Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Med Phys ; 50(2): 837-853, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36196045

RESUMO

PURPOSE: Synthetic digital mammogram (SDM) is a 2D image generated from digital breast tomosynthesis (DBT) and used as a substitute for a full-field digital mammogram (FFDM) to reduce the radiation dose for breast cancer screening. The previous deep learning-based method used FFDM images as the ground truth, and trained a single neural network to directly generate SDM images with similar appearances (e.g., intensity distribution, textures) to the FFDM images. However, the FFDM image has a different texture pattern from DBT. The difference in texture pattern might make the training of the neural network unstable and result in high-intensity distortion, which makes it hard to decrease intensity distortion and increase perceptual similarity (e.g., generate similar textures) at the same time. Clinically, radiologists want to have a 2D synthesized image that feels like an FFDM image in vision and preserves local structures such as both mass and microcalcifications (MCs) in DBT because radiologists have been trained on reading FFDM images for a long time, while local structures are important for diagnosis. In this study, we proposed to use a deep convolutional neural network to learn the transformation to generate SDM from DBT. METHOD: To decrease intensity distortion and increase perceptual similarity, a multi-scale cascaded network (MSCN) is proposed to generate low-frequency structures (e.g., intensity distribution) and high-frequency structures (e.g., textures) separately. The MSCN consist of two cascaded sub-networks: the first sub-network is used to predict the low-frequency part of the FFDM image; the second sub-network is used to generate a full SDM image with textures similar to the FFDM image based on the prediction of the first sub-network. The mean-squared error (MSE) objective function is used to train the first sub-network, termed low-frequency network, to generate a low-frequency SDM image. The gradient-guided generative adversarial network's objective function is to train the second sub-network, termed high-frequency network, to generate a full SDM image with textures similar to the FFDM image. RESULTS: 1646 cases with FFDM and DBT were retrospectively collected from the Hologic Selenia system for training and validation dataset, and 145 cases with masses or MC clusters were independently collected from the Hologic Selenia system for testing dataset. For comparison, the baseline network has the same architecture as the high-frequency network and directly generates a full SDM image. Compared to the baseline method, the proposed MSCN improves the peak-to-noise ratio from 25.3 to 27.9 dB and improves the structural similarity from 0.703 to 0.724, and significantly increases the perceptual similarity. CONCLUSIONS: The proposed method can stabilize the training and generate SDM images with lower intensity distortion and higher perceptual similarity.


Assuntos
Neoplasias da Mama , Mamografia , Humanos , Feminino , Estudos Retrospectivos , Mamografia/métodos , Neoplasias da Mama/diagnóstico por imagem , Intensificação de Imagem Radiográfica/métodos , Redes Neurais de Computação
2.
Phys Eng Sci Med ; 44(1): 23-35, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33226534

RESUMO

Digital breast tomosynthesis (DBT) has recently gained interest both for breast cancer screening and diagnosis. Its employment has increased also in conjunction with digital mammography (DM), to improve cancer detection and reduce false positive recall rate. Synthetic mammograms (SMs) reconstructed from DBT data have been introduced to replace DM in the DBT + DM approach, for preserving the benefits of the dual-acquisition modality whilst reducing radiation dose and compression time. Therefore, different DBT models have been commercialized and the effective potential of each system has been investigated. In particular, wide-angle DBT was shown to provide better depth resolution than narrow-angle DBT, while narrow-angle DBT allows better identification of microcalcifications compared to wide-angle DBT. Given the increasing employment of SMs as supplement to DBT, a comparison of image quality between SMs obtained in narrow-angle and wide-angle DBT is of practical interest. Therefore, the aim of this phantom study was to evaluate and compare the image quality of SMs reconstructed from 15° (SM15) and 40° (SM40) DBT in a commercial system. Spatial resolution, noise and contrast properties were evaluated through the modulation transfer function (MTF), noise power spectrum, maps of signal-to-noise ratio (SNR), image contrast, contrast-to-noise ratio (CNR) and contrast-detail (CD) thresholds. SM40 expressed higher MTF than SM15, but also lower SNR and CNR levels. SM15 and SM40 were characterized by slight different texture, and a different behavior in terms of contrast was found. SM15 provided better CD performances than SM40. These results suggest that the employment of wide/narrow-angle DBT + SM images should be optimized based on the specific image task.


