Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
IUBMB Life ; 73(5): 726-738, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33686787

RESUMO

The importance of the tumor microenvironment in cancer progression has been well studied for many years. Immune checkpoint inhibitors (ICIs) are regarded as potential strategies in enhancing the immune responses in patients with cancer, particularly colorectal cancer (CRC). Notably, CRCs are extraordinarily heterogeneous and mostly are microsatellite-stable (MSS) or cold tumors, which means that the immune response is not usually as strong as that of foreign cells. T-cell immunoglobulin and ITIM domain (TIGIT) is a new immune checkpoint receptor overexpressed inside the CRC tumor-immune microenvironments. Moreover, several studies have shown that TIGIT in combination with other ICIs and/or conventional treatments, can lead to a robust anti-tumor response in CRC. This review looks deep inside TIGIT expression patterns, their various functions, and possible immunotherapy strategies to increase survival rates and decrease immune-related adverse events.


Assuntos
Adenocarcinoma/terapia , Neoplasias Colorretais/terapia , Inibidores de Checkpoint Imunológico , Proteínas de Checkpoint Imunológico/imunologia , Imunoterapia/métodos , Receptores Imunológicos/antagonistas & inibidores , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Motivos de Aminoácidos , Animais , Antígenos CD/imunologia , Sistemas CRISPR-Cas , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/radioterapia , Terapia Combinada , Microbioma Gastrointestinal , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Prognóstico , Domínios Proteicos , Receptores Imunológicos/biossíntese , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Microambiente Tumoral
2.
Clin Transl Oncol ; 25(1): 91-104, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36071369

RESUMO

Macrophages are the most abundant immune cells in primary and metastatic tumor tissues. Studies have shown that macrophages mainly exhibit a tumor-promoting phenotype and play a key role in tumor progression and metastasis. Therefore, many macrophage-targeted drugs have entered clinical trials. However, compared to preclinical studies, some clinical trial results showed that macrophage-targeted therapy did not achieve the desired effect. This may be because most of what we know about macrophages comes from in vitro experiments and animal models, while macrophages in the more complex human microenvironment are still poorly understood. With the development of technologies such as single-cell RNA sequencing, we have gained a new understanding of the origin, classification and functional mechanism of tumor-associated macrophages. Therefore, this study reviewed the recent progress of macrophages in promoting tumor progression and metastasis, aiming to provide some help for the formulation of optimal strategies for macrophage-targeted therapy.


Assuntos
Neoplasias , Animais , Humanos , Neoplasias/terapia , Macrófagos/patologia , Sistemas de Liberação de Medicamentos , Microambiente Tumoral
3.
Front Pharmacol ; 14: 1186712, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560476

RESUMO

Extracellular matrix (ECM) plays a pivotal and dynamic role in the construction of tumor microenvironment (TME), becoming the focus in cancer research and treatment. Multiple cell signaling in ECM remodeling contribute to uncontrolled proliferation, metastasis, immune evasion and drug resistance of cancer. Targeting trilogy of ECM remodeling could be a new strategy during the early-, middle-, advanced-stages of cancer and overcoming drug resistance. Currently nearly 60% of the alternative anticancer drugs are derived from natural products or active ingredients or structural analogs isolated from plants. According to the characteristics of ECM, this manuscript proposes three phases of whole-process management of cancer, including prevention of cancer development in the early stage of cancer (Phase I); prevent the metastasis of tumor in the middle stage of cancer (Phase II); provide a novel method in the use of immunotherapy for advanced cancer (Phase III), and present novel insights on the contribution of natural products use as innovative strategies to exert anticancer effects by targeting components in ECM. Herein, we focus on trilogy of ECM remodeling and the interaction among ECM, cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs), and sort out the intervention effects of natural products on the ECM and related targets in the tumor progression, provide a reference for the development of new drugs against tumor metastasis and recurrence.

4.
Heliyon ; 9(2): e13211, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36798759

RESUMO

Tumor-associated macrophages (TAMs) are closely related to tumorigenesis and metastasis of multiple cancer types. The infiltration of TAMs is used for predicting the prognosis of cancers, including colorectal cancer (CRC). However, the density and prognostic significance of M1 and M2 TAM phenotypes in the intratumor versus the invasive front (IF) are largely unknown in CRC. In this study, CD68 was selected as a general marker of TAMs, CD11c, NOS2 and CXCL10 as markers for M1 phenotype and CD163, CD206, CD115 as markers for M2 phenotype. Firstly, immunohistochemistry staining and double-labeling immunofluorescence staining showed that M1 molecular markers (NOS2, CXCL10, CD11c) were lowly expressed at both IF and intratumor, while M2 molecular markers (CD163, CD206, CD115) were highly expressed mainly at IF. Moreover, we also demonstrated that three M1 molecular markers including NOS2, CXCL10 and CD11c were correlated to each other. Meanwhile, three M2 molecular markers including CD163, CD206, and CD115 were also correlated to each other. Patients with low expression of three M1 molecular markers (NOS2/CXCL10/CD11c) exhibited low overall survival (OS) rate, whereas patients with high expression of three M2 molecular markers (CD163/CD206/CD115) exhibited low OS rate. We also observed that the prognostic value of treble markers combination (NOS2/CXCL10/CD11c or CD163/CD206/CD115) was superior to that of single marker. Together, our results reveal the combination of treble TAMs markers (NOS2/CXCL10/CD11c or CD163/CD206/CD115) could better evaluate the prognosis of CRC patients, which might be used as a more comprehensive method for predicting the prognosis of CRC patients.

5.
Heliyon ; 9(3): e14003, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36938461

RESUMO

Cancer-associated fibroblasts (CAFs) can exert their immunosuppressive effects by secreting various effectors that are involved in the regulation of tumor-infiltrating immune cells as well as other immune components in the tumor immune microenvironment (TIME), thereby promoting tumorigenesis, progression, metastasis, and drug resistance. Although a large number of studies suggest that CAFs play a key regulatory role in the development of head and neck squamous cell carcinoma (HNSCC), there are limited studies on the relevance of CAFs to the prognosis of HNSCC. In this study, we identified a prognostic signature containing eight CAF-related genes for HNSCC by univariate Cox analysis, lasso regression, stepwise regression, and multivariate Cox analysis. Our validation in primary cultures of CAFs from human HNSCC and four human HNSCC cell lines confirmed that these eight genes are indeed characteristic markers of CAFs. Immune cell infiltration differences analysis between high-risk and low-risk groups according to the eight CAF-related genes signature hinted at CAFs regulatory roles in the TIME, further revealing its potential role on prognosis. The signature of the eight CAF-related genes was validated in different independent validation cohorts and all showed that it was a valid marker for prognosis. The significantly higher overall survival (OS) in the low-risk group compared to the high-risk group was confirmed by Kaplan-Meier (K-M) analysis, suggesting that the signature of CAF-related genes can be used as a non-invasive predictive tool for HNSCC prognosis. The low-risk group had significantly higher levels of tumor-killing immune cell infiltration, as confirmed by CIBERSORT analysis, such as CD8+ T cells, follicular helper T cells, and Dendritic cells (DCs) in the low-risk group. In contrast, the level of infiltration of pro-tumor cells such as M0 macrophages and activated Mast cells (MCs) was lower. It is crucial to delve into the complex mechanisms between CAFs and immune cells to find potential regulatory targets and may provide new evidence for subsequently targeted immunotherapy. These results suggest that the signature of the eight CAF-related genes is a powerful indicator for the assessment of the TIME of HNSCC. It may provide a new and reliable potential indicator for clinicians to predict the prognosis of HNSCC, which may be used to guide treatment and clinical decision-making in HNSCC patients. Meanwhile, CAF-related genes are expected to become tumor biomarkers and effective targets for HNSCC.

6.
Acta Pharm Sin B ; 12(2): 787-800, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35256947

RESUMO

The bile acid-responsive G-protein-coupled receptor TGR5 is expressed in monocytes and macrophages, and plays a critical role in regulating inflammatory response. Our previous work has shown its role in promoting the progression of non-small cell lung cancer (NSCLC), yet the mechanism remains unclear. Here, using Tgr5-knockout mice, we show that TGR5 is required for M2 polarization of tumor-associated macrophages (TAMs) and suppresses antitumor immunity in NSCLC via involving TAMs-mediated CD8+ T cell suppression. Mechanistically, we demonstrate that TGR5 promotes TAMs into protumorigenic M2-like phenotypes via activating cAMP-STAT3/STAT6 signaling. Induction of cAMP production restores M2-like phenotypes in TGR5-deficient macrophages. In NSCLC tissues from human patients, the expression of TGR5 is associated with the infiltration of TAMs. The co-expression of TGR5 and high TAMs infiltration are associated with the prognosis and overall survival of NSCLC patients. Together, this study provides molecular mechanisms for the protumor function of TGR5 in NSCLC, highlighting its potential as a target for TAMs-centric immunotherapy in NSCLC.

7.
Acta Pharm Sin B ; 12(6): 2683-2694, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35755281

RESUMO

Remodeling the tumor microenvironment through reprogramming tumor-associated macrophages (TAMs) and increasing the immunogenicity of tumors via immunogenic cell death (ICD) have been emerging as promising anticancer immunotherapy strategies. However, the heterogeneous distribution of TAMs in tumor tissues and the heterogeneity of the tumor cells make the immune activation challenging. To overcome these dilemmas, a hybrid bacterium with tumor targeting and penetration, TAM polarization, and photothermal conversion capabilities is developed for improving antitumor immunotherapy in vivo. The hybrid bacteria (B.b@QDs) are prepared by loading Ag2S quantum dots (QDs) on the Bifidobacterium bifidum (B.b) through electrostatic interactions. The hybrid bacteria with hypoxia targeting ability can effectively accumulate and penetrate the tumor tissues, enabling the B.b to fully contact with the TAMs and mediate their polarization toward M1 phenotype to reverse the immunosuppressive tumor microenvironment. It also enables to overcome the intratumoral heterogeneity and obtain abundant tumor-associated antigens by coupling tumor penetration of the B.b with photothermal effect of the QDs, resulting in an enhanced immune effect. This strategy that combines B.b-triggered TAM polarization and QD-induced ICD achieved a remarkable inhibition of tumor growth in orthotopic breast cancer.

8.
Acta Pharm Sin B ; 12(3): 1163-1185, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35530162

RESUMO

Cancer immunotherapy has become a new generation of anti-tumor treatment, but its indications still focus on several types of tumors that are sensitive to the immune system. Therefore, effective strategies that can expand its indications and enhance its efficiency become the key element for the further development of cancer immunotherapy. Natural products are reported to have this effect on cancer immunotherapy, including cancer vaccines, immune-check points inhibitors, and adoptive immune-cells therapy. And the mechanism of that is mainly attributed to the remodeling of the tumor-immunosuppressive microenvironment, which is the key factor that assists tumor to avoid the recognition and attack from immune system and cancer immunotherapy. Therefore, this review summarizes and concludes the natural products that reportedly improve cancer immunotherapy and investigates the mechanism. And we found that saponins, polysaccharides, and flavonoids are mainly three categories of natural products, which reflected significant effects combined with cancer immunotherapy through reversing the tumor-immunosuppressive microenvironment. Besides, this review also collected the studies about nano-technology used to improve the disadvantages of natural products. All of these studies showed the great potential of natural products in cancer immunotherapy.

9.
ScientificWorldJournal ; 11: 2391-402, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22194670

RESUMO

Macrophages are terminally differentiated cells of the mononuclear phagocyte system that also encompasses dendritic cells, circulating blood monocytes, and committed myeloid progenitor cells in the bone marrow. Both macrophages and their monocytic precursors can change their functional state in response to microenvironmental cues exhibiting a marked heterogeneity. However, there are still uncertainties regarding distinct expression patterns of surface markers that clearly define macrophage subsets, particularly in the case of human macrophages. In addition to their tissue distribution, macrophages can be functionally polarized into M1 (proinflammatory) and M2 (alternatively activated) as well as regulatory cells in response to both exogenous infections and solid tumors as well as by systems biology approaches.


Assuntos
Polaridade Celular , Ativação de Macrófagos , Macrófagos/imunologia , Animais , Antígenos de Superfície/imunologia , Diferenciação Celular , Microambiente Celular , Citocinas/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , Humanos , Imunidade Inata , Macrófagos/patologia , Macrófagos/virologia , Neoplasias/imunologia , Neoplasias/patologia , Biologia de Sistemas
10.
Bioact Mater ; 6(7): 1973-1987, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33426371

RESUMO

The tumor development and metastasis are closely related to the structure and function of the tumor microenvironment (TME). Recently, TME modulation strategies have attracted much attention in cancer immunotherapy. Despite the preliminary success of immunotherapeutic agents, their therapeutic effects have been restricted by the limited retention time of drugs in TME. Compared with traditional delivery systems, nanoparticles with unique physical properties and elaborate design can efficiently penetrate TME and specifically deliver to the major components in TME. In this review, we briefly introduce the substitutes of TME including dendritic cells, macrophages, fibroblasts, tumor vasculature, tumor-draining lymph nodes and hypoxic state, then review various nanoparticles targeting these components and their applications in tumor therapy. In addition, nanoparticles could be combined with other therapies, including chemotherapy, radiotherapy, and photodynamic therapy, however, the nanoplatform delivery system may not be effective in all types of tumors due to the heterogeneity of different tumors and individuals. The changes of TME at various stages during tumor development are required to be further elucidated so that more individualized nanoplatforms could be designed.

11.
J Bone Oncol ; 20: 100271, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31956474

RESUMO

Survival rate for Chondrosarcoma (CHS) is at a standstill, more effective treatments are urgently needed. Consequently, a better understanding of CHS biology and its immune environment is crucial to identify new prognostic factors and therapeutic targets. Here, we exhaustively describe the immune landscape of conventional and dedifferentiated CHS. Using IHC and molecular analyses (RT-qPCR), we mapped the expression of immune cell markers (CD3, CD8, CD68, CD163) and immune checkpoints (ICPs) from a cohort of 27 conventional and 49 dedifferentiated CHS. The impact of the density of tumor-infiltrating lymphocytes (TILs), tumor-associated macrophages (TAMs) and immune checkpoints (ICPs) on clinical outcome were analyzed. We reveal that TAMs are the main immune population in CHS. Focusing on dedifferentiated CHS, we found that immune infiltrate composition is correlated with patient outcome, a high CD68+/CD8+ ratio being an independent poor prognostic factor (p < 0.01), and high CD68+ levels being associated with the presence of metastases at diagnosis (p < 0.05). Among the ICPs evaluated, CSF1R, B7H3, SIRPA, TIM3 and LAG3 were expressed at the mRNA level in both CHS subtypes. Furthermore, PDL1 expression was confirmed by IHC exclusively in dedifferentiated CHS (42.6% of the patients) and CSF1R was expressed by TAMs in 89.7% of dedifferentiated CHS (vs 62.9% in conventional). Our results show that the immune infiltrate of CHS is mainly composed of immunosuppressive actors favoring tumor progression. Our results indicate that dedifferentiated CHS could be eligible for anti-PDL1 therapy and more importantly immunomodulation through CSF1R + macrophages could be a promising therapeutic approach for both CHS subtypes.

12.
Matrix Biol Plus ; 6-7: 100030, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-33543027

RESUMO

Inflammatory breast cancer (IBC) is the most aggressive and lethal form of breast cancer, characterized by a high infiltration of tumor-associated macrophages and poor prognosis. To identify new biomarkers and to elucidate the molecular mechanisms underlying IBC pathogenesis, we investigated the expression pattern of heparanase (HPSE) and its activator cathepsin L (CTSL). First, we quantitated the HPSE and CTSL mRNA levels in a cohort of breast cancer patients after curative surgery (20 IBC and 20-non-IBC). We discovered that both HPSE and CTSL mRNA levels were significantly induced in IBC tissue vis-à-vis non-IBC patients (p <0 .05 and p <0 .001, respectively). According to the molecular subtypes, HPSE mRNA levels were significantly higher in carcinoma tissues of triple negative (TN)-IBC as compared to TN-non-IBC (p <0 .05). Mechanistically, we discovered that pharmacological inhibition of HPSE activity resulted in a significant reduction of invasiveness in the IBC SUM149 cell line. Moreover, siRNA-mediated HPSE knockdown significantly downregulated the expression of the metastasis-related gene MMP2 and the cancer stem cell marker CD44. We also found that IBC tumors revealed robust heparanase immune-reactivity and CD163+ M2-type tumor-associated macrophages, with a positive correlation of both markers. Moreover, the secretome of axillary tributaries blood IBC CD14+ monocytes and the cytokine IL-10 significantly upregulated HPSE mRNA and protein expression in SUM149 cells. Intriguingly, massively elevated IL-10 mRNA expression with a trend of positive correlation with HPSE mRNA expression was detected in carcinoma tissue of IBC. Our findings highlight a possible role played by CD14+ monocytes and CD163+ M2-type tumor-associated macrophages in regulating HPSE expression possibly via IL-10. Overall, we suggest that heparanase, cathepsin L and CD14+ monocytes-derived IL-10 may play an important role in the pathogenesis of IBC and their targeting could have therapeutic implications.

13.
Acta Pharm Sin B ; 10(1): 61-78, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31993307

RESUMO

Solute carrier (SLC) transporters meditate many essential physiological functions, including nutrient uptake, ion influx/efflux, and waste disposal. In its protective role against tumors and infections, the mammalian immune system coordinates complex signals to support the proliferation, differentiation, and effector function of individual cell subsets. Recent research in this area has yielded surprising findings on the roles of solute carrier transporters, which were discovered to regulate lymphocyte signaling and control their differentiation, function, and fate by modulating diverse metabolic pathways and balanced levels of different metabolites. In this review, we present current information mainly on glucose transporters, amino-acid transporters, and metal ion transporters, which are critically important for mediating immune cell homeostasis in many different pathological conditions.

14.
J Bone Oncol ; 6: 16-21, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28194325

RESUMO

YB-1 (Y-box binding protein 1) is a multifunctional cold-shock protein that has been implicated in all hallmarks of cancer. Elevated YB-1 protein level was associated with poor prognosis in several types of cancers, including breast cancer (BC), where it is a marker of decreased overall survival (OS) and distant metastasis-free survival across all subtypes. YB-1 is also secreted by different cell types and may act as an extracellular mitogen; however the pathological implications of the secreted form of YB-1 (sYB-1) are unknown. Our purpose was to retrospectively evaluate the association between YB-1 measured by ELISA in serum and disease characteristics and outcomes in patients with BC and bone metastases (BM). In our cohort, sYB-1 was detected in the serum of 22 (50%) patients, and was associated with the presence of extra-bone metastases (p=0.044). Positive sYB-1 was also associated with faster bone disease progression (HR 3.1, 95% CI 1.09-8.95, P=0.033), but no significant differences were observed concerning OS, and time to development of skeletal-related events. Moreover, patients with positive sYB-1 also had higher levels of IL-6, a known osteoclastogenic inducer. Therefore, detection of sYB-1 in patients with BC and BM may indicate a higher tumor burden, in bone and extra-bone locations, and is a biomarker of faster bone disease progression.

15.
Cancer Biol Ther ; 16(2): 297-306, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25756512

RESUMO

PTEN has been studied in several tumor models as a tumor suppressor. In this study, we explored the role of PTEN in the inhibition state of polarized M2 subtype of macrophage in tumor microenvironment (TME) and the underlying mechanisms. To elucidate the potential effect in TME, RAW 264.7 macrophages and 4T1 mouse breast cancer cells were co-cultured to reconstruct tumor microenvironment. After PTEN was down-regulated with shRNA, the expression of CCL2 and VEGF-A, which are definited to promote the formation of M2 macrophages, have a dramatically increase on the level of both gene and protein in co-cultured RAW 264.7 macrophages. And at the same time, NHERF-1 (Na(+)/H(+) exchanger regulating factor-1), another tumor suppressor has a similar tendency to PTEN. Q-PCR and WB results suggested that PTEN and NHERF-1 were consistent with one another no matter at mRNA or protein level when exposed to the same stimulus. Coimmunoprecipitation and immunofluorescence techniques confirmed that PTEN and NHERF-1 were coprecipitated, and NHERF-1 protein expression was properly reduced with rCCL2 effect. In addition, cell immunofluorescence images revealed a profound transferance, in co-cultured RAW 264.7 macrophages, an up-regulation of NHERF-1 could promote the PTEN marked expression on the cell membrane, and this form for the interaction was not negligible. These observations illustrate PTEN with a certain synergy of NHERF-1, as well as down-regulation of CCL2 suppressing M2 macrophage transformation pathway. The results suggest that the activation of PTEN and NHERF-1 may impede the evolution of macrophages beyond the M1 into M2 phenotype in tumor microenvironment.


Assuntos
Quimiocina CCL2/metabolismo , Macrófagos/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Movimento Celular/genética , Proliferação de Células , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Camundongos , Neoplasias/genética , Neoplasias/metabolismo , PTEN Fosfo-Hidrolase/genética , Microambiente Tumoral/genética , Fator A de Crescimento do Endotélio Vascular/genética
16.
Oncoimmunology ; 4(6): e1009285, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26155428

RESUMO

Antitumor immune responses against solid malignancies correlate with improved patient survival. We conducted a comprehensive investigation of immune responses in tumor and tumor-associated stroma in epithelioid malignant pleural mesothelioma with the goal of characterizing the tumor immune microenvironment and identifying prognostic immune markers. We investigated 8 types of tumor-infiltrating immune cells within the tumor nest and tumor-associated stroma, as well as tumor expression of 5 cytokine/chemokine receptors in 230 patients. According to univariate analyses, high densities of tumoral CD4- and CD20-expressing lymphocytes were associated with better outcomes. High expression of tumor interleukin-7 (IL-7) receptor was associated with worse outcomes. According to multivariate analyses, stage and tumoral CD20 detection were independently associated with survival. Analysis of single immune cell infiltration for CD163+ tumor-associated macrophages did not correlate with survival. However, analysis of immunologically relevant cell combinations identified that: (1) high CD163+ tumor-associated macrophages and low CD8+ lymphocyte infiltration had worse prognosis than other groups and (2) low CD163+ tumor associated macrophages and high CD20+ lymphocyte infiltration had better prognosis than other groups. Multivariate analyses demonstrated that CD163/CD8 and CD163/CD20 were independent prognostic factors of survival. With a recent increase in immunotherapy investigations and clinical trials for malignant pleural mesothelioma patients, our observations that CD20+ B lymphocytes and tumor-associated macrophages are prognostic markers provide important information about the tumor microenvironment of malignant pleural mesothelioma.

17.
Oncoimmunology ; 4(2): e976057, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25949873

RESUMO

The molecular mechanisms underlying how sleep fragmentation (SF) influences cancer growth and progression remain largely elusive. Here, we present evidence that SF reduced ROS production by downregulating gp91phox expression and activity in TC1 cell tumor associated macrophages (TAMs), while genetic ablation of phagocytic Nox2 activity increased tumor cell proliferation, motility, invasion, and extravasation in vitro. Importantly, the in vivo studies using immunocompetent syngeneic murine tumor models suggested that Nox2 deficiency mimics SF-induced TAMs infiltration and subsequent tumor growth and invasion. Taken together, these studies reveal that perturbed sleep could adversely affect innate immunity within the tumor by altering Nox2 expression and activity, and indicate that selective potentiation of Nox2 activity may present a novel therapeutic strategy in the treatment of cancer.

18.
Acta Pharm Sin B ; 5(5): 402-18, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26579471

RESUMO

Cancer metastasis is the major cause of cancer morbidity and mortality, and accounts for about 90% of cancer deaths. Although cancer survival rate has been significantly improved over the years, the improvement is primarily due to early diagnosis and cancer growth inhibition. Limited progress has been made in the treatment of cancer metastasis due to various factors. Current treatments for cancer metastasis are mainly chemotherapy and radiotherapy, though the new generation anti-cancer drugs (predominantly neutralizing antibodies for growth factors and small molecule kinase inhibitors) do have the effects on cancer metastasis in addition to their effects on cancer growth. Cancer metastasis begins with detachment of metastatic cells from the primary tumor, travel of the cells to different sites through blood/lymphatic vessels, settlement and growth of the cells at a distal site. During the process, metastatic cells go through detachment, migration, invasion and adhesion. These four essential, metastatic steps are inter-related and affected by multi-biochemical events and parameters. Additionally, it is known that tumor microenvironment (such as extracellular matrix structure, growth factors, chemokines, matrix metalloproteinases) plays a significant role in cancer metastasis. The biochemical events and parameters involved in the metastatic process and tumor microenvironment have been targeted or can be potential targets for metastasis prevention and inhibition. This review provides an overview of these metastasis essential steps, related biochemical factors, and targets for intervention.

19.
Oncoimmunology ; 4(1): e954829, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25949858

RESUMO

Myeloid-derived suppressor cells (MDSCs) contribute to tumor-mediated immune escape and negatively correlate with overall survival of cancer patients. Nowadays, a variety of methods to target MDSCs are being investigated. Based on the intervention stage of MDSCs, namely development, expansion and activation, function and turnover, these methods can be divided into: (I) prevention or differentiation to mature cells, (II) blockade of MDSC expansion and activation, (III) inhibition of MDSC suppressive activity or (IV) depletion of intratumoral MDSCs. This review describes effective mono- or multimodal-therapies that target MDSCs for the benefit of cancer treatment.

20.
Oncoimmunology ; 3(10): e956579, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25941577

RESUMO

An increasing number of studies is focusing on the role of myeloid-derived suppressor cells (MDSCs) in the suppression of antitumor immune responses. Although the main site of action for MDSCs is most likely the tumor microenvironment, the study of these cells has been largely restricted to MDSCs derived from peripheral lymphoid organs. Only in a minority of studies MDSCs isolated from the tumor microenvironment have been characterized. This review will give an overview of the data available on the phenotypical and functional differences between tumor-derived MDSCs and MDSCs isolated from the spleen of tumor-bearing mice or from the peripheral blood of cancer patients.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa