Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
1.
Cell ; 186(16): 3333-3349.e27, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37490916

RESUMO

The T cells of the immune system can target tumors and clear solid cancers following tumor-infiltrating lymphocyte (TIL) therapy. We used combinatorial peptide libraries and a proteomic database to reveal the antigen specificities of persistent cancer-specific T cell receptors (TCRs) following successful TIL therapy for stage IV malignant melanoma. Remarkably, individual TCRs could target multiple different tumor types via the HLA A∗02:01-restricted epitopes EAAGIGILTV, LLLGIGILVL, and NLSALGIFST from Melan A, BST2, and IMP2, respectively. Atomic structures of a TCR bound to all three antigens revealed the importance of the shared x-x-x-A/G-I/L-G-I-x-x-x recognition motif. Multi-epitope targeting allows individual T cells to attack cancer in several ways simultaneously. Such "multipronged" T cells exhibited superior recognition of cancer cells compared with conventional T cell recognition of individual epitopes, making them attractive candidates for the development of future immunotherapies.


Assuntos
Antígenos de Neoplasias , Neoplasias , Proteômica , Receptores de Antígenos de Linfócitos T , Antígenos de Neoplasias/metabolismo , Epitopos , Imunoterapia , Linfócitos do Interstício Tumoral , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/metabolismo
2.
Mol Ther ; 32(1): 168-184, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37974400

RESUMO

Circular mRNA (cmRNA) is particular useful due to its high resistance to degradation by exonucleases, resulting in greater stability and protein expression compared to linear mRNA. T cell receptor (TCR)-engineered T cells (TCR-T) represent a promising means of treating viral infections and cancer. This study aimed to evaluate the feasibility and efficacy of cmRNA in antigen-specific-TCR discovery and TCR-T therapy. Using human cytomegalovirus (CMV) pp65 antigen as a model, we found that the expansion of pp65-responsive T cells was induced more effectively by monocyte-derived dendritic cells transfected with pp65-encoding cmRNA compared with linear mRNA. Subsequently, we developed cmRNA-transduced pp65-TCR-T (cm-pp65-TCR-T) that specifically targets the CMV-pp65 epitope. Our results showed that pp65-TCR could be expressed on primary T cells for more than 7 days. Moreover, both in vitro killing and in vivo CDX models demonstrated that cm-pp65-TCR-T cells specifically and persistently kill pp65-and HLA-expressing tumor cells, significantly prolonging the survival of mice. Collectively, our results demonstrated that cmRNA can be used as a more effective technical approach for antigen-specific TCR isolation and identification, and cm-pp65-TCR-T may provide a safe, non-viral, non-integrated therapeutic approach for controlling CMV infection, particularly in patients who have undergone allogeneic hematopoietic stem cell transplantation.


Assuntos
Infecções por Citomegalovirus , Transplante de Células-Tronco Hematopoéticas , Humanos , Animais , Camundongos , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/terapia , Citomegalovirus/genética , Linfócitos T , Receptores de Antígenos de Linfócitos T/genética , Proteínas da Matriz Viral/genética
3.
Cancer Sci ; 115(1): 24-35, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37879364

RESUMO

We previously identified papillomavirus binding factor (PBF) as an osteosarcoma antigen recognized by an autologous cytotoxic T lymphocyte clone. Vaccination with PBF-derived peptide presented by HLA-A24 (PBF peptide) elicited strong immune responses. In the present study, we generated T cell receptor-engineered T cells (TCR-T cells) directed against the PBF peptide (PBF TCR-T cells). PBF TCR was successfully transduced into T cells and detected using HLA-A*24:02/PBF peptide tetramer. PBF TCR-T cells generated from a healthy donor were highly expanded and recognized T2-A24 cells pulsed with PBF peptide, HLA-A24+ 293T cells transfected with PBF cDNA, and sarcoma cell lines. To establish an adoptive cell therapy model, we modified the PBF TCR by replacing both α and ß constant regions with those of mice (hybrid PBF TCR). Hybrid PBF TCR-T cells also showed reactivity against T2-A24 cells pulsed with PBF peptide and to HLA-A24+ 293T cells transfected with various lengths of PBF cDNA including the PBF peptide sequence. Subsequently, we generated target cell lines highly expressing PBF (MFH03-PBF [short] epitope [+]) containing PBF peptide with in vivo tumorigenicity. Hybrid PBF TCR-T cells exhibited antitumor effects compared with mock T cells in NSG mice xenografted with MFH03-PBF (short) epitope (+) cells. CD45+ T cells significantly infiltrated xenografted tumors only in the hybrid PBF TCR T cell group and most of these cells were CD8-positive. CD8+ T cells also showed Ki-67 expression and surrounded the CD8-negative tumor cells expressing Ki-67. These findings suggest that PBF TCR-T cell therapy might be a candidate immunotherapy for sarcoma highly expressing PBF.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Animais , Camundongos , Linfócitos T CD8-Positivos , Antígeno HLA-A24 , DNA Complementar/metabolismo , Antígeno Ki-67/metabolismo , Linfócitos T Citotóxicos , Peptídeos , Osteossarcoma/genética , Epitopos/metabolismo , Neoplasias Ósseas/metabolismo , Receptores de Antígenos de Linfócitos T
4.
Biochem Biophys Res Commun ; 709: 149820, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38547605

RESUMO

While the relationship between single receptor lymphocytes and cancer has been deeply researched, the origin and biological roles of dual receptor lymphocytes in tumor microenvironment (TME) remain largely unknown. And since nasopharyngeal carcinoma (NPC) is a type of cancer closely associated with immune infiltration, studying the TME of NPC holds particular significance. Utilizing single-cell RNA sequencing combined with T cell receptor (TCR) and B cell receptor (BCR) sequencing (scRNA + TCR + BCR-seq), we analyzed data from 7 patients with NPC and 3 patients with nasopharyngeal lymphatic hyperplasia (NLH). In our research, it was firstly found that the presence of dual receptor lymphocytes in both the TME of NPC and the inflammatory environment of NLH. We also confirmed their clonal expansion, suggesting their potential involvement in the immune response. Subsequently, we further discovered the lineage and the pairing characteristics. It was found that the dual receptor lymphocytes in NPC and NLH mainly originate from memory cells, and the predominant pairing type for dual TCR was ß+α1+α2 and dual BCR was heavy+κ+λ. By further analyzing their gene expression, we compared the function of dual receptor cells with single receptor cells in the context of both NPC and NLH. This groundbreaking research has enhanced our comprehension of the features of dual-receptor cells and has contributed to a better understanding of the TME in NPC. By comparing with NLH, it illuminates part of the alterations in the process of malignant transformation in NPC. These findings present the potential to acquire improved diagnostic markers and treatment modalities.


Assuntos
Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/genética , Hiperplasia/patologia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos B , Receptores de Antígenos de Linfócitos B/genética , Proteínas de Transporte/genética , Microambiente Tumoral/genética , Expressão Gênica , Análise de Célula Única
5.
Cancer Immunol Immunother ; 73(8): 150, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832948

RESUMO

Hotspot driver mutations presented by human leukocyte antigens might be recognized by anti-tumor T cells. Based on their advantages of tumor-specificity and immunogenicity, neoantigens derived from hotspot mutations, such as PIK3CAH1047L, may serve as emerging targets for cancer immunotherapies. NetMHCpan V4.1 was utilized for predicting neoepitopes of PIK3CA hotspot mutation. Using in vitro stimulation, antigen-specific T cells targeting the HLA-A*11:01-restricted PIK3CA mutation were isolated from healthy donor-derived peripheral blood mononuclear cells. T cell receptors (TCRs) were cloned using single-cell PCR and sequencing. Their functionality was assessed through T cell activation markers, cytokine production and cytotoxic response to cancer cell lines pulsed with peptides or transduced genes of mutant PIK3CA. Immunogenic mutant antigens from PIK3CA and their corresponding CD8+ T cells were identified. These PIK3CA mutation-specific CD8+ T cells were subsequently enriched, and their TCRs were isolated. The TCR clones exhibited mutation-specific and HLA-restricted reactivity, demonstrating varying degrees of functional avidity. Identified TCR genes were transferred into CD8+ Jurkat cells and primary T cells deficient of endogenous TCRs. TCR-expressing cells demonstrated specific recognition and reactivity against the PIK3CAH1047L peptide presented by HLA-A*11:01-expressing K562 cells. Furthermore, mutation-specific TCR-T cells demonstrated an elevation in cytokine production and profound cytotoxic effects against HLA-A*11:01+ malignant cell lines harboring PIK3CAH1047L. Our data demonstrate the immunogenicity of an HLA-A*11:01-restricted PIK3CA hotspot mutation and its targeting therapeutic potential, together with promising candidates of TCR-T cell therapy.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases , Mutação , Neoplasias , Receptores de Antígenos de Linfócitos T , Humanos , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/genética , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/genética , Imunoterapia/métodos , Antígeno HLA-A11/genética , Antígeno HLA-A11/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Linhagem Celular Tumoral
6.
Cancer Immunol Immunother ; 73(3): 49, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349553

RESUMO

T-cell receptor (TCR) engineered T-cell therapy has recently emerged as a promising adoptive immunotherapy approach for tumor treatment, yet hindered by tumor immune evasion resulting in poor therapeutic efficacy. The introduction of ferroptosis-targeted inducers offers a potential solution, as they empower T cells to induce ferroptosis and exert influence over the tumor microenvironment. Atovaquone (ATO) stands as a prospective pharmaceutical candidate with the potential to target ferroptosis, effectively provoking an excessive generation and accumulation of reactive oxygen species (ROS). In this study, we evaluated the effectiveness of a combination therapy comprising ATO and TCR-T cells against hepatocellular carcinoma (HCC), both in vitro and in vivo. The results of lactate dehydrogenase and cytokine assays demonstrated that ATO enhanced cytotoxicity mediated by AFP-specific TCR-T cells and promoted the release of IFN-γ in vitro. Additionally, in an established HCC xenograft mouse model, the combined therapy with low-dose ATO and TCR-T cells exhibited heightened efficacy in suppressing tumor growth, with no apparent adverse effects, comparable to the results achieved through monotherapy. The RNA-seq data unveiled a significant activation of the ferroptosis-related pathway in the combination therapy group in comparison to the TCR-T cells group. Mechanistically, the synergy between ATO and TCR-T cells augmented the release of IFN-γ by TCR-T cells, while concurrently elevating the intracellular and mitochondrial levels of ROS, expanding the labile iron pool, and impairing the integrity of the mitochondrial membrane in HepG2 cells. This multifaceted interaction culminated in the potentiation of ferroptosis within the tumor, primarily induced by an excess of ROS. In summary, the co-administration of ATO and TCR-T cells in HCC exhibited heightened vulnerability to ferroptosis. This heightened susceptibility led to the inhibition of tumor growth and the stimulation of an anti-tumor immune response. These findings suggest that repurposing atovaquone for adoptive cell therapy combination therapy holds the potential to enhance treatment outcomes in HCC.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/terapia , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Espécies Reativas de Oxigênio , Estudos Prospectivos , Neoplasias Hepáticas/terapia , Receptores de Antígenos de Linfócitos T , Modelos Animais de Doenças , Microambiente Tumoral
7.
Cancer Cell Int ; 24(1): 64, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336680

RESUMO

BACKGROUND: Esophageal cancer (EC) is a global canker notorious for causing high mortality due to its relentless incidence rate, convoluted with unyielding recurrence and metastasis. However, these intricacies of EC are associated with an immoderate expression of NY-ESO-1 antigen, presenting a lifeline for adoptive T cell therapy. We hypothesized that naturally isolated higher-affinity T cell receptors (TCRs) that bind to NY-ESO-1 would allow T lymphocytes to target EC with a pronounced antitumor response efficacy. Also, targeting TRPV2, which is associated with tumorigenesis in EC, creates an avenue for dual-targeted therapy. We exploited the dual-targeting antitumor efficacy against EC. METHODS: We isolated antigen-specific TCRs (asTCRs) from a naive library constructed with TCRs obtained from enriched cytotoxic T lymphocytes. The robustness of our asTCRs and their TCR-T cell derivatives, Tranilast (TRPV2 inhibitor), and their bivalent treatment were evaluated with prospective cross-reactive human-peptide variants and tumor cells. RESULTS: Our study demonstrated that our naive unenhanced asTCRs and their TCR-Ts perpetuated their cognate HLA-A*02:01/NY-ESO-1(157-165) specificity, killing varying EC cells with higher cytotoxicity compared to the known affinity-enhanced TCR (TCRe) and its wild-type (TCR0) which targets the same NY-ESO-1 antigen. Furthermore, the TCR-Ts and Tranilast bivalent treatment showed superior EC killing compared to any of their monovalent treatments of either TCR-T or Tranilast. CONCLUSION: Our findings suggest that dual-targeted immunotherapy may have a superior antitumor effect. Our study presents a technique to evolve novel, robust, timely therapeutic strategies and interventions for EC and other malignancies.

8.
Cytotherapy ; 26(3): 266-275, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38231165

RESUMO

T cell receptor engineered T cell (TCR T) therapies have shown recent efficacy against certain types of solid metastatic cancers. However, to extend TCR T therapies to treat more patients across additional cancer types, new TCRs recognizing cancer-specific antigen targets are needed. Driver mutations in AKT1, ESR1, PIK3CA, and TP53 are common in patients with metastatic breast cancer (MBC) and if immunogenic could serve as ideal tumor-specific targets for TCR T therapy to treat this disease. Through IFN-γ ELISpot screening of in vitro expanded neopeptide-stimulated T cell lines from healthy donors and MBC patients, we identified reactivity towards 11 of 13 of the mutations. To identify neopeptide-specific TCRs, we then performed single-cell RNA sequencing of one of the T cell lines following neopeptide stimulation. Here, we identified an ESR1 Y537S specific T cell clone, clonotype 16, and an ESR1 Y537S/D538G dual-specific T cell clone, clonotype 21, which were HLA-B*40:02 and HLA-C*01:02 restricted, respectively. TCR Ts expressing these TCRs recognized and killed target cells pulsed with ESR1 neopeptides with minimal activity against ESR1 WT peptide. However, these TCRs failed to recognize target cells expressing endogenous mutant ESR1. To investigate the basis of this lack of recognition we performed immunopeptidomics analysis of a mutant-overexpressing lymphoblastoid cell line and found that the ESR1 Y537S neopeptide was not endogenously processed, despite binding to HLA-B*40:02 when exogenously pulsed onto the target cell. These results indicate that stimulation of T cells that likely derive from the naïve repertoire with pulsed minimal peptides may lead to the expansion of clones that recognize non-processed peptides, and highlights the importance of using methods that selectively expand T cells with specificity for antigens that are efficiently processed and presented.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Apresentação de Antígeno , Receptores de Antígenos de Linfócitos T , Mutação , Peptídeos , Antígenos HLA-B/genética
9.
Bull Math Biol ; 86(5): 57, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625492

RESUMO

Engineered T cell receptor (TCR)-expressing T (TCR-T) cells are intended to drive strong anti-tumor responses upon recognition of the specific cancer antigen, resulting in rapid expansion in the number of TCR-T cells and enhanced cytotoxic functions, causing cancer cell death. However, although TCR-T cell therapy against cancers has shown promising results, it remains difficult to predict which patients will benefit from such therapy. We develop a mathematical model to identify mechanisms associated with an insufficient response in a mouse cancer model. We consider a dynamical system that follows the population of cancer cells, effector TCR-T cells, regulatory T cells (Tregs), and "non-cancer-killing" TCR-T cells. We demonstrate that the majority of TCR-T cells within the tumor are "non-cancer-killing" TCR-T cells, such as exhausted cells, which contribute little or no direct cytotoxicity in the tumor microenvironment (TME). We also establish two important factors influencing tumor regression: the reversal of the immunosuppressive TME following depletion of Tregs, and the increased number of effector TCR-T cells with antitumor activity. Using mathematical modeling, we show that certain parameters, such as increasing the cytotoxicity of effector TCR-T cells and modifying the number of TCR-T cells, play important roles in determining outcomes.


Assuntos
Neoplasias do Colo do Útero , Humanos , Animais , Camundongos , Feminino , Neoplasias do Colo do Útero/terapia , Conceitos Matemáticos , Receptores de Antígenos de Linfócitos T , Modelos Animais de Doenças , Terapia Baseada em Transplante de Células e Tecidos , Microambiente Tumoral
10.
Cell Mol Biol Lett ; 29(1): 52, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609863

RESUMO

T cell immunity is central to contemporary cancer and autoimmune therapies, encompassing immune checkpoint blockade and adoptive T cell therapies. Their diverse characteristics can be reprogrammed by different immune challenges dependent on antigen stimulation levels, metabolic conditions, and the degree of inflammation. T cell-based therapeutic strategies are gaining widespread adoption in oncology and treating inflammatory conditions. Emerging researches reveal that clustered regularly interspaced palindromic repeats-associated protein 9 (CRISPR-Cas9) genome editing has enabled T cells to be more adaptable to specific microenvironments, opening the door to advanced T cell therapies in preclinical and clinical trials. CRISPR-Cas9 can edit both primary T cells and engineered T cells, including CAR-T and TCR-T, in vivo and in vitro to regulate T cell differentiation and activation states. This review first provides a comprehensive summary of the role of CRISPR-Cas9 in T cells and its applications in preclinical and clinical studies for T cell-based therapies. We also explore the application of CRISPR screen high-throughput technology in editing T cells and anticipate the current limitations of CRISPR-Cas9, including off-target effects and delivery challenges, and envisioned improvements in related technologies for disease screening, diagnosis, and treatment.


Assuntos
Sistemas CRISPR-Cas , Linfócitos T , Humanos , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Inflamação , Ativação Linfocitária
11.
Acta Biochim Biophys Sin (Shanghai) ; 56(5): 663-674, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38557898

RESUMO

Adoptive cell therapies involve infusing engineered immune cells into cancer patients to recognize and eliminate tumor cells. Adoptive cell therapy, as a form of living drug, has undergone explosive growth over the past decade. The recognition of tumor antigens by the T-cell receptor (TCR) is one of the natural mechanisms that the immune system used to eliminate tumor cells. TCR-T cell therapy, which involves introducing exogenous TCRs into patients' T cells, is a novel cell therapy strategy. TCR-T cell therapy can target the entire proteome of cancer cells. Engineering T cells with exogenous TCRs to help patients combat cancer has achieved success in clinical trials, particularly in treating solid tumors. In this review, we examine the progress of TCR-T cell therapy over the past five years. This includes the discovery of new tumor antigens, protein engineering techniques for TCR, reprogramming strategies for TCR-T cell therapy, clinical studies on TCR-T cell therapy, and the advancement of TCR-T cell therapy in China. We also propose several potential directions for the future development of TCR-T cell therapy.


Assuntos
Antígenos de Neoplasias , Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos de Linfócitos T , Linfócitos T , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/genética , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/tendências , Antígenos de Neoplasias/imunologia , Linfócitos T/imunologia , Animais , Engenharia de Proteínas/métodos
12.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34725257

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections elicit both humoral and cellular immune responses. For the prevention and treatment of COVID-19, the disease caused by SARS-CoV-2, it has become increasingly apparent that T cell responses are equally if not more important than humoral responses in mediating recovery and immune protection. One major challenge in developing T cell-based therapies for infectious and malignant diseases has been the identification of immunogenic epitopes that can elicit a meaningful T cell response. Traditionally, this has been achieved using sophisticated in silico methods to predict putative epitopes deduced from binding affinities. Our studies find that, in contrast to current convention, "immunodominant" SARS-CoV-2 peptides defined by such in silico methods often fail to elicit T cell responses recognizing naturally presented SARS-CoV-2 epitopes. We postulated that immunogenic epitopes for SARS-CoV-2 are best defined empirically by directly analyzing peptides eluted from the naturally processed peptide-major histocompatibility complex (MHC) and then validating immunogenicity by determining whether such peptides can elicit T cells recognizing SARS-CoV-2 antigen-expressing cells. Using a tandem mass spectrometry approach, we identified epitopes derived from not only structural but also nonstructural genes in regions highly conserved among SARS-CoV-2 strains, including recently recognized variants. Finally, there are no reported T cell receptor-engineered T cell technology that can redirect T cell specificity to recognize and kill SARS-CoV-2 target cells. We report here several SARS-CoV-2 epitopes defined by mass spectrometric analysis of MHC-eluted peptides, provide empiric evidence for their immunogenicity, and demonstrate engineered TCR-redirected killing.


Assuntos
COVID-19/imunologia , Epitopos de Linfócito T/isolamento & purificação , Epitopos/isolamento & purificação , Espectrometria de Massas/métodos , Receptores de Antígenos de Linfócitos T/imunologia , SARS-CoV-2 , Linfócitos T CD8-Positivos , Linhagem Celular , Epitopos/genética , Epitopos de Linfócito T/imunologia , Humanos , Complexo Principal de Histocompatibilidade , Peptídeos , Receptores de Antígenos de Linfócitos T/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
13.
Immunology ; 170(4): 453-469, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37435926

RESUMO

Hepatocellular carcinoma (HCC) remains a global health challenge. Novel treatment modalities are urgently needed to extend the overall survival of patients. The liver plays an immunomodulatory function due to its unique physiological structural characteristics. Therefore, following surgical resection and radiotherapy, immunotherapy regimens have shown great potential in the treatment of hepatocellular carcinoma. Adoptive cell immunotherapy is rapidly developing in the treatment of hepatocellular carcinoma. In this review, we summarize the latest research on adoptive immunotherapy for hepatocellular carcinoma. The focus is on chimeric antigen receptor (CAR)-T cells and T cell receptor (TCR) engineered T cells. Then tumour-infiltrating lymphocytes (TILs), natural killer (NK) cells, cytokine-induced killer (CIK) cells, and macrophages are briefly discussed. The main overview of the application and challenges of adoptive immunotherapy in hepatocellular carcinoma. It aims to provide the reader with a comprehensive understanding of the current status of HCC adoptive immunotherapy and offers some strategies. We hope to provide new ideas for the clinical treatment of hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Imunoterapia Adotiva , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Linfócitos T , Receptores de Antígenos de Linfócitos T/genética
14.
Mol Cancer ; 22(1): 141, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37649123

RESUMO

Recent advances in neoantigen research have accelerated the development of tumor immunotherapies, including adoptive cell therapies (ACTs), cancer vaccines and antibody-based therapies, particularly for solid tumors. With the development of next-generation sequencing and bioinformatics technology, the rapid identification and prediction of tumor-specific antigens (TSAs) has become possible. Compared with tumor-associated antigens (TAAs), highly immunogenic TSAs provide new targets for personalized tumor immunotherapy and can be used as prospective indicators for predicting tumor patient survival, prognosis, and immune checkpoint blockade response. Here, the identification and characterization of neoantigens and the clinical application of neoantigen-based TCR-T immunotherapy strategies are summarized, and the current status, inherent challenges, and clinical translational potential of these strategies are discussed.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Estudos Prospectivos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Linfócitos T , Receptores de Antígenos de Linfócitos T/genética
15.
Mol Cancer ; 22(1): 40, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810079

RESUMO

Lung cancer is the primary cause of mortality in the United States and around the globe. Therapeutic options for lung cancer treatment include surgery, radiation therapy, chemotherapy, and targeted drug therapy. Medical management is often associated with the development of treatment resistance leading to relapse. Immunotherapy is profoundly altering the approach to cancer treatment owing to its tolerable safety profile, sustained therapeutic response due to immunological memory generation, and effectiveness across a broad patient population. Different tumor-specific vaccination strategies are gaining ground in the treatment of lung cancer. Recent advances in adoptive cell therapy (CAR T, TCR, TIL), the associated clinical trials on lung cancer, and associated hurdles are discussed in this review. Recent trials on lung cancer patients (without a targetable oncogenic driver alteration) reveal significant and sustained responses when treated with programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) checkpoint blockade immunotherapies. Accumulating evidence indicates that a loss of effective anti-tumor immunity is associated with lung tumor evolution. Therapeutic cancer vaccines combined with immune checkpoint inhibitors (ICI) can achieve better therapeutic effects. To this end, the present article encompasses a detailed overview of the recent developments in the immunotherapeutic landscape in targeting small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Additionally, the review also explores the implication of nanomedicine in lung cancer immunotherapy as well as the combinatorial application of traditional therapy along with immunotherapy regimens. Finally, ongoing clinical trials, significant obstacles, and the future outlook of this treatment strategy are also highlighted to boost further research in the field.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Imunoterapia , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/terapia , Recidiva Local de Neoplasia , Carcinoma de Pequenas Células do Pulmão/terapia
16.
Int J Cancer ; 152(12): 2554-2566, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36727538

RESUMO

The efficacy of immune checkpoint inhibitors is limited in refractory solid tumors. T-cell receptor gene-modified T (TCR-T)-cell therapy has attracted attention as a new immunotherapy for refractory cold tumors. We first investigated the preclinical efficacy and mode of action of TCR-T cells combined with the pullulan nanogel:long peptide antigen (LPA) vaccine in a mouse sarcoma model that is resistant to immune checkpoint inhibition. Without lymphodepletion, the pullulan nanogel:LPA vaccine markedly increased the number of TCR-T cells in the draining lymph node and tumor tissue. This change was associated with enhanced CXCR3 expression in TCR-T cells in the draining lymph node. In the phase 1 trial, autologous New York esophageal squamous cell carcinoma 1 (NY-ESO-1)-specific TCR-T cells were infused twice into HLA-matched patients with NY-ESO-1+ soft tissue sarcoma (STS). The pullulan nanogel:LPA vaccine contains an epitope recognized by TCR-T cells, and it was subcutaneously injected 1 day before and 7 days after the infusion of TCR-T cells. Lymphodepletion was not performed. Three patients with refractory synovial sarcoma (SS) were treated. Two out of the three patients developed cytokine release syndrome (CRS) with low-to-moderate cytokine level elevation. We found obvious tumor shrinkage lasting for more than 2 years by tumor imaging and long-term persistence of TCR-T cells in one patient. In conclusion, NY-ESO-1-specific TCR-T-cell therapy plus vaccination with the pullulan nanogel carrying an LPA containing the NY-ESO-1 epitope without lymphodepletion is feasible and can induce promising long-lasting therapeutic effects in refractory SS (Registration ID: JMA-IIA00346).


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Sarcoma Sinovial , Neoplasias de Tecidos Moles , Vacinas , Animais , Camundongos , Nanogéis , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Antígenos de Neoplasias , Sarcoma Sinovial/terapia , Epitopos , Terapia Baseada em Transplante de Células e Tecidos
17.
Cancer Sci ; 114(6): 2254-2264, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36866942

RESUMO

The clinical success of T cell receptor (TCR) gene-transduced T (TCR-T) cell therapy is expected as one of the next-generation immunotherapies for cancer, in which the selection of TCRs with high functional avidity (high-functional TCRs) is important. One widely used approach to select high-functional TCRs is a comparison of the EC50 values of TCRs, which involves laborious experiments. Therefore, the establishment of a simpler method to select high-functional TCRs is desired. We herein attempted to establish a simple method to select high-functional TCRs based on the expression of T cell activation markers using the mouse T cell line BW5147.3 (BW). We examined relationships between the EC50 values of TCRs in interleukin-2 production and the expression levels of TCR activation markers on BW cells. In TCR-expressing BW cells stimulated with antigenic peptides, the CD69, CD137, and PD-1 expression was differentially induced by various doses of peptides. An analysis of TCRs derived from the tumor-infiltrating lymphocytes of murine melanoma and peripheral blood T cells of hepatocellular carcinoma patients treated with a peptide vaccination revealed that an analysis combining CD69, CD137, and PD-1 expression levels in BW cells stimulated with a single dose of an antigenic peptide selected high-functional TCRs with functional avidity assessed by EC50 values. Our method facilitates the section of high-functional TCRs among tumor-reacting TCRs, which will promote TCR-T cell therapy. The stimulation of BW cells expressing objective TCRs with a single dose of antigenic peptides and analysis combining the expression of CD69, CD137, and PD-1 allows us to select highly responsive TCRs.


Assuntos
Vacinas Anticâncer , Melanoma , Camundongos , Animais , Receptor de Morte Celular Programada 1 , Vacinas de Subunidades Antigênicas , Receptores de Antígenos de Linfócitos T , Antígenos , Peptídeos
18.
Biochem Biophys Res Commun ; 687: 149209, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37944471

RESUMO

TCR-engineered T cells have achieved great progress in solid tumor therapy, some of which have been applicated in clinical trials. Deep knowledge about the current progress of TCR-T in tumor therapy would be beneficial to understand the direction. Here, we classify tumor antigens into tumor-associated antigens, tumor-specific antigens, tumor antigens expressed by oncogenic viruses, and tumor antigens caused by abnormal protein modification; Then we detail the TCR-T cell therapy effects targeting those tumor antigens in clinical or preclinical trials, and propose that neoantigen specific TCR-T cell therapy is expected to be a promising approach for solid tumors; Furthermore, we summarize the optimization strategies, such as tumor microenvironment, TCR pairing and affinity, to improve the therapeutic effect of TCR-T. Overall, this review provides inspiration for the antigen selection and therapy strategies of TCR-T in the future.


Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/metabolismo , Neoplasias/metabolismo , Antígenos de Neoplasias/metabolismo , Terapia Baseada em Transplante de Células e Tecidos , Imunoterapia Adotiva , Microambiente Tumoral
19.
Cancer Immunol Immunother ; 72(4): 805-814, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36315268

RESUMO

BACKGROUND: T cell receptor-engineered T cell (TCR-T) therapy has shown promising efficacy in advanced solid tumours. Lymphodepleting (LD) chemotherapy improves TCR-T cell therapy efficacy but is associated with significant toxicities. Evidence is sparse regarding the optimum LD regimen for TCR-T cell therapy in solid tumours. METHODS: A systematic review was conducted of interventional, prospective clinical trials describing LD practices prior to TCR-T cell therapy in patients with advanced solid tumours. The objective was to define LD regimens administered prior to TCR-T cell therapy and their effects on specific safety and efficacy outcomes in this patient population. RESULTS: Searches returned 484 studies, 19 (231 patients) met the eligibility criteria. Cyclophosphamide (cyclo) 60 mg/kg daily (2 days), plus fludarabine (fludara) 25 mg/m2 daily (5 days) was the most common LD regimen (38% of studies). Higher dose LD regimens were associated with increased pooled incidence rates of febrile neutropaenia compared to low dose (0.64, [95% Confidence interval (CI): 0.50-0.78], vs. 0.39 [95% CI: 0.25-0.53], respectively) but were not significantly associated with higher objective responses (odds ratio: 1.05, 95%CI: 0.60-1.82, p = 0.86). A major shortfall in safety data reporting was identified; determination of LD regimen effects on many safety outcomes was not possible. CONCLUSION: Standard consensus guidelines for the design and reporting of adoptive cell therapy (ACT) studies would facilitate accurate risk-benefit analysis for optimising LD regimens in patients with advanced solid tumours.


Assuntos
Neoplasias , Humanos , Estudos Prospectivos , Neoplasias/tratamento farmacológico , Ciclofosfamida/efeitos adversos , Receptores de Antígenos de Linfócitos T , Linfócitos T
20.
Cancer Immunol Immunother ; 72(7): 2347-2356, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36939853

RESUMO

CD4+ T cells that recognize antigenic peptides presented on HLA class II are essential for inducing an optimal anti-tumor immune response, and adoptive transfer of tumor antigen-specific TCR-transduced CD4+ T cells with high responsiveness against tumor is a promising strategy for cancer treatment. Whereas a precise evaluation method of functional avidity, an indicator of T cell responsiveness against tumors, has been established for HLA class I-restricted TCRs, it remains unestablished for HLA class II-restricted TCRs. In this study, we generated a novel platform cell line, CD4-2D3, in which GFP reporter was expressed by NFAT activation via TCR signaling, for correctly evaluating functional avidity of HLA class II-restricted TCRs. Furthermore, using this platform cell line, we succeeded in maturating functional avidity of an HLA class II-restricted TCR specific for a WT1-derived helper peptide by substituting amino acids in complementarity determining region 3 (CDR3) of the TCR. Importantly, we demonstrated that transduction of an avidity-maturated TCR conferred strong cytotoxicity against WT1-expressing leukemia cells on CD4+ T cells, compared to that of its original TCR. Thus, CD4-2D3 cell line should be useful not only to evaluate TCR functional avidity in HLA class II-restricted TCRs but also to screen appropriate TCRs for clinical applications such as cancer immunotherapy.


Assuntos
Imunoterapia Adotiva , Neoplasias , Humanos , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T CD4-Positivos , Antígenos de Neoplasias
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa