RESUMO
Symphyotrichum ericoides (Asteraceae) from naturally seleniferous habitat (Pine Ridge) was shown previously to have selenium (Se) hyperaccumulator properties in field and glasshouse studies, and to benefit from Se through protection from herbivory. To investigate whether Se hyperaccumulation is ubiquitous in S. ericoides or restricted to seleniferous soils, the S. ericoides Pine Ridge (PR) population was compared with the nearby Cloudy Pass (CP) population from nonseleniferous soil. The S. ericoidesPR and CP populations were strikingly physiologically different: in a common garden experiment, PR plants accumulated up to 40-fold higher Se concentrations than CP plants and had 10-fold higher Se : sulfur (S) ratios. Moreover, roots of S. ericoidesPR plants showed directional growth toward selenate, while CP roots did not. Growth of both accessions responded positively to Se. Each accession grew best on its own soil. Rhizosphere soil inoculum from the S. ericoidesPR population stimulated plant growth and Se accumulation in both S. ericoidesPR and S. ericoidesCP plants, on both PR and CP soils. While the S. ericoidesPR population hyperaccumulates Se, the nearby CP population does not. The capacity of S. ericoidesPR plants to hyperaccumulate Se appears to be a local phenomenon that is restricted to seleniferous soil. Mutualistic rhizosphere microbes of the S. ericoidesPR population may contribute to the hyperaccumulation phenotype.
Assuntos
Asteraceae/metabolismo , Selênio/metabolismo , Ecossistema , Herbivoria , Fenótipo , Folhas de Planta/química , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Rizosfera , Solo/químicaRESUMO
Neighbors of Se hyperaccumulators Stanleya pinnata and Astragalus bisulcatus were found earlier to have elevated Se levels. Here we investigate whether Se hyperaccumulators affect Se localization and speciation in surrounding soil and neighboring plants. X-ray fluorescence mapping and X-ray absorption near-edge structure spectroscopy were used to analyze Se localization and speciation in leaves of Artemisia ludoviciana, Symphyotrichum ericoides and Chenopodium album growing next to Se hyperaccumulators or non-accumulators at a seleniferous site. Regardless of neighbors, A. ludoviciana, S. ericoides and C. album accumulated predominantly (73-92%) reduced selenocompounds with XANES spectra similar to the C-Se-C compounds selenomethionine and methyl-selenocysteine. Preliminary data indicate that the largest Se fraction (65-75%), both in soil next to hyperaccumulator S. pinnata and next to nonaccumulator species was reduced Se with spectra similar to C-Se-C standards. These same C-Se-C forms are found in hyperaccumulators. Thus, hyperaccumulator litter may be a source of organic soil Se, but soil microorganisms may also contribute. These findings are relevant for phytoremediation and biofortification since organic Se is more readily accumulated by plants, and more effective for dietary Se supplementation.