Assuntos
Calcinose , Mamografia , Detecção Precoce de Câncer , Humanos , Imagens de Fantasmas , Razão Sinal-Ruído
3.
J Med Imaging (Bellingham) ; 7(1): 012703, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31763356

RESUMO

We evaluated whether using synthetic mammograms for training data augmentation may reduce the effects of overfitting and increase the performance of a deep learning algorithm for breast mass detection. Synthetic mammograms were generated using in silico procedural analytic breast and breast mass modeling algorithms followed by simulated x-ray projections of the breast models into mammographic images. In silico breast phantoms containing masses were modeled across the four BI-RADS breast density categories, and the masses were modeled with different sizes, shapes, and margins. A Monte Carlo-based x-ray transport simulation code, MC-GPU, was used to project the three-dimensional phantoms into realistic synthetic mammograms. 2000 mammograms with 2522 masses were generated to augment a real data set during training. From the Curated Breast Imaging Subset of the Digital Database for Screening Mammography (CBIS-DDSM) data set, we used 1111 mammograms (1198 masses) for training, 120 mammograms (120 masses) for validation, and 361 mammograms (378 masses) for testing. We used faster R-CNN for our deep learning network with pretraining from ImageNet using the Resnet-101 architecture. We compared the detection performance when the network was trained using different percentages of the real CBIS-DDSM training set (100%, 50%, and 25%), and when these subsets of the training set were augmented with 250, 500, 1000, and 2000 synthetic mammograms. Free-response receiver operating characteristic (FROC) analysis was performed to compare performance with and without the synthetic mammograms. We generally observed an improved test FROC curve when training with the synthetic images compared to training without them, and the amount of improvement depended on the number of real and synthetic images used in training. Our study shows that enlarging the training data with synthetic samples can increase the performance of deep learning systems.

4.
J Am Coll Radiol ; 15(10): 1430-1436, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29907419

RESUMO

PURPOSE: To evaluate perceptual difference in breast density classification using synthesized mammography (SM) compared with standard or full-field digital mammography (FFDM) for screening. MATERIALS AND METHODS: This institutional review board-approved, retrospective, multireader study evaluated breast density on 200 patients who underwent baseline screening mammogram during which both SM and FFDM were obtained contemporaneously from June 1, 2016, through November 30, 2016. Qualitative breast density was independently assigned by seven readers initially evaluating FFDM alone. Then, in a separate session, these same readers assigned breast density using synthetic views alone on the same 200 patients. The readers were again blinded to each other's assignment. Qualitative density assessment was based on BI-RADS fifth edition. Interreader agreement was evaluated with κ statistic using 95% confidence intervals. Testing for homogeneity in paired proportions was performed using McNemar's test with a level of significance of .05. RESULTS: For patients across the SM and standard 2-D data set, diagnostic testing with McNemar's test with P = 0.32 demonstrates that the minimal density transitions across FFDM and SM are not statistically significant density shifts. Taking clinical significance into account, only 8 of 200 (4%) patients had clinically significant transition (dense versus not dense). There was substantial interreader agreement with overall κ in FFDM of 0.71 (minimum 0.53, maximum 0.81) and overall SM κ average of 0.63 (minimum 0.56, maximum 0.87). CONCLUSION: Overall subjective breast density assignment by radiologists on SM is similar to density assignment on standard 2-D mammogram.


Assuntos
Densidade da Mama , Mamografia/métodos , Adulto , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Estudos Retrospectivos
5.
Acad Radiol ; 24(8): 947-953, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28188043

RESUMO

RATIONALE AND OBJECTIVES: To evaluate uptake, patterns of use, and perception of digital breast tomosynthesis (DBT) among practicing breast radiologists. MATERIALS AND METHODS: Institutional Review Board exemption was obtained for this Health Insurance Portability and Accountability Act-compliant electronic survey, sent to 7023 breast radiologists identified via the Radiological Society of North America database. Respondents were asked of their geographic location and practice type. DBT users reported length of use, selection criteria, interpretive sequences, recall rate, and reading time. Radiologist satisfaction with DBT as a diagnostic tool was assessed (1-5 scale). RESULTS: There were 1156 (16.5%) responders, 65.8% from the United States and 34.2% from abroad. Of these, 749 (68.6%) use DBT; 22.6% in academia, 56.5% private, and 21% other. Participants are equally likely to report use of DBT if they worked in academics versus in private practice (78.2% [169 of 216] vs 71% [423 of 596]) (odds ratio, 1.10; 95% confidence interval: 0.87-1.40; P = 1.000). Of nonusers, 43% (147 of 343) plan to adopt DBT. No US regional differences in uptake were observed (P = 1.000). Although 59.3% (416 of 702) of DBT users include synthetic 2D (s2D) for interpretation, only 24.2% (170 of 702) use s2D alone. Majority (66%; 441 of 672) do not perform DBT-guided procedures. Radiologist (76.6%) (544 of 710) satisfaction with DBT as a diagnostic tool is high (score ≥ 4/5). CONCLUSIONS: DBT is being adopted worldwide across all practice types, yet variations in examination indication, patient selection, utilization of s2D images, and access to DBT-guided procedures persist, highlighting the need for consensus and standardization.


Assuntos
Atitude do Pessoal de Saúde , Neoplasias da Mama/diagnóstico por imagem , Mamografia/estatística & dados numéricos , Padrões de Prática Médica/estatística & dados numéricos , Centros Médicos Acadêmicos/estatística & dados numéricos , Aprovação de Teste para Diagnóstico , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Mamografia/métodos , Seleção de Pacientes , Prática Privada/estatística & dados numéricos , Radiologistas , Radiologia Intervencionista/estatística & dados numéricos , Inquéritos e Questionários , Estados Unidos , United States Food and Drug Administration
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa