Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rep Pract Oncol Radiother ; 19(6): 392-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25337412

RESUMO

AIM: To use Monte Carlo (MC) together with voxel phantoms to analyze the tissue heterogeneity effect in the dose distributions and equivalent uniform dose (EUD) for (125)I prostate implants. BACKGROUND: Dose distribution calculations in low dose-rate brachytherapy are based on the dose deposition around a single source in a water phantom. This formalism does not take into account tissue heterogeneities, interseed attenuation, or finite patient dimensions effects. Tissue composition is especially important due to the photoelectric effect. MATERIALS AND METHODS: The computed tomographies (CT) of two patients with prostate cancer were used to create voxel phantoms for the MC simulations. An elemental composition and density were assigned to each structure. Densities of the prostate, vesicles, rectum and bladder were determined through the CT electronic densities of 100 patients. The same simulations were performed considering the same phantom as pure water. Results were compared via dose-volume histograms and EUD for the prostate and rectum. RESULTS: The mean absorbed doses presented deviations of 3.3-4.0% for the prostate and of 2.3-4.9% for the rectum, when comparing calculations in water with calculations in the heterogeneous phantom. In the calculations in water, the prostate D 90 was overestimated by 2.8-3.9% and the rectum D 0.1cc resulted in dose differences of 6-8%. The EUD resulted in an overestimation of 3.5-3.7% for the prostate and of 7.7-8.3% for the rectum. CONCLUSIONS: The deposited dose was consistently overestimated for the simulation in water. In order to increase the accuracy in the determination of dose distributions, especially around the rectum, the introduction of the model-based algorithms is recommended.

2.
Clin Transl Radiat Oncol ; 39: 100569, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36590825

RESUMO

Purpose: Lattice radiation therapy (LRT) is an innovative type of spatially fractionated radiation therapy. It aims to increase large tumors control probability by administering ablative doses without an increased toxicity. Considering the rising number of positive clinical experiences, the objective of this work is to evaluate LRT safety and efficacy. Method: Reports about LRT clinical experience were identified with a systematic review conducted on four different databases (namely, Medline, Embase, Scopus, and Cochrane Library) through the August 2022. Only LRT clinical reports published in English and with the access to the full manuscript text were considered as eligible. The 2020 update version PRISMA statement was followed. Results: Data extraction was performed from 12 eligible records encompassing 7 case reports, 1 case series, and 4 clinical studies. 81 patients (84 lesions) with a large lesion ranging from 63.2 cc to 3713.5 cc were subjected to exclusive, hybrid, and metabolism guided LRT. Excluding two very severe toxicity with a questionable relation with LRT, available clinical experience seem to confirm LRT safety. When a complete response was not achieved 3-6 months after LRT, a median lesion reduction approximately ≥50 % was registered. Conclusion: This systematic review appear to suggest LRT safety, especially for exclusive LRT. The very low level of evidence and the studies heterogeneity preclude drawing definitive conclusions on LRT efficacy, even though an interesting trend in terms of lesions reduction has been described.

3.
Saudi J Biol Sci ; 29(8): 103336, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35754762

RESUMO

Introduction: Dosimetric and radiobiological evaluations for the Jaws-only Intensity-modulated radiotherapy (JO-IMRT) technique for head and neck jaws-only intensity-modulated radiation therapy (JO-IMRT) and 3D conformal radiation therapy (3D-CRT). To compare the head-and-neck therapeutic approaches utilizing JO-IMRT and 3D-CRT techniques, different radiation dose indices were calculated, including: conformity index (CI), homogeneity index (HI), and radiobiological variables like Niemierko's equivalent uniform dose based tumor control probability (TCP) of planning target volume (PTV), normal tissue complication probability (NTCP) of organs at risk (OAR) (brainstem, spinal cord, and parotid grand). Materials and methods: Twenty-five nasopharynx patients were studied using the Prowess Panther Treatment Planning System (Prowess Inc). The results were compared with the dose distribution obtained using 3D-CRT. Results: Regarding tumor coverage and CI, JO-IMRT showed better results than 3D-CRT. The average doses received by the PTVs were quite similar: 72.1 ± 0.8 Gy by 3D-CRT and 72.5 ± 0.6 Gy by JO-IMRT plans (p > 0.05). The mean doses received by the parotid gland were 56.7 ± 0.7 Gy by 3D-CRT and 26.8 ± 0.3 Gy by JO-IMRT (p > 0.05). The HI and CI were 0.13 ± 0.01 and 0.14 ± 0.05 and (p > 0.05) by 3D-CRT and 0.83 ± 0.05 and 0.73 ± 0.10 by JO-IMRT (p < 0.05). The average TCP of PTV was 0.82 ± 0.08 by 3D-CRT and 0.92 ± 0.02 by JO-IMRT. Moreover, the NTCP of the parotid glands, brain stem, and spinal cord were lower using the JO-IMRT than 3D-CRT plans. In comparison to the 3D-CRT approach, the JO-IMRT technique was able to boost dose coverage to the PTV, improve the target's CI and HI, and spare the parotid glands. This suggests the power of the JO-IMRT over 3D-CRT in head-and-neck radiotherapy.

4.
Clin Transl Radiat Oncol ; 33: 7-14, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34988299

RESUMO

BACKGROUND: Posterior fossa tumors represent two thirds of brain tumors in children. Although progress in treatment has improved survival rates over the past few years, long-term memory impairments in survivors are frequent and have an impact on academic achievement. The hippocampi, cerebellum and cerebellar-cortical networks play a role in several memory systems. They are affected not only by the location of the tumor itself and its surgical removal, but also by the supratentorial effects of complementary treatments, particularly radiotherapy. The IMPALA study will investigate the impact of irradiation doses on brain structures involved in memory, especially the hippocampi and cerebellum. METHODS/DESIGN: In this single-center prospective behavioral and neuro-imaging study, 90 participants will be enrolled in three groups. The first two groups will include patients who underwent surgery for a posterior fossa brain tumor in childhood, who are considered to be cured, and who completed treatment at least 5 years earlier, either with radiotherapy (aggressive brain tumor; Group 1) or without (low-grade brain tumor; Group 2). Group 3 will include control participants matched with Group 1 for age, sex, and handedness. All participants will perform an extensive battery of neuropsychological tests, including an assessment of the main memory systems, and undergo multimodal 3 T MRI. The irradiation dose to the different brain structures involved in memory will be collected from the initial radiotherapy dosimetry. DISCUSSION: This study will provide long-term neuropsychological data about four different memory systems (working memory, episodic memory, semantic memory, and procedural memory) and the cognitive functions (attention, language, executive functions) that can interfere with them, in order to better characterize memory deficits among the survivors of brain tumors. We will investigate the correlations between neuropsychological and neuroimaging data on the structural (3DT1), microstructural (DTI), functional (rs-fMRI), vascular (ASL) and metabolic (spectroscopy) impact of the tumor and irradiation dose. This study will thus inform the setting of dose constraints to spare regions linked to the development of cognitive and memory functions. TRIAL REGISTRATION: ClinicalTrials.gov: NCT04324450, registered March 27, 2020, updated January 25th, 2021. Retrospectively registered, https://www.clinicaltrials.gov/ct2/show/NCT04324450.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa