Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Res ; 111: 86-99, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27155060

RESUMO

Epidemiological studies support an inverse correlation between HDL-C and cardiovascular disease. However, low HDL-C levels do not always segregate with premature disease. These include, LCAT deficiency and the apolipoproteinA-IMilano (AIM) variant. AIM has a cysteine for arginine at position 173 in the otherwise cysteine free protein permitting AIM homodimerization and apoA-II heterodimerization. We relate the biochemical characteristics of low HDL-C phenotype AIM carriers to lipoprotein changes in humans administered recombinant dimeric AIM/palmitoyl-oleoyl phosphatidyl choline (ETC-216). Pharmacokinetic analysis of infused ETC-216 suggest a slow distribution of AIM into peripheral tissue and an extremely long terminal half-life in plasma. Following ETC-216 administration to normal human volunteers, an initial dose-dependent HDL-C elevation was observed. Thereafter, subjects transiently acquired a lipoprotein profile similar to that of AIM carriers, including reduced HDL-C and mild hypertriglyceridemia. The time-dependent changes in plasma lipids/lipoproteins may support an increased tissue cholesterol removing capacity of ETC-216. These findings provide mechanistic insight into the rapid removal of atheromatous plaques observed in humans, possibly linked to enhanced cholesterol removal capacity of ETC-216.


Assuntos
Anticolesterolemiantes/administração & dosagem , Apolipoproteína A-I/administração & dosagem , Heterozigoto , Fosfatidilcolinas/administração & dosagem , Adulto , Anticolesterolemiantes/efeitos adversos , Anticolesterolemiantes/sangue , Anticolesterolemiantes/farmacocinética , Apolipoproteína A-I/efeitos adversos , Apolipoproteína A-I/sangue , Apolipoproteína A-I/genética , Apolipoproteína A-I/farmacocinética , Biomarcadores/sangue , HDL-Colesterol/sangue , Método Duplo-Cego , Feminino , Genótipo , Meia-Vida , Voluntários Saudáveis , Humanos , Hipertrigliceridemia/sangue , Hipertrigliceridemia/induzido quimicamente , Hipertrigliceridemia/genética , Infusões Intravenosas , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Modelos Estatísticos , Fenótipo , Fosfatidilcolinas/efeitos adversos , Fosfatidilcolinas/sangue , Fosfatidilcolinas/farmacocinética , Distribuição Tecidual , Triglicerídeos/sangue , Adulto Jovem
2.
Pharmacol Ther ; 260: 108684, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964560

RESUMO

Low levels of high-density lipoprotein (HDL) and impaired HDL functionality have been consistently associated with increased susceptibility to infection and its serious consequences. This has been attributed to the critical role of HDL in maintaining cellular lipid homeostasis, which is essential for the proper functioning of immune and structural cells. HDL, a multifunctional particle, exerts pleiotropic effects in host defense against pathogens. It functions as a natural nanoparticle, capable of sequestering and neutralizing potentially harmful substances like bacterial lipopolysaccharides. HDL possesses antiviral activity, preventing viruses from entering or fusing with host cells, thereby halting their replication cycle. Understanding the complex relationship between HDL and the immune system may reveal innovative targets for developing new treatments to combat infectious diseases and improve patient outcomes. This review aims to emphasize the role of HDL in influencing the course of bacterial and viral infections and its and its therapeutic potential.


Assuntos
Infecções Bacterianas , Lipoproteínas HDL , Viroses , Humanos , Viroses/tratamento farmacológico , Viroses/imunologia , Infecções Bacterianas/tratamento farmacológico , Animais , Lipoproteínas HDL/metabolismo , Antivirais/uso terapêutico , Antivirais/farmacologia
3.
Cancer Lett ; 495: 112-122, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-32949679

RESUMO

We hypothesised that synthetic HDL nanoparticles carrying a gemcitabine prodrug and apolipoprotein A-II (sHDLGemA2) would target scavenger receptor-B1 (SR-B1) to preferentially and safely deliver gemcitabine into pancreatic ductal adenocarcinoma (PDAC). We designed, manufactured and characterised sHDLGemA2 nanoparticles sized ~130 nm, incorporating 20 mol% of a gemcitabine prodrug within the lipid bilayer, which strengthens on adding ApoA-II. We measured their ability to inhibit growth in cell lines and cell-derived and patient-derived murine PDAC xenografts. Fluorescent-labelled sHDLGemA2 delivered gemcitabine inside xenografts. Xenograft levels of active gemcitabine after sHDLGemA2 were similar to levels after high-dose free gemcitabine. Growth inhibition in mice receiving 4.5 mg gemcitabine/kg/d, carried in sHDLGemA2, was equivalent to inhibition after high-dose (75 mg/kg/d) free gemcitabine, and greater than inhibition after low-dose (4.5 mg/kg/d) free gemcitabine. sHDLGemA2 slowed growth in semi-resistant cells and a resistant human xenograft. sHDLGemA2 targeted xenografts more effectively than sHDLGemA1. SR-B1 was over-expressed in PDAC cells and xenografts. Targeting by ApoA-II was suppressed by anti-SR-B1. Because sHDLGemA2 provided only ~6% of the free gemcitabine dose for an equivalent response, patient side effects can be greatly reduced, and the sHDLGemA2 concept should be developed through clinical trials.


Assuntos
Apolipoproteína A-II/administração & dosagem , Carcinoma Ductal Pancreático/tratamento farmacológico , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/tratamento farmacológico , Pró-Fármacos/administração & dosagem , Receptores Depuradores Classe B/metabolismo , Animais , Apolipoproteína A-II/química , Apolipoproteína A-II/farmacologia , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/administração & dosagem , Desoxicitidina/química , Desoxicitidina/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Lipoproteínas HDL/química , Masculino , Camundongos , Nanopartículas , Tamanho da Partícula , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
4.
Pharmacol Ther ; 157: 28-42, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26546991

RESUMO

Reconstituted forms of HDL (rHDL) are under development for infusion as a therapeutic approach to attenuate atherosclerotic vascular disease and to reduce cardiovascular risk following acute coronary syndrome and ischemic stroke. Currently available rHDL formulations developed for clinical use contain apolipoprotein A-I (apoA-I) and one of the major lipid components of HDL, either phosphatidylcholine or sphingomyelin. Recent data have established that quantitatively minor molecular constituents of HDL particles can strongly influence their anti-atherogenic functionality. Novel rHDL formulations displaying enhanced biological activities, including cellular cholesterol efflux, may therefore offer promising prospects for the development of HDL-based, anti-atherosclerotic therapies. Indeed, recent structural and functional data identify phosphatidylserine as a bioactive component of HDL; the content of phosphatidylserine in HDL particles displays positive correlations with all metrics of their functionality. This review summarizes current knowledge of structure-function relationships in rHDL formulations, with a focus on phosphatidylserine and other negatively-charged phospholipids. Mechanisms potentially underlying the atheroprotective role of these lipids are discussed and their potential for the development of HDL-based therapies highlighted.


Assuntos
Lipoproteínas HDL/uso terapêutico , Animais , Humanos , Lipoproteínas HDL/química , Fosfolipídeos/análise , Fosfolipídeos/química , Relação Estrutura-Atividade
5.
Front Pharmacol ; 7: 2, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26834639

RESUMO

Several lines of evidence suggest that, besides being a strong independent predictor of the occurrence of primary coronary events, a low plasma high density lipoprotein (HDL) cholesterol level is also associated with short- and long-term unfavorable prognosis in patients, who have recovered from a myocardial infarction, suggesting a direct detrimental effect of low HDL on post-ischemic myocardial function. Experiments performed in ex vivo and in vivo models of myocardial ischemia/reperfusion (I/R) injury have clearly shown that HDL are able to preserve cardiac function when given before ischemia or at reperfusion; the protective effects of HDL against I/R injury have been also confirmed in other tissues and organs, as brain and hind limb. HDL were shown to act on coronary endothelial cells, by limiting the increase of endothelium permeability and promoting vasodilation and neoangiogenesis, on white blood cells, by reducing their infiltration into the ischemic tissue and the release of pro-inflammatory and matrix-degrading molecules, and on cardiomyocytes, by preventing the activation of the apoptotic cascade. Synthetic HDL retains the cardioprotective activity of plasma-derived HDL and may become a useful adjunctive therapy to improve clinical outcomes in patients with acute coronary syndromes or undergoing coronary procedures.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa