Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(8): e2218183120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36780530

RESUMO

Vertebrate Tas2r taste receptors detect bitter compounds that are potentially poisonous. Previous studies found substantial variation in the number of Tas2r genes across vertebrates, with some frog species carrying the largest number. Peculiar among vertebrates, frogs undergo metamorphosis, often associated with a dietary shift between tadpoles and adults. A possible explanation for the large size of frog Tas2r families could be that distinct sets of Tas2r genes are required for tadpoles and adults, suggesting differential expression of Tas2r genes between tadpoles and adults. To test this hypothesis, we first examined 20 amphibian genomes and found that amphibians generally possess more Tas2r genes than do other vertebrate clades. We next focused on the American bullfrog (Lithobates catesbeianus) to examine the expression of its Tas2r genes in herbivorous tadpoles and insectivorous adult frogs. We report that close to one fifth of its 180 Tas2r genes are differentially expressed (22 genes enriched in adults and 11 in tadpoles). Tuning properties were determined for a subset of differentially expressed genes by a cell-based functional assay, with the adult-enriched Tas2r gene set covering a larger range of ligands compared to the tadpole-enriched subset. These results suggest a role of Tas2r genes in the ontogenetic dietary shift of frogs and potentially initiate a new avenue of ontogenetic analysis of diet-related genes in the animal kingdom.


Assuntos
Receptores Acoplados a Proteínas G , Paladar , Animais , Paladar/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Filogenia , Evolução Molecular , Anuros/genética , Anuros/metabolismo , Dieta
2.
FASEB J ; 38(14): e23842, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39037554

RESUMO

G-protein-coupled receptors (GPCRs) belonging to the type 2 taste receptors (TAS2Rs) family are predominantly present in taste cells to allow the perception of bitter-tasting compounds. TAS2Rs have also been shown to be expressed in human airway smooth muscle (ASM), and TAS2R agonists relax ASM cells and bronchodilate airways despite elevating intracellular calcium. This calcium "paradox" (calcium mediates contraction by pro-contractile Gq-coupled GPCRs) and the mechanisms by which TAS2R agonists relax ASM remain poorly understood. To gain insight into pro-relaxant mechanisms effected by TAS2Rs, we employed an unbiased phosphoproteomic approach involving dual-mass spectrometry to determine differences in the phosphorylation of contractile-related proteins in ASM following the stimulation of cells with TAS2R agonists, histamine (an agonist of the Gq-coupled H1 histamine receptor) or isoproterenol (an agonist of the Gs-coupled ß2-adrenoceptor) alone or in combination. Our study identified differential phosphorylation of proteins regulating contraction, including A-kinase anchoring protein (AKAP)2, AKAP12, and RhoA guanine nucleotide exchange factor (ARHGEF)12. Subsequent signaling analyses revealed RhoA and the T853 residue on myosin light chain phosphatase (MYPT)1 as points of mechanistic divergence between TAS2R and Gs-coupled GPCR pathways. Unlike Gs-coupled receptor signaling, which inhibits histamine-induced myosin light chain (MLC)20 phosphorylation via protein kinase A (PKA)-dependent inhibition of intracellular calcium mobilization, HSP20 and ERK1/2 activity, TAS2Rs are shown to inhibit histamine-induced pMLC20 via inhibition of RhoA activity and MYPT1 phosphorylation at the T853 residue. These findings provide insight into the TAS2R signaling in ASM by defining a distinct signaling mechanism modulating inhibition of pMLC20 to relax contracted ASM.


Assuntos
Músculo Liso , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Músculo Liso/metabolismo , Músculo Liso/efeitos dos fármacos , Fosforilação , Relaxamento Muscular/efeitos dos fármacos , Histamina/metabolismo , Histamina/farmacologia , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Isoproterenol/farmacologia , Cálcio/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Paladar/fisiologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Transdução de Sinais , Células Cultivadas
3.
Genet Epidemiol ; 47(3): 215-230, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36691909

RESUMO

Analysis of host genetic components provides insights into the susceptibility and response to viral infection such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19). To reveal genetic determinants of susceptibility to COVID-19 related mortality, we train a deep learning model to identify groups of genetic variants and their interactions that contribute to the COVID-19 related mortality risk using the UK Biobank data (28,097 affected cases and 1656 deaths). We refer to such groups of variants as super variants. We identify 15 super variants with various levels of significance as susceptibility loci for COVID-19 mortality. Specifically, we identify a super variant (odds ratio [OR] = 1.594, p = 5.47 × 10-9 ) on Chromosome 7 that consists of the minor allele of rs76398985, rs6943608, rs2052130, 7:150989011_CT_C, rs118033050, and rs12540488. We also discover a super variant (OR = 1.353, p = 2.87 × 10-8 ) on Chromosome 5 that contains rs12517344, rs72733036, rs190052994, rs34723029, rs72734818, 5:9305797_GTA_G, and rs180899355.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , SARS-CoV-2 , Bancos de Espécimes Biológicos , Modelos Genéticos , Reino Unido
4.
Cell Mol Life Sci ; 80(4): 114, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012410

RESUMO

The human GPCR family comprises circa 800 members, activated by hundreds of thousands of compounds. Bitter taste receptors, TAS2Rs, constitute a large and distinct subfamily, expressed orally and extra-orally and involved in physiological and pathological conditions. TAS2R14 is the most promiscuous member, with over 150 agonists and 3 antagonists known prior to this study. Due to the scarcity of inhibitors and to the importance of chemical probes for exploring TAS2R14 functions, we aimed to discover new ligands for this receptor, with emphasis on antagonists. To cope with the lack of experimental structure of the receptor, we used a mixed experimental/computational methodology which iteratively improved the performance of the predicted structure. The increasing number of active compounds, obtained here through experimental screening of FDA-approved drug library, and through chemically synthesized flufenamic acid derivatives, enabled the refinement of the binding pocket, which in turn improved the structure-based virtual screening reliability. This mixed approach led to the identification of 10 new antagonists and 200 new agonists of TAS2R14, illustrating the untapped potential of rigorous medicinal chemistry for TAS2Rs. 9% of the ~ 1800 pharmaceutical drugs here tested activate TAS2R14, nine of them at sub-micromolar concentrations. The iterative framework suggested residues involved in the activation process, is suitable for expanding bitter and bitter-masking chemical space, and is applicable to other promiscuous GPCRs lacking experimental structures.


Assuntos
Receptores Acoplados a Proteínas G , Paladar , Humanos , Paladar/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Ligantes , Reprodutibilidade dos Testes , Ligação Proteica
5.
Appetite ; 200: 107561, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38905855

RESUMO

Genetic variation in the bitter taste receptor gene taste receptor type 2, member 38 (TAS2R38) is associated with an individual's bitter taste sensitivity, food preference and consumption, which may also influence overall diet quality. This study aims to determine whether the TAS2R38 bitter taste receptor genetic variation is associated with overall diet quality using the Korean Healthy Eating Index (KHEI). A total of 41,839 individuals from the Korean Genome and Epidemiology Study were analyzed for their TAS2R38 diplotypes (rs713598, rs1726866, and rs10246939), general characteristics, and KHEI scores by obesity status. Results revealed that in the non-obese group, individuals with the AVI/AVI diplotype had a significantly higher score of 'ratio of white meat to red meat' than individuals with the PAV/* diplotype (3.89 ± 3.23 vs. 3.79 ± 3.18, adjusted p = 0.029). However, obese individuals with the PAV/* diplotype showed a significantly higher level of the mean score of 'moderation' (19.32 ± 5.82 vs. 18.92 ± 5.80, adjusted p = 0.026) and total KHEI score (61.07 ± 12.19 vs. 60.52 ± 12.29, adjusted p = 0.008) than those with the AVI/AVI diplotype. Finally, an interactive effect between bitterness genetic variation and obesity level was observed in those scores of 'ratio of white meat to red meat' (adjusted p = 0.007), 'moderation' (adjusted p = 0.013), and total KEHI (adjusted p = 0.007). In conclusion, TAS2R38 genetic variation is associated with overall diet quality in Koreans, which is more evident in the obese group.


Assuntos
Preferências Alimentares , Obesidade , Receptores Acoplados a Proteínas G , Paladar , Humanos , Receptores Acoplados a Proteínas G/genética , Feminino , República da Coreia , Masculino , Obesidade/genética , Paladar/genética , Pessoa de Meia-Idade , Adulto , Variação Genética , Dieta Saudável , Polimorfismo de Nucleotídeo Único , Povo Asiático/genética , Dieta , População do Leste Asiático
6.
Int J Food Sci Nutr ; 75(2): 197-206, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38115549

RESUMO

Bitterness-receptor gene TAS2R38 is associated with taste sensitivity and dietary behaviour, and is known to play a critical role in adiposity. However, evidence regarding body composition from a large cohort is lacking. This study aimed to ascertain whether TAS2R38 rs10246939 C > T bitterness genetic variation is associated with body composition in Korean individuals. The TAS2R38 rs10246939 genotypes, anthropometric measurements, and body composition of 1,843 males and 1,801 females from the Korean Genome and Epidemiology Study were analysed. Findings suggested that there was a significant difference in body fat components by TAS2R38 genotype. Furthermore, the bitterness genotype exhibited a positive association with adiposity markers in females. The TT genotype showed greater body mass index, body fat percentage, and degree of obesity than those with the C allele. However, such an association was not observed in males. In conclusion, this study suggests that TAS2R38 rs10246939 is associated with fat tissue markers in Korean females.


Assuntos
Receptores Acoplados a Proteínas G , Paladar , Humanos , Masculino , Feminino , Paladar/genética , Receptores Acoplados a Proteínas G/genética , Genótipo , Obesidade/genética , Adiposidade , Variação Genética , República da Coreia , Polimorfismo de Nucleotídeo Único
7.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473841

RESUMO

In the field of nutritional science and metabolic disorders, there is a growing interest in natural bitter compounds capable of interacting with bitter taste receptors (TAS2Rs) useful for obesity management and satiety control. This study aimed to evaluate the effect of a nutraceutical formulation containing a combination of molecules appropriately designed to simultaneously target and stimulate these receptors. Specifically, the effect on CCK release exerted by a multi-component nutraceutical formulation (Cinchona bark, Chicory, and Gentian roots in a 1:1:1 ratio, named Gengricin®) was investigated in a CaCo-2 cell line, in comparison with Cinchona alone. In addition, these nutraceutical formulations were tested through a 3-month randomized controlled trial (RCT) conducted in subjects who were overweight-obese following a hypocaloric diet. Interestingly, the Gengricin® group exhibited a significant greater weight loss and improvement in body composition than the Placebo and Cinchona groups, indicating its effectiveness in promoting weight regulation. Additionally, the Gengricin® group reported higher satiety levels and a significant increase in serum CCK levels, suggesting a physiological basis for the observed effects on appetite control. Overall, these findings highlight the potential of natural nutraceutical strategies based on the combination of bitter compounds in modulating gut hormone release for effective appetite control and weight management.


Assuntos
Apetite , Sobrepeso , Adulto , Humanos , Obesidade , Regulação do Apetite/fisiologia , Suplementos Nutricionais
8.
Int J Mol Sci ; 25(16)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39201321

RESUMO

Several chronic respiratory diseases could be risk factors for acquiring SARS-CoV-2 infection: among them, Primary Ciliary Dyskinesia (PCD) is a rare (about 1:10.000) inherited ciliopathy (MIM 242650) characterized by recurrent upper and lower respiratory tract infections due to a dysfunction of the respiratory cilia. In this study, we aimed to investigate whether PCD subjects are more susceptible to infection by SARS-CoV-2 and whether some polymorphisms of the TAS2R38 bitter taste receptor correlate with an increased prevalence of SARS-CoV-2 infection and severity of symptoms. Patients answered several questions about possible SARS-CoV-2 infection, experienced symptoms, and vaccinations; in the case of infection, they also filled out a SNOT-22 questionnaire and ARTIQ. Forty PCD adult patients (mean age, 36.6 ± 16.7 years; 23 females, 17 males) participated in this study, out of which 30% had tested positive for COVID-19 during the last four years; most of them reported a mildly symptomatic disease. We found no differences in age or sex, but a statistically significant difference (p = 0.03) was observed in body mass index (BMI), which was higher in the COVID-acquired group (23.2 ± 3.3 vs. 20.1 ± 4.1 kg/m2). Genotyping for TAS2R38 polymorphisms showed a prevalence of 28.6% PAV/PAV, 48.6% PAV/AVI, and 22.8% AVI/AVI individuals in our cohort. In contrast to our hypothesis, we did not observe a protective role of the PAV allele towards SARS-CoV-2 infection. Conclusions: Our findings suggest that subjects with PCD may not be at increased risk of severe outcomes from COVID-19 and the TAS2R38 bitter taste receptor genotype does not affect SARS-CoV-2 infection.


Assuntos
COVID-19 , Genótipo , Receptores Acoplados a Proteínas G , SARS-CoV-2 , Humanos , Masculino , Feminino , COVID-19/genética , COVID-19/virologia , COVID-19/epidemiologia , Adulto , Receptores Acoplados a Proteínas G/genética , Pessoa de Meia-Idade , SARS-CoV-2/genética , Polimorfismo de Nucleotídeo Único , Transtornos da Motilidade Ciliar/genética , Predisposição Genética para Doença , Adulto Jovem
9.
Am J Physiol Lung Cell Mol Physiol ; 325(4): L500-L507, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37643013

RESUMO

The clinical definition of "difficult asthma" has expanded recently to include an ever-growing subset of patients with symptoms that cannot be controlled by conventional means, forcing the medical community to develop innovative therapeutics. Beneficial effects of coffee for subjects with asthma, primarily the effect of methylxanthine components, have long been described. Methylxanthines, including theophylline and caffeine, inhibit phosphodiesterases and downstream cAMP signaling to prevent mast cell degranulation while promoting immunomodulation (Peleman RA, Kips JC, Pauwels RA. Clin Exp Allergy 28: 53-56, 1998; Deshpande DA, Wang WCH, McIlmoyle EL, Robinett KS, Schillinger RM, An SS, Sham JSK, Liggett SB. Nat Med 16: 1299-1304, 2010). Caffeine is also a bitter taste receptor agonist, binding to taste-sensing type 2 receptors (TAS2R) before releasing calcium to hyperpolarize airway smooth muscle membranes, inducing bronchodilation (Workman AD, Palmer JN, Adappa ND, Cohen NA. Curr Allergy Asthma Rep 15: 72, 2015; Devillier P, Naline E, Grassin-Delyle S. Pharmacol Ther 155: 11-21, 2015). Theophylline is conventionally used to treat asthma, whereas, according to the literature, the dosage required for orally administered caffeine has yielded modest improvement (Alfaro TM, Monteiro RA, Cunha RA, Cordeiro CR. Clin Respir J 12: 1283-1294, 2018). We sought to determine whether aerosolization of ultrafine caffeine particles (2.5-4 µm) directly to the lungs of susceptible A/J mice challenged with methacholine would improve pulmonary function via forced oscillation technique. In addition, we assessed whether nebulization of caffeine leads to changes in lung pathophysiology and bronchoalveolar lavage cell profiles. We found that mice that received aerosolized caffeine had statistically significant decreases in maximum airway resistance [6.3 vs. 3.9 cmH2O·s/mL at 62.5 mg/mL caffeine; confidence interval (CI) = -4.3, -0.4; P = 0.02] and significant delays in the time required to reach maximum resistance compared with that of controls (64.7 vs. 172.1 sec at 62.5 mg/mL caffeine, CI = 96.0, 118.9; P < 0.0001). Nebulized caffeine yielded a consistent effect on airway hyperresponsiveness at a range of doses without evidence of significant pathology relative to vehicle control.NEW & NOTEWORTHY For decades, coffee has been shown to improve symptoms in patients with asthma. One component, theophylline, is conventionally used to treat asthma, whereas the dosage required for orally administered caffeine has yielded modest improvement. We sought to determine whether aerosolization of caffeine directly to the lungs of susceptible A/J mice challenged with methacholine would alter pulmonary function via forced oscillation technique. We found nebulized caffeine yielded a consistent improvement on murine AHR.

10.
Mol Biol Evol ; 39(6)2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35652727

RESUMO

Egg-laying mammals (monotremes) are a sister clade of therians (placental mammals and marsupials) and a key clade to understand mammalian evolution. They are classified into platypus and echidna, which exhibit distinct ecological features such as habitats and diet. Chemosensory genes, which encode sensory receptors for taste and smell, are believed to adapt to the individual habitats and diet of each mammal. In this study, we focused on the molecular evolution of bitter taste receptors (TAS2Rs) in monotremes. The sense of bitter taste is important to detect potentially harmful substances. We comprehensively surveyed agonists of all TAS2Rs in platypus (Ornithorhynchus anatinus) and short-beaked echidna (Tachyglossus aculeatus) and compared their functions with orthologous TAS2Rs of marsupial and placental mammals (i.e., therians). As results, the agonist screening revealed that the deorphanized monotreme receptors were functionally diversified. Platypus TAS2Rs had broader receptive ranges of agonists than those of echidna TAS2Rs. While platypus consumes a variety of aquatic invertebrates, echidna mainly consumes subterranean social insects (ants and termites) as well as other invertebrates. This result indicates that receptive ranges of TAS2Rs could be associated with feeding habits in monotremes. Furthermore, some orthologous receptors in monotremes and therians responded to ß-glucosides, which are feeding deterrents in plants and insects. These results suggest that the ability to detect ß-glucosides and other substances might be shared and ancestral among mammals.


Assuntos
Ornitorrinco , Tachyglossidae , Animais , Eutérios/genética , Feminino , Mamíferos/genética , Placenta , Ornitorrinco/genética , Gravidez , Paladar
11.
Curr Issues Mol Biol ; 46(1): 299-326, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38248322

RESUMO

Skin diseases represent a global healthcare challenge due to their rising incidence and substantial socio-economic burden. While biological, immunological, and targeted therapies have brought a revolution in improving quality of life and survival rates for certain dermatological conditions, there remains a stringent demand for new remedies. Nature has long served as an inspiration for drug development. Recent studies have identified bitter taste receptors (TAS2Rs) in both skin cell lines and human skin. Additionally, bitter natural compounds have shown promising benefits in addressing skin aging, wound healing, inflammatory skin conditions, and even skin cancer. Thus, TAS2Rs may represent a promising target in all these processes. In this review, we summarize evidence supporting the presence of TAS2Rs in the skin and emphasize their potential as drug targets for addressing skin aging, wound healing, inflammatory skin conditions, and skin carcinogenesis. To our knowledge, this is a pioneering work in connecting information on TAS2Rs expression in skin and skin cells with the impact of bitter phytochemicals on various beneficial effects related to skin disorders.

12.
J Nutr ; 153(11): 3270-3279, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37716607

RESUMO

BACKGROUND: Variation in common taste receptor type 2 member 38 (TAS2R38) haplotypes is associated with bitter-taste sensitivity, but associations with dietary intake and risk factors for chronic disease are inconsistent. OBJECTIVES: To determine whether common TAS2R38 haplotypes are associated with dietary intake and risk factors for chronic disease using cross-sectional data from the Canadian Longitudinal Study on Aging (n = 26,090). Outcomes were assessed among the full sample and stratified by sex. METHODS: Taster status was determined from TAS2R38 haplotypes, and the respondents were classified as supertasters, tasters, and nontasters. Primary outcome variables were the consumption frequencies of vegetables, sweet-tasting foods, alcoholic beverages, and visceral adiposity index (VAI). Secondary outcome variables were the individual VAI components. Multivariable regression models adjusted for sociodemographic and lifestyle factors were used to assess associations between the taster status and outcome variables. RESULTS: Among the sample, 5655, 12,821, and 7614 respondents were classified as supertasters, tasters, and nontasters, respectively. Vegetable consumption was significantly higher among nontasters than among supertasters (1.23 ± 0.26 and 1.20 ± 0.22, respectively, P = 0.02). Among males, the consumption of sweet-tasting foods (0.40 ± 8.80 and 0.38 ± 7.55, P = 0.02) and green salad (0.35 ± 0.31 and 0.33 ± 0.27, P = 0.02) was also higher for nontasters than supertasters. Nontasters were more likely to be regular alcohol consumers compared with supertasters among the full sample (odds ratio [95% confidence interval]: 1.12 [1.03, 1.22]; P = 0.01) and among females (OR: 1.13; 95% CI: 1.01, 1.27; P = 0.04). No significant associations were observed between TAS2R38 haplotypes and VAI, although high-density lipoprotein cholesterol was significantly lower among supertasters than nontasters (1.45 ± 0.59 and 1.47 ± 0.63, respectively; P = 0.04). CONCLUSIONS: Among middle- to older-aged adults, minor associations are observed between TAS2R38 haplotypes, dietary intake, and high-density lipoprotein cholesterol. Genetic predisposition to bitter-taste sensitivity is linked to diet; however, further research is needed to understand the relevance for chronic disease risk.


Assuntos
Paladar , Verduras , Canadá/epidemiologia , Colesterol , Estudos Transversais , Ingestão de Alimentos , Haplótipos , Lipoproteínas HDL , Estudos Longitudinais , Receptores Acoplados a Proteínas G/genética , Fatores de Risco , Paladar/genética
13.
Anim Biotechnol ; 34(4): 1681-1685, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34974802

RESUMO

Historical hybridization between southern indigenous Chinese cattle and banteng has been well-documented and has resulted in gene introgression. Bitter taste receptors were reported in indigenous cattle as a result of introgression from banteng. To determine the level of introgression of the taste 2 receptor member 16 (TAS2R16) gene from banteng into Chinese cattle, two missense mutations in the bovine TAS2R16 gene were examined. Here, we explored the prevalence of the two variants in 28 indigenous Chinese cattle and banteng breeds (comprising 750 individuals) to determine the influence of banteng introgressions on Chinese cattle based on PCR and DNA sequencing. In our study, the two mutant alleles had a higher frequency distribution in southern China with strong geographic distribution, especially in the south-central and southeast areas. In conclusion, this study examines the impact of introgression on the frequency distributions of mutations in variable regions and the subsequent adaptation of Chinese indigenous cattle to different environmental conditions.


Assuntos
Hibridização Genética , Animais , Bovinos/genética , China , Sequência de Bases , Reação em Cadeia da Polimerase
14.
Drug Dev Ind Pharm ; 49(1): 92-102, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36859792

RESUMO

OBJECTIVE: In our previous taste-masking study, we found that Acesulfame K (AK) had a better taste-masking effect than other high-efficiency sweeteners for several representative bitter natural drugs in aqueous decoction. Furthermore, we performed a preliminary taste-masking study of AK for representative bitter API Berberine Hydrochloride (BH) and found that it had a good taste-masking effect. We also found that flocculent precipitation was generated in the BH solution, but it was not clear whether it was related to the good taste-masking effect. This study was conducted to explore the taste-masking effect and mechanism of AK on BH. METHODS: The taste-masking effect of AK on BH was evaluated based on the Traditional Human Taste Panel Method and the electronic tongue evaluation method. DSC, XRD, and molecular simulation techniques were used to explore the mechanism of AK on BH, from the macro level and molecular level, respectively. RESULTS: When evaluating the taste-masking effect, we found that 0.1% AK had the best taste-masking effect on BH, while higher concentrations had a worse taste-masking effect. DSC and XRD revealed that the flocculent precipitation was a complex AK-BH. Finally, by simulating the binding of AK, BH, and TAS2R46 receptors, we found the unique taste-masking mechanism of AK. CONCLUSION: The sweet taste stimulus of AK can mask the bitter taste stimulus of BH, and AK can generate AK-BH with BH to reduce the contact between BH and bitter taste receptors. Additionally, it could block the expression of the TAS2R46 receptors.


Assuntos
Berberina , Paladar , Humanos , Berberina/farmacologia , Língua , Percepção Gustatória
15.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36768516

RESUMO

The relationship between the variants of bitter taste receptor gene TAS2R4, dietary intake, and incidence of type 2 diabetes mellitus (T2DM) remains unclear. Hence, we aimed to examine the association of TAS2R4 rs2233998 variants with T2DM incidence in middle-aged and older Korean adults to understand if their association was modulated by dietary intake. Data of the Ansan-Ansung cohort from the Korean Genome and Epidemiology Study were used in this study. A total of 4552 Korean adults aged 40-69 years with no history of T2DM or cancer at baseline were followed-up for 16 years. Dietary intake was assessed using a 103-item food frequency questionnaire, and new T2DM cases were defined based on the World Health Organization and International Diabetes Federation criteria. Multivariate Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for T2DM incidence. During the mean follow-up period of 11.97 years, 1082 (23.77%) new T2DM cases were identified. Women carrying the TT genotype of TAS2R4 rs2233998 exhibited 1.48 times higher incidence of T2DM (HR: 1.48; 95 CI: 1.13-1.93) than those carrying the CC genotype. TAS2R4 rs2233998 variants were positively associated with the incidence of T2DM among Korean women with high intakes of carbohydrates or sugars and low intakes of fruits or vegetables. TT carrier women in the highest tertile of carbohydrate or sugar intake exhibited an increased incidence of T2DM (HR: 2.08, 95% CI: 1.33-3.27 for carbohydrates; HR: 2.31, 95% CI: 1.53-3.51 for sugars) than CC carrier women. Women carrying the TT genotype in the lowest tertile exhibited an increased incidence of T2DM (HR: 1.55, 95% CI: 1.02-2.37 for vegetables; HR: 1.62, 95% CI: 1.06-2.48 for fruits) than women carrying the CC genotype in the highest tertile of vegetable or fruit consumption. However, no association was observed between TAS2R4 rs2233998 variants and dietary intake with T2DM incidence in Korean men. Our findings suggest that variants of TAS2R4 rs2233998 are associated with T2DM incidence, and their associations are strengthened by excessive intake of carbohydrates or sugars and inadequate intake of fruits or vegetables. Diet encompassing optimal intake of carbohydrates or sugars and high intake of fruits or vegetables may minimize the risk of developing T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Pessoa de Meia-Idade , Masculino , Adulto , Humanos , Feminino , Idoso , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/genética , Fatores de Risco , Paladar , Incidência , Estudos Prospectivos , Dieta , Ingestão de Alimentos , Frutas , Verduras , Carboidratos , Açúcares , República da Coreia/epidemiologia
16.
Molecules ; 28(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37110532

RESUMO

Despite the many advantages of pulses, they are characterised by off-flavours that limit their consumption. Off-notes, bitterness and astringency contribute to negative perceptions of pulses. Several hypotheses have assumed that non-volatile compounds, including saponins, phenolic compounds, and alkaloids, are responsible for pulse bitterness and astringency. This review aims to provide an overview highlighting the non-volatile compounds identified in pulses and their bitter and/or astringent characteristics to suggest their potential involvement in pulse off-flavours. Sensorial analyses are mainly used to describe the bitterness and astringency of molecules. However, in vitro cellular assays have shown the activation of bitter taste receptors by many phenolic compounds, suggesting their potential involvement in pulse bitterness. A better knowledge of the non-volatile compounds involved in the off-flavours should enable the creation of efficient strategies to limit their impact on overall perception and increase consumer acceptability.


Assuntos
Adstringentes , Paladar , Aromatizantes/análise , Fenóis/análise
17.
Plant Foods Hum Nutr ; 78(4): 748-754, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37796414

RESUMO

From the nutritional perspective, the main direction of the utilization of white mulberry (Morus alba L.) parts so far has been to produce dietary supplements or functional foods for individuals with diabetes or over-weight. Its leaves are widely known as a valuable source of bioactive compounds responsible for its antioxidant and antidiabetic effects, both in animals and humans. The authors found that processed leaves can also be investigated as potential bitter and/or sweet taste modulators-an important property of new functional foods. The study aimed to validate the inhibitory effect of Morus alba L. on the TAS2R3 and TAS2R13 bitter taste and TSA1R2/TSA1R3 receptors and determine the changes that the conditioning process caused in such receptors. The effect on the receptors was evaluated in specially transfected HEK293T cells, and the inhibition ratio was measured using the calcium release test. Moreover, the stability of phenolics in the simulated intestinal in vitro digestion process was determined. Results showed that the Morus alba leaf extracts were rich in gallic, chlorogenic and caffeic acids together with rutin and quercetin 3-(6-malonyl)-glucoside, while the conditioning process positively affected their amount. Most identified phenolics were reduced during in vitro digestion. In the taste receptors test, it was found that the phytochemicals from conditioned Morus alba leaf extract enhanced sweet taste, together with a reduction of bitter taste receptor activity in some cases. To conclude, the study has found that Morus alba, especially when conditioned for 4 h, seems to be a valuable modulator of taste, which should be considered in future research as a crucial reason for its new utilization.


Assuntos
Morus , Extratos Vegetais , Animais , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Paladar , Células HEK293 , Antioxidantes/farmacologia , Antioxidantes/química , Fenóis/farmacologia , Morus/química , Folhas de Planta
18.
J Biol Chem ; 296: 100216, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33465377

RESUMO

For most G protein-coupled receptors, the third intracellular loop (IL3) and carboxy-terminal tail (CT) are sites for G protein-coupled receptor kinase (GRK)-mediated phosphorylation, leading to ß-arrestin binding and agonist-specific desensitization. These regions of bitter taste receptors (TAS2Rs) are extremely short compared with the superfamily, and their function in desensitization is unknown. TAS2R14 expressed on human airway smooth muscle cells relax the cell, suggesting a novel target for bronchodilators. To assess IL3 and CT in agonist-promoted TAS2R14 desensitization (tachyphylaxis), we generated fusion proteins of both the WT sequence and Ala substituted for Ser/Thr in the IL3 and CT sequences. In vitro, activated GRK2 phosphorylated WT IL3 and WT CT proteins but not Ala-substituted forms. TAS2R14s with mutations in IL3 (IL-5A), CT (CT-5A), and in both regions (IL/CT-10A) were expressed in human embryonic kidney 293T cells. IL/CT-10A and CT-5A failed to undergo desensitization of the intracellular calcium response compared with WT, indicating that functional desensitization by GRK phosphorylation is at residues in the CT. Desensitization of TAS2R14 was blocked by GRK2 knockdown in human airway smooth muscle cells. Receptor:ß-arrestin binding was absent in IL/CT-10A and CT-5A and reduced in IL-5A, indicating a role for IL3 phosphorylation in the ß-arrestin interaction for this function. Agonist-promoted internalization of IL-5A and CT-5A receptors was impaired, and they failed to colocalize with early endosomes. Thus, agonist-promoted functional desensitization of TAS2R14 occurs by GRK phosphorylation of CT residues and ß-arrestin binding. However, ß-arrestin function in the internalization and trafficking of the receptor also requires GRK phosphorylation of IL3 residues.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Miócitos de Músculo Liso/metabolismo , Processamento de Proteína Pós-Traducional , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Substituição de Aminoácidos , Brônquios/citologia , Brônquios/metabolismo , Cálcio/metabolismo , Difenidramina/farmacologia , Endossomos/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Quinase 2 de Receptor Acoplado a Proteína G/química , Quinase 2 de Receptor Acoplado a Proteína G/genética , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Mutação , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ligação Proteica , RNA Interferente Pequeno/genética , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Taquifilaxia/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , beta-Arrestinas/genética , beta-Arrestinas/metabolismo
19.
Mol Biol Evol ; 38(12): 5472-5479, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34469542

RESUMO

Bitter taste receptors serve as a vital component in the defense system against toxin intake by animals, and the family of genes encoding these receptors has been demonstrated, usually by family size variance, to correlate with dietary preference. However, few systematic studies of specific Tas2R to unveil their functional evolution have been conducted. Here, we surveyed Tas2R16 across all major clades of primates and reported a rare case of a convergent change to increase sensitivity to ß-glucopyranosides in human and a New World monkey, the white-faced saki. Combining analyses at multiple levels, we demonstrate that a parallel amino acid substitution (K172N) shared by these two species is responsible for this functional convergence of Tas2R16. Considering the specialized feeding preference of the white-faced saki, the K172N change likely played an important adaptive role in its early evolution to avoid potentially toxic cyanogenic glycosides, as suggested for the human TAS2R16 gene.


Assuntos
Platirrinos , Paladar , Substituição de Aminoácidos , Animais , Glucosídeos , Humanos , Platirrinos/genética , Platirrinos/metabolismo , Receptores Acoplados a Proteínas G/genética , Paladar/genética
20.
Hereditas ; 159(1): 46, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36529808

RESUMO

BACKGROUND: The bitter taste receptor gene TAS2R38 is a member of the human TAS2R gene family. Polymorphisms in TAS2R38 affect the ability to taste the bitterness of phenylthiourea (PTC) compounds, thus affecting an individual's food preference and health status. METHODS: We investigated polymorphisms in the TAS2R38 gene and the sensitivity to PTC bitterness among healthy Chinese college students in Hubei province. The association of TAS2R38 polymorphisms and PTC sensitivity with body mass index (BMI), food preference, and health status was also analyzed. A total of 320 healthy college students were enrolled (male: 133, female: 187; aged 18-23 years). The threshold value method was used to measure the perception of PTC bitterness, and a questionnaire was used to analyze dietary preferences and health status. Polymerase chain reaction (PCR) was used to analyze polymorphisms at three common TAS2R38 loci (rs713598, rs1726866, and rs10246939). RESULTS: In our study population, 65.00% of individuals had medium sensitivity to the bitterness of PTC; in contrast, 20.94% were highly sensitive to PTC bitterness, and 14.06% were not sensitive. For the TAS2R38 gene, the PAV/PAV and PAV/AAI diplotypes were the most common (42.19% and 40.63%, respectively), followed by the homozygous AVI/AVI (8.75%) and PAV/AVI (5.00%) diplotypes. CONCLUSION: There was a significant correlation between the sensitivity to PTC bitterness and sex, but there was no correlation between the common diplotypes of TAS2R38 and gender. Polymorphisms in the TAS2R38 gene were associated with the preference for tea, but not with one's native place, BMI, health status, or other dietary preferences. There was no significant correlation between the perception of PTC bitterness and one's native place, BMI, dietary preference, or health status. We hope to find out the relationship between PTC sensitivity and TAS2R38 gene polymorphisms and dietary preference and health status of Chinese population through this study, providing relevant guidance and suggestions for dietary guidance and prevention of some chronic diseases in Chinese population.


Assuntos
Feniltioureia , Receptores Acoplados a Proteínas G , Paladar , Feminino , Humanos , Masculino , Povo Asiático/genética , Receptores Acoplados a Proteínas G/genética , Estudantes , Paladar/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa