Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 293(35): 13415-13426, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29976757

RESUMO

Many bacterial pathogens employ multicomponent protein complexes such as type IV secretion systems (T4SSs) to transfer virulence factors into host cells. Here we studied the interaction between two essential T4SS components: the very hydrophobic inner membrane protein VirB6, which may be a component of the translocation channel, and VirB10, which links the inner and outer bacterial membranes. To map the interaction site between these two T4SS components, we conducted alanine scanning and deleted six-amino acid stretches from the N-terminal periplasmic domain of VirB6 from Brucella suis Using the bacterial two-hybrid system to analyze the effects of these alterations on the VirB6-VirB10 interaction, we identified the amino acid regions 16-21 and 28-33 and Leu-18 in VirB6 as being required for this interaction. SDS-PAGE coupled with Western blotting of cell lysates and native PAGE of detergent-extracted membrane proteins revealed that the corresponding VirB6 residues in Agrobacterium tumefaciens (Phe-20 and amino acids 18-23 and 30-35) modulate the stability of both VirB6 and VirB5. However, the results from immuno-EM and super-resolution microscopy suggested that these regions and residues are not required for membrane association or for polar localization of VirB6. The six-amino acid deletions in the N terminus of VirB6 abolished pilus formation and virulence of A. tumefaciens, and the corresponding deletions in the VirB6 homolog TraD from the plasmid pKM101-T4SS abrogated plasmid transfer. Our results indicate that specific residues of the VirB6 N-terminal domain are required for VirB6 stabilization, its interaction with VirB10, and the incorporation of VirB2 and VirB5 into T-pili.


Assuntos
Agrobacterium tumefaciens/metabolismo , Proteínas de Bactérias/metabolismo , Doenças das Plantas/microbiologia , Mapas de Interação de Proteínas , Sistemas de Secreção Tipo IV/metabolismo , Agrobacterium tumefaciens/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Brucella suis/química , Brucella suis/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Alinhamento de Sequência , Sistemas de Secreção Tipo IV/química
2.
Curr Top Microbiol Immunol ; 418: 233-260, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29808338

RESUMO

The Agrobacterium tumefaciens VirB/VirD4 translocation machine is a member of a superfamily of translocators designated as type IV secretion systems (T4SSs) that function in many species of gram-negative and gram-positive bacteria. T4SSs evolved from ancestral conjugation systems for specialized purposes relating to bacterial colonization or infection. A. tumefaciens employs the VirB/VirD4 T4SS to deliver oncogenic DNA (T-DNA) and effector proteins to plant cells, causing the tumorous disease called crown gall. This T4SS elaborates both a cell-envelope-spanning channel and an extracellular pilus for establishing target cell contacts. Recent mechanistic and structural studies of the VirB/VirD4 T4SS and related conjugation systems in Escherichia coli have defined T4SS architectures, bases for substrate recruitment, the translocation route for DNA substrates, and steps in the pilus biogenesis pathway. In this review, we provide a brief history of A. tumefaciens VirB/VirD4 T4SS from its discovery in the 1980s to its current status as a paradigm for the T4SS superfamily. We discuss key advancements in defining VirB/VirD4 T4SS function and structure, and we highlight the power of in vivo mutational analyses and chimeric systems for identifying mechanistic themes and specialized adaptations of this fascinating nanomachine.


Assuntos
Agrobacterium tumefaciens/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutagênese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Sistemas de Secreção Tipo IV/química , Sistemas de Secreção Tipo IV/genética , Agrobacterium tumefaciens/química , Agrobacterium tumefaciens/metabolismo , Agrobacterium tumefaciens/patogenicidade , Proteínas de Bactérias/química , Proteínas Recombinantes de Fusão/metabolismo , Sistemas de Secreção Tipo IV/metabolismo
3.
Structure ; 31(4): 385-394.e4, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36870333

RESUMO

Agrobacterium tumefaciens causes crown gall disease in plants by the horizontal transfer of oncogenic DNA. The conjugation is mediated by the VirB/D4 type 4 secretion system (T4SS) that assembles an extracellular filament, the T-pilus, and is involved in mating pair formation between A. tumefaciens and the recipient plant cell. Here, we present a 3 Å cryoelectron microscopy (cryo-EM) structure of the T-pilus solved by helical reconstruction. Our structure reveals that the T-pilus is a stoichiometric assembly of the VirB2 major pilin and phosphatidylglycerol (PG) phospholipid with 5-start helical symmetry. We show that PG head groups and the positively charged Arg 91 residues of VirB2 protomers form extensive electrostatic interactions in the lumen of the T-pilus. Mutagenesis of Arg 91 abolished pilus formation. While our T-pilus structure is architecturally similar to previously published conjugative pili structures, the T-pilus lumen is narrower and positively charged, raising questions of whether the T-pilus is a conduit for ssDNA transfer.


Assuntos
Agrobacterium tumefaciens , Proteínas de Bactérias , Agrobacterium tumefaciens/química , Agrobacterium tumefaciens/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Sistemas de Secreção Tipo IV , Microscopia Crioeletrônica , Proteínas de Fímbrias , Fímbrias Bacterianas , Fatores de Virulência
4.
Front Microbiol ; 5: 340, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25147542

RESUMO

The plant tumor disease known as crown gall was not called by that name until more recent times. Galls on plants were described by Malpighi (1679) who believed that these extraordinary growth are spontaneously produced. Agrobacterium was first isolated from tumors in 1897 by Fridiano Cavara in Napoli, Italy. After this bacterium was recognized to be the cause of crown gall disease, questions were raised on the mechanism by which it caused tumors on a variety of plants. Numerous very detailed studies led to the identification of Agrobacterium tumefaciens as the causal bacterium that cleverly transferred a genetic principle to plant host cells and integrated it into their chromosomes. Such studies have led to a variety of sophisticated mechanisms used by this organism to aid in its survival against competing microorganisms. Knowledge gained from these fundamental discoveries has opened many avenues for researchers to examine their primary organisms of study for similar mechanisms of pathogenesis in both plants and animals. These discoveries also advanced the genetic engineering of domesticated plants for improved food and fiber.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa