and should be of public concern.


Assuntos
Escherichia coli , Esterco , Humanos , Suínos , Animais , Tigeciclina/farmacologia , Escherichia coli/genética , Esterco/microbiologia , Doxiciclina , Antibacterianos/farmacologia , Tetraciclina , Testes de Sensibilidade Microbiana
7.
Environ Res ; 216(Pt 2): 114513, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36208781

RESUMO

The rapid aerobic composting process has been used to reduce organic wastes, but the associated risks of antibiotic resistance genes (ARGs) need to evaluate in an efficient way. The primary objective of this work was to explore the underlying mechanism of initial adjustment in composting temperature on the variation of ARGs, mobile genetic elements (MGEs), and microbial composition during co-composting. The co-composting was initially externally heated (T2) for 5 days. The results showed that ARGs abundance in conventional composting (T1) was reduced by 49.36%, while multidrug was enriched by 86.16% after a period of 30 days. While in T2 ARGs were removed by 79.46% particularly the fraction of sulfonamide, multidrug, and vancomycin resistance genes were >90% without rebounding of any ARGs. Whereas, MGEs were reduced by 68.12% and 93.62% in T1 and T2, while the half-lives of ARGs and MGEs were lower in T2 compared to T1 (86.3%,86.7%). T2 also affected the metabolism function by regulating carbohydrate metabolism (9.62-10.39%) and amino acid metabolism (9.92-10.93%). Apart from this, the potential human pathogenic bacteria Pseudomonas was reduced by 90.6% in T2 and only 32.9% in T1 respectively. Network analysis showed that Ureibacillus, Weissella, Corynebacterium, Escherichia-Shigella, Acinetobacter were the main host of multiple genes. Structural equation models exhibited that bacterial communities were mainly responsible for the enrichment of ARGs in T1, whereas, it was directly affected by MGEs in T2. Similarly, ARGs variation was directly related to composting temperature. With this simple strategy, ARGs associated risk can be significantly reduced in composting.


Assuntos
Compostagem , Eliminação de Resíduos , Humanos , Suínos , Animais , Esterco/microbiologia , Antibacterianos , Temperatura , Alimentos , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Bactérias/genética
8.
J Environ Manage ; 333: 117390, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36758400

RESUMO

A study was conducted to determine the effectiveness of supplementing swine manure with Bacillus subtilis (BS) to improve digestion of manure solids and lower odor emission. Large bioreactors (400 L) with manure (100 L) were treated with commercially available BS at a rate of 1% manure volume by either directly pouring or surface spraying the manure with inoculum. Manure physicochemical properties, gas emissions, and microbiome were monitored. Manures treated multiple times with BS or surface sprayed had significantly (P < 0.05) lower electrical conductivity, volatile solids, and chemical oxygen demand, by 3-5% compared to non-treated control manures. Volatile sulfur compound emissions (VSCs) were reduced by 20-30% in both experiments, while ammonia and volatile organic compounds were reduced by 40% and 15%, respectively, in surface spray experiment only. The manure indigenous microbiome remained relatively stable following treatment and BS were never detected in the raw or treated manure following multiple treatments. The reduction in manure organic carbon and VSCs emissions were a result of physical mixing during manure treatment and biological material in the microbial inoculum stimulating microbial activity and not growth of BS.


Assuntos
Esterco , Microbiota , Suínos , Animais , Bacillus subtilis , Odorantes , Amônia/análise , Enxofre , Compostos de Enxofre
9.
J Environ Manage ; 345: 118707, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37536132

RESUMO

Composting is a common and effective strategy for reducing antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) from animal manure. However, it is unclear whether the advantages of composting for the control of ARGs and ARB can be further increased in land application. This study investigated the fate of ARB and ARGs after land application of swine-manure composts (SMCs) to three different soil types (red soil, loess and black soil). The results showed that although the SMCs caused an increase in the abundance of total ARGs in the soil in the short period, they significantly reduced (p < 0.01) the abundance of total ARGs after 82 days compared to the control. The decay rate of ARGs reflected by the half-life times (t1/2) varied by soil type, with red soil being the longest. The SMCs mainly introduced ermF, tetG and tetX into the soils, while these ARGs quickly declined to the control level. Notably, SMCs increased the number of ARB in the soils, especially for cefotaxime-resistant bacteria. Although SMCs only affected the microbiome significantly during the early stage (p < 0.05), it took a much longer time for the microbiome to recover compared to the control. Statistical analysis indicated that changes in the microbial community contributed more to the fate of ARGs during SMCs land application than other factors. Overall, it is proposed that the advantages of ARGs control in the composting process for swine manure can be further increased in land application, but it can still bring some risks in regard to ARB.


Assuntos
Compostagem , Solo , Animais , Suínos , Genes Bacterianos , Esterco/análise , Antagonistas de Receptores de Angiotensina , Microbiologia do Solo , Inibidores da Enzima Conversora de Angiotensina , Bactérias/genética , Antibacterianos/farmacologia
10.
J Environ Sci (China) ; 124: 462-471, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182154

RESUMO

Plasmids play a critical role in the dissemination of antimicrobial resistance genes (ARGs), however, a systematical understanding of ARGs originated from plasmids in swine production is currently lacking. Herein, quantitative polymerase chain reaction was applied to determine the prevalence of ten ARGs and the class1 integron gene intI1 of plasmid source in swine manure from 44 farms in Sichuan, Hubei and Hebei provinces, China. All assayed ARGs were observed in plasmid DNA samples, and the average absolute abundance of aac(6')-Ib-cr, blaNDM, blaCTX-M, optrA, ermB, floR, mcr-1, qnrS, tetM, sul1 and intI1 were 7.09, 2.90, 4.67, 6.62, 7.55, 7.14, 4.08, 4.85, 7.16, 7.11 and 8.07 of 10 log copies/gram, respectively. IntI1 showed a high correlation (r > 0.8, P < 0.01) with the abundance of aac(6')-Ib-cr and sul1 in swine manure. Moreover, the farm scale (i.e., herd population) and geographical location were not found to be critical factors influencing the absolute abundance of ARGs of plasmid DNA in swine farms. However, the concentrations of florfenicol, Cu, Zn, Fe, total phosphorus (TP) and total potassium (TK) demonstrated a significant correlation with the abundance of several ARGs. Particularly, Cu and Zn had high correlations with optrA and blaCTX-M, respectively. Our results demonstrated that antibiotics, heavy metals and environmental nutrients are likely jointly contributing to the long-term persistence of ARGs in swine production. This study provides insights into the abundance and influencing factors of ARGs from swine manure, which is of significance for assessing and reducing the public health risks in livestock production.


Assuntos
Esterco , Metais Pesados , Animais , Antibacterianos/análise , DNA , Farmacorresistência Bacteriana/genética , Fazendas , Genes Bacterianos , Esterco/análise , Metais Pesados/análise , Fósforo , Potássio , Suínos
11.
Environ Res ; 212(Pt D): 113483, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35588770

RESUMO

This study investigated the ammonia toxicity and the acclimation of anaerobic microbiome in continuous anaerobic digestion of swine manure using unacclimated inoculum. When the total ammonia nitrogen concentration (TAN) reached 2.5 g N/L, the methane yield decreased from 254.1 ± 9.6 to 154.6 ± 9.9 mL/g COD. The free ammonia nitrogen concentration of the inhibited condition was 190 mg N/L. The methane yield was eventually recovered as 269.6 ± 3.6 mL/g COD with a further operation. Anaerobic toxicity assay (ATA) showed that mixed liquor from the recovered phase possessed enhanced tolerance to ammonia, not only within the exposed level in continuous operation (<2.5 g NH3/L) but also over the range (>2.5 g NH3/L). Microbial analysis revealed that continuous operation under ammonia stress resulted in the change of both bacterial and archaeal populations. The ammonia adaptation was concurrent with the archaeal population shift from Methanosaeta to Methanosarcina and Methanobacterium. The dominancy of Clostridia in bacterial population was found in the recovered phase. It is highly recommended to use an inoculum acclimated to a target ammonia level which can be pre-checked by ATA and to secure a start-up period for ammonia adaptation in the field application of anaerobic digestion for swine manure.


Assuntos
Amônia , Esterco , Aclimatação , Amônia/análise , Amônia/toxicidade , Anaerobiose , Animais , Biocombustíveis/análise , Reatores Biológicos/microbiologia , Esterco/análise , Esterco/microbiologia , Metano , Nitrogênio/análise , Suínos
12.
Environ Res ; 212(Pt D): 113530, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35609652

RESUMO

Distribution of intracellular (iARGs) and extracellular ARGs (eARGs) in manure anaerobic digestion (AD) process coupled with two types of biochar (BC and BP) were investigated. And the effects of biochar on the conjugation transfer of ARGs were explored by deciphering the interaction of biochar with bacterial stress responses, physiological metabolism and antibiotic resistances. Results showed that AD process could effectively remove all the detected eARGs with efficiency of 47.4-98.2%. The modified biochar (BP) with larger specific surface area (SSA) was propitious to decrease the absolute copy number of extracellular resistance genes. AD process could effectively remove iARGs by inhibiting the growth of host bacteria. The results of structural equation models (SEM) indicated that biochar put indirect influences on the fate of ARGs (λ = -0.23, P > 0.05). Analysis on oxidative stress levels, antioxidant capacity, DNA damage-induced response (SOS) response and energy generation process demonstrated that biochar induced the oxidative stress response of microorganisms and enhanced the antioxidant capacity of bacteria. The elevated antioxidant capacity negatively affected SOS response, amplified cell membrane damage and further weakened the energy generation process, resulted in the inhibition of horizontal transfer of ARGs.


Assuntos
Antibacterianos , Esterco , Anaerobiose , Animais , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Bactérias , Carvão Vegetal , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Esterco/análise , Esterco/microbiologia , Suínos
13.
Ecotoxicol Environ Saf ; 219: 112335, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34020270

RESUMO

Antibiotic resistance genes (ARGs) in livestock farms have attracted a growing attention with potential effects on human health. As one of the most important organic fertilizer, swine waste provided an ideal environment for understanding the dissemination and accumulation of ARGs in agricultural ecosystems. Here we conducted a year-round follow-up trace from swine waste to receiving environments, with the purpose of revealing the contamination profiles and ecological risks of ARGs at different seasons. Results indicated that a variety of common ARGs and even high-risk ARGs (i.e., blaampC, blaOXA-1, blaTEM-1 and mcr-1) were prevalent from swine waste to farmland soil, with changing in various degrees from season to season. Regarding the occurrence pattern of ARGs, tetracycline resistance genes (tet-ARGs) were predominant genes at four seasons in all fresh pig feces, swine manure, manured soil and wastewater. The levels of most ARGs in solid waste were reduced at a different degree via natural composting, and the removal effect was best in summer, while ARGs decreased poorly after wastewater treatment, especially in winter (up to 10-1 copies/16S copies in the residual level), which increased the possibility of propagation to receiving environment. This concern was also validated by the investigation on farmland environment with long-term application of manure, where causing an increase in ARG abundances in soils (approximately 0.9-32.7 times). To our knowledge, this study is the first to demonstrate the distribution pattern of ARGs from swine waste to its receiving farmland environment at all seasons on this integrity chain.


Assuntos
Resistência Microbiana a Medicamentos/genética , Monitoramento Ambiental , Microbiologia do Solo , Purificação da Água , Agricultura , Animais , Compostagem , Ecossistema , Fazendas , Genes Bacterianos/efeitos dos fármacos , Gado , Esterco , Estações do Ano , Solo , Suínos , Águas Residuárias
14.
Ecotoxicol Environ Saf ; 225: 112815, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34562788

RESUMO

The application of manure compost may cause the transmission of antibiotic resistance genes (ARGs) in agroecological environment, which poses a global threat to public health. However, the driving factors for the transmission of ARGs from animal manure to agroecological systems remains poorly understood. Here, we explored the spatiotemporal variation in ARG abundance and bacterial community composition as well as relative driving factors in a soil-lettuce system amended with swine manure compost. The results showed that ARGs abundance had different variation trends in soil, lettuce phylloplane and endophyere after the application of swine manure compost. The temporal variations of total ARGs abundance had no significant different in soil and lettuce phylloplane, while lettuce endosphere enriched half of ARGs to the highest level at harvest. There was a significant linear correlation between ARGs and integrase genes (IGs). In contrast to the ARGs variation trend, the alpha diversity of soil and phylloplane bacteria showed increasing trends over planting time, and endosphere bacteria remained stable. Correlation analysis showed no identical ARG-related genera in the three parts, but the shared Proteobacteria, Pseudomonas, Halomonas and Chelativorans, from manure compost dominated ARG profile in the soil-lettuce system. Moreover, redundancy analysis and structural equation modelling showed the variations of ARGs may have resulted from the combination of multiple driving factors in soil-lettuce system. ARGs in soil were more affected by the IGs, antibiotic and heavy metals, and bacterial community structure and IGs were the major influencing factors of ARG profiles in the lettuce. The study provided insight into the multiple driving factors contribute to the variations of typical ARGs in different parts of soil-lettuce system, which was conducive to the risk assessment of ARGs in agroecosystem and the development of effective prevention and control measures for ARGs spread in the environment.


Assuntos
Lactuca , Solo , Animais , Antibacterianos , Resistência Microbiana a Medicamentos , Esterco , Suínos
15.
Artigo em Inglês | MEDLINE | ID: mdl-32460612

RESUMO

The methane production and the microbial community dynamics of thermophilic anaerobic co-digestion (AD) of corn stover, swine manure and effluent were conducted at total solid (TS) content of 5%, 10% and 15%, the carbon to nitrogen ratio (C/N) of 20, 30 and 40 and the effluent volumetric percentage (EVP) of 20%, 40% and 60%. For batches with 5% TS, the highest methane yield of 238.5-283.1 mL g-1 volatile solid (VS) and the specific methane productivity of 138.5-152.2 mL g-1 initial VS were obtained at the C/N ratios of 20 and 30. For the mixtures with 10% and 15% TS, the highest methane yield was 341.9 mL g-1 VS and 351.2 mL g-1 VS, respectively, when the C/N ratio of 20% and 60% EVP conditions were maintained. Co-digestion of swine manure with corn stover caused an obvious shift in microbial population, in which the archaeal population changed from 0.3% to 2.8% and the bacterial community changed from 97.2% to 99.7%. The experimental batches with the highest relative abundance of the archaeal population (2.00% of total microbial population for 5% TS, 1.74% for 10% TS and 2.76% for 15% TS) had the highest rate of methanogenesis subsequently enhancing methane production (283.08 mL g-1 VS for 5% TS, 341.91 mL g-1 VS for 10% TS and 351.23 mL g-1 VS for 15% TS). The results of microbiome analysis enabled understanding the key populations in biomethane generation.


Assuntos
Reatores Biológicos/microbiologia , Esterco/análise , Metano/biossíntese , Microbiota , Resíduos Sólidos/análise , Zea mays/química , Anaerobiose , Animais , Archaea/crescimento & desenvolvimento , Bactérias Anaeróbias/crescimento & desenvolvimento , Biocombustíveis/análise , Carbono/análise , Modelos Teóricos , Nitrogênio/análise , Suínos
16.
Appl Environ Microbiol ; 85(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30683745

RESUMO

This study employed high-throughput quantitative PCR and 16S rRNA sequencing to evaluate the effect of temperature and residual antibiotics on the dynamics of antibiotic resistance genes (ARGs) and microbial communities during anaerobic digestion of swine manure. The abundances of total ARGs and 16S rRNA genes significantly decreased in all of four treatments (25°C, 37°C, and 37°C with 50 mg of wet weight antibiotics of body weight, and 55°C). The abundances of most ARG types were significantly correlated with those of the 16S rRNA gene and transposase gene (P < 0.01). However, the abundances of total ARGs at 55°C were much higher than those of other treatments. Meanwhile, the microbial communities at 55°C, where the Streptococcus pathogen remained at a relatively high abundance and cellulose degraders and hydrogen producers, such as Ethanoligenens and Coprococcus bacteria, increased, were markedly different from those of other treatments. Redundancy analysis indicates that temperature, pH, and the genus Streptococcus had the highest explanation for ARG variation among experimental factors, chemical properties, and representative genera, respectively. Network analysis further showed that the genus Streptococcus contributed greatly to the higher ARG abundance at 55°C. The moderate antibiotic residue only caused a slight and transitory inhibition for microbially diverse populations and promotion for ARG abundance, probably due to the degradation of antibiotics and microbial adaptability. Our results clarify the cooperativity of gene transfer-related items on ARG variation and intensively prove that higher temperature cannot always achieve better ARG removal in anaerobic digestion unless pathogens and gene transfer elements are more efficiently inhibited.IMPORTANCE Antibiotic resistance genes (ARGs) are frequently detected with high abundance in manure-applied soils. Anaerobic digestion is one of widely used processes for animal waste treatment. Thus, it is critical to understand the potential of anaerobic digestion to attenuate ARGs. Although some previous studies recommended thermophilic digestion for ARG removal, they did not get sufficient evidence to support this view. The antibiotics applied to animals are mostly excreted through feces and urine because of incomplete metabolism. It is indispensable to know whether residual antibiotics in manure will hinder ARG attenuation in anaerobic digesters. The significance of our research is in comprehensively understanding the evolution and mechanism of ARGs in anaerobic digestion of swine manure affected by temperature and residual antibiotics, which will allow the development of an ARG elimination strategy before their release into the environment.


Assuntos
Bactérias/genética , Farmacorresistência Bacteriana/genética , Resistência Microbiana a Medicamentos/genética , Esterco/microbiologia , Temperatura , Anaerobiose/genética , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/patogenicidade , Peso Corporal , Elementos de DNA Transponíveis/genética , Digestão/fisiologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/fisiologia , Transferência Genética Horizontal , Microbiota/genética , RNA Ribossômico 16S/genética , Streptococcus/genética , Suínos
17.
J Ind Microbiol Biotechnol ; 46(7): 911-923, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31020466

RESUMO

Microbial electrochemical technology (MET) that can harvest electricity/valuable materials and enhance the efficiency of conventional biological processes through the redox reaction of organic/inorganic compounds has attracted considerable attention. MET-based anaerobic digestion (AD) systems treating swine manure were operated at different applied voltages (0.1, 0.3, 0.5, 0.7, and 0.9 V) and temperatures (25, 35, and 45 °C). Among the MET-based AD systems with different applied voltages at 35 °C, M4 at 0.7 V showed the highest methane production (2.96 m3-CH4/m3) and methane yield (0.64 m3-CH4/kg-VS). The methane production and yield increased with increasing temperature at an applied voltage of 0.7 V. Nevertheless, the MET-based AD systems (LM at 25 °C and 0.7V) showed competitive AD performance (2.33 m3-CH4/m3 and 0.53 m3-CH4/VS) compared with the conventional AD system (35 °C). The microbial community was affected by the applied voltage and temperature, and hydrogenotrophic methanogens such as M. flavescens, M. hungatei, and M. thermautotrophicus were mainly responsible for methane production in MET-based AD systems. Therefore, the methane production can be enhanced by an applied voltage or by direct interspecies electron transfer because M. flavescens and M. thermautotrophicus were especially predominant in cathode of MET-based AD systems. The MET-based AD systems can help enhance biogas production from swine manure with no significant change in methane content. Furthermore, MET-based AD systems will be a promising AD system through low material development and the optimal operation.


Assuntos
Microbiota , Anaerobiose , Animais , Biocombustíveis , Transporte de Elétrons , Esterco , Metano/biossíntese , Oxirredução , Suínos , Temperatura
18.
J Environ Manage ; 232: 592-599, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30517840

RESUMO

Excessive nutrients and toxic gas emissions from animal manure management are of great global concern, with negative environmental and economic consequences worldwide. Due to biochar recalcitrance and sorption properties, this study investigated the effect of the biochar(BC) derived from bamboo, amendment on swine manure(SM) composting efficiency through physical, physio-chemical, gaseous emissions, microbiological, and phytotoxic analysis during the 56 day process of in-vessel composting. The treatments were set-up from different ratios of biochar to swine manure mixed with sawdust(SD)(i.e. SM + SD + 3%BC(T1), SM:SD + 5 %BC(T2) and SM:SD + 10 %BC (T3)), while treatment without biochar amendment was used as a control, SM:SD(C). The results showed that, compared to the control, biochar amended compost mixtures had significantly reduced (p ≤ 0.05) bulk density, organic matter(OM), C:N ratio, NH3 emission, pathogenic microorganisms, and phytotoxicity effect (Cress seed, Lepidium sativum Linn.). On the other hand, biochar amendment mixtures had increased total porosity, water holding capacity, rapid thermophilic temperature, and nitrate nitrogen. However, with the most prominent effects in terms of the nutrient quality and degradation rate of compost mixtures, the amendment of 10% biochar is recommended for swine manure management through the composting process.


Assuntos
Compostagem , Microbiota , Animais , Carvão Vegetal , Esterco , Nitrogênio , Solo , Suínos
19.
J Environ Manage ; 233: 440-446, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30593003

RESUMO

The hydrochars derived from swine manure were prepared by CaO assisted hydrothermal carbonization (HTC), and their properties were investigated for the first time. The results showed that the pH and yield of the hydrochar were largely increased by CaO addition. HTC of swine manure increased the phosphorus (P) content in the hydrochar, and appropriately 100% of P as apatite-P was enriched in the hydrochar by CaO assisted HTC. Additionally, the CaO addition during HTC improved the porosity of the hydrochar. The FTIR analysis revealed that substantial functional groups were present on the surface of the hydrochar, indicating the facilitated exchange between the hydrochar and hydrophilic soil when the hydrochar was used for soil amendment. This study demonstrated that CaO assisted HTC was a novel strategy to quickly convert swine manure to the promising soil amendment especially for acidic soils.


Assuntos
Carbono , Esterco , Animais , Interações Hidrofóbicas e Hidrofílicas , Fósforo , Solo , Suínos
20.
J Environ Manage ; 230: 102-109, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30278273

RESUMO

Understanding the dynamics of veterinary antibiotic and related antibiotic resistance genes (ARGs) during swine manure composting is crucial in assessing the environmental risk of antibiotics, which could effectively reduce their impact in natural environments. This study investigated the dissipation of oxytetracycline (OTC), sulfamerazine (SM1) and ciprofloxacin (CIP) as well as the behaviour of their corresponding ARGs during swine manure composting. These antibiotics were added at two concentration levels and two different methods of addition (single/mixture). The results indicated that the removal efficiency of antibiotics by composting were ≥85%, except for the single-SM1 treatment. The tetracycline resistance genes (TRGs) encoding ribosomal protection proteins (RPP) and efflux pump (EFP) and fluoroquinolone resistance genes (FRGs) could be effectively removed after 42 days. On the contrary, the TRGs encoding enzymatic inactivation (EI) and sulfonamide resistance genes (SRGs) were enriched up to 31-fold (sul 2 in single-low-SM1). Statistical analyses indicated that the behaviour of these class antibiotics and ARGs were controlled by microbial activity and significantly influenced by environmental factors (mainly C/N, moisture and pH) throughout the composting process.


Assuntos
Antibacterianos/metabolismo , Ciprofloxacina/metabolismo , Compostagem , Esterco , Oxitetraciclina/metabolismo , Sulfamerazina/metabolismo , Animais , Antibacterianos/análise , Ciprofloxacina/análise , Resistência Microbiana a Medicamentos , Esterco/análise , Oxitetraciclina/análise , Sulfamerazina/análise , Suínos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa