Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Genomics ; 116(3): 110823, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38492820

RESUMO

The TIFY gene family plays an essential role in plant development and abiotic and biotic stress responses. In this study, genome-wide identification of TIFY members in tobacco and their expression pattern analysis in response to Ralstonia solanacearum infection were performed. A total of 33 TIFY genes were identified, including the TIFY, PPD, ZIM&ZML and JAZ subfamilies. Promoter analysis results indicated that a quantity of light-response, drought-response, SA-response and JA-response cis-elements exist in promoter regions. The TIFY gene family exhibited expansion and possessed gene redundancy resulting from tobacco ploidy change. In addition, most NtTIFYs equivalently expressed in roots, stems and leaves, while NtTIFY1, NtTIFY4, NtTIFY18 and NtTIFY30 preferentially expressed in roots. The JAZ III clade showed significant expression changes after inoculation with R. solanacearum, and the expression of NtTIFY7 in resistant varieties, compared with susceptible varieties, was more stably induced. Furthermore, NtTIFY7-silenced plants, compared with the control plants, were more susceptible to bacterial wilt. These results lay a foundation for exploring the evolutionary history of TIFY gene family and revealing gene function of NtTIFYs in tobacco bacterial wilt resistance.


Assuntos
Família Multigênica , Nicotiana , Doenças das Plantas , Proteínas de Plantas , Ralstonia solanacearum , Ralstonia solanacearum/genética , Nicotiana/genética , Nicotiana/microbiologia , Nicotiana/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Resistência à Doença/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Filogenia , Regiões Promotoras Genéticas
2.
BMC Genomics ; 25(1): 468, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745142

RESUMO

BACKGROUND: Plant-specific TIFY proteins are widely found in terrestrial plants and play important roles in plant adversity responses. Although the genome of loquat at the chromosome level has been published, studies on the TIFY family in loquat are lacking. Therefore, the EjTIFY gene family was bioinformatically analyzed by constructing a phylogenetic tree, chromosomal localization, gene structure, and adversity expression profiling in this study. RESULTS: Twenty-six EjTIFY genes were identified and categorized into four subfamilies (ZML, JAZ, PPD, and TIFY) based on their structural domains. Twenty-four EjTIFY genes were irregularly distributed on 11 of the 17 chromosomes, and the remaining two genes were distributed in fragments. We identified 15 covariate TIFY gene pairs in the loquat genome, 13 of which were involved in large-scale interchromosomal segmental duplication events, and two of which were involved in tandem duplication events. Many abiotic stress cis-elements were widely present in the promoter region. Analysis of the Ka/Ks ratio showed that the paralogous homologs of the EjTIFY family were mainly subjected to purifying selection. Analysis of the RNA-seq data revealed that a total of five differentially expressed genes (DEGs) were expressed in the shoots under gibberellin treatment, whereas only one gene was significantly differentially expressed in the leaves; under both low-temperature and high-temperature stresses, there were significantly differentially expressed genes, and the EjJAZ15 gene was significantly upregulated under both low- and high-temperature stress. RNA-seq and qRT-PCR expression analysis under salt stress conditions revealed that EjJAZ2, EjJAZ4, and EjJAZ9 responded to salt stress in loquat plants, which promoted resistance to salt stress through the JA pathway. The response model of the TIFY genes in the jasmonic acid pathway under salt stress in loquat was systematically summarized. CONCLUSIONS: These results provide a theoretical basis for exploring the characteristics and functions of additional EjTIFY genes in the future. This study also provides a theoretical basis for further research on breeding for salt stress resistance in loquat. RT-qPCR analysis revealed that the expression of one of the three EjTIFY genes increased and the expression of two decreased under salt stress conditions, suggesting that EjTIFY exhibited different expression patterns under salt stress conditions.


Assuntos
Eriobotrya , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Eriobotrya/genética , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Genoma de Planta , Cromossomos de Plantas/genética
3.
BMC Plant Biol ; 24(1): 840, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242996

RESUMO

BACKGROUND: Alfalfa (Medicago sativa L.) is an essential leguminous forage with high nutrition and strong adaptability. The TIFY family is a plant-specific transcription factor identified in many plants. However, few reports have been reported on the phylogenetic analysis and gene expression profiling of TIFY family genes in alfalfa. RESULT: A total of 84 TIFY genes belonging to 4 categories were identified in alfalfa, including 58 MsJAZs, 18 MsZMLs, 4 MsTIFYs and 4 MsPPDs, respectively. qRT-PCR data from 8 genes in different tissues revealed that most MsTIFY genes were highly expressed in roots. The expression of MsTIFY14 was up-regulated after different times in both thrips-resistant and susceptible alfalfa after thrips feeding, and the expression of the remaining MsTIFYs had a strong correlation with the time of thrips feeding. Different abiotic stresses, including drought, salt, and cold, could induce or inhibit the expression of MsTIFY genes to varying degrees. In addition, the eight genes were all significantly up-regulated by JA and/or SA. Interestingly, MsTIFY77 was induced considerably by all the biotic, abiotic, or plant hormones (JA or SA) except ABA. CONCLUSION: Our study identified members of the TIFY gene family in alfalfa and analyzed their structures and possible functions. It laid the foundation for further research on the molecular functions of TIFYs in alfalfa.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago sativa , Proteínas de Plantas , Fatores de Transcrição , Animais , Perfilação da Expressão Gênica , Genes de Plantas , Genoma de Planta , Medicago sativa/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Int J Mol Sci ; 25(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38791460

RESUMO

The TIFY gene family (formerly known as the zinc finger proteins expressed in inflorescence meristem (ZIM) family) not only functions in plant defense responses but also are widely involved in regulating plant growth and development. However, the identification and functional analysis of TIFY proteins remain unexplored in Orchidaceae. Here, we identified 19 putative TIFY genes in the Phalaenopsis aphrodite genome. The phylogenetic tree classified them into four subfamilies: 14 members from JAZ, 3 members from ZML, and 1 each from PPD and TIFY. Sequence analysis revealed that all Phalaenopsis TIFY proteins contained a TIFY domain. Exon-intron analysis showed that the intron number and length of Phalaenopsis TIFY genes varied, whereas the same subfamily and subgroup genes had similar exon or intron numbers and distributions. The most abundant cis-elements in the promoter regions of the 19 TIFY genes were associated with light responsiveness, followed by MeJA and ABA, indicating their potential regulation by light and phytohormones. The 13 candidate TIFY genes screened from the transcriptome data exhibited two types of expression trends, suggesting their different roles in cell proliferation and cell expansion of floral organ growth during Phalaenopsis flower opening. Overall, this study serves as a background for investigating the underlying roles of TIFY genes in floral organ growth in Phalaenopsis.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Família Multigênica , Orchidaceae , Proteínas de Plantas , Flores/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Genoma de Planta , Orchidaceae/genética , Orchidaceae/crescimento & desenvolvimento , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética
5.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069438

RESUMO

As plant-specific transcription factors, the TIFY family genes are involved in the responses to a series of biotic and abiotic stresses and the regulation of the development of multiple organs. To explore the potential roles of the TIFY gene family in shoot branching, which can shape plant architecture and finally determine seed yield, we conducted comprehensive genome-wide analyses of the TIFY gene family in Brassica napus. Here, HMMER search and BLASTp were used to identify the TIFY members. A total of 70 TIFY members were identified and divided into four subfamilies based on the conserved domains and motifs. These TIFY genes were distributed across 19 chromosomes. The predicted subcellular localizations revealed that most TIFY proteins were located in the nucleus. The tissue expression profile analyses indicated that TIFY genes were highly expressed in the stem, flower bud, and silique at the transcriptional level. High-proportioned activation of the dormant axillary buds on stems determined the branch numbers of rapeseed plants. Here, transcriptome analyses were conducted on axillary buds in four sequential developing stages, that is, dormant, temporarily dormant, being activated, and elongating (already activated). Surprisingly, the transcription of the majority of TIFY genes (65 of the 70) significantly decreased on the activation of buds. GO enrichment analysis and hormone treatments indicated that the transcription of TIFY family genes can be strongly induced by jasmonic acid, implying that the TIFY family genes may be involved in the regulation of jasmonic acid-mediated branch development. These results shed light on the roles of TIFY family genes in plant architecture.


Assuntos
Brassica napus , Brassica napus/metabolismo , Estudo de Associação Genômica Ampla , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Regulação da Expressão Gênica de Plantas , Filogenia
6.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446090

RESUMO

TIFY is a plant-specific gene family with four subfamilies: ZML, TIFY, PPD, and JAZ. Recently, this family was found to have regulatory functions in hormone stimulation, environmental response, and development. However, little is known about the roles of the TIFY family in Tartary buckwheat (Fagopyrum tataricum), a significant crop for both food and medicine. In this study, 18 TIFY family genes (FtTIFYs) in Tartary buckwheat were identified. The characteristics, motif compositions, and evolutionary relationships of the TIFY proteins, as well as the gene structures, cis-acting elements, and synteny of the TIFY genes, are discussed in detail. Moreover, we found that most FtTIFYs responded to various abiotic stresses (cold, heat, salt, or drought) and hormone treatments (ABA, MeJA, or SA). Through yeast two-hybrid assays, we revealed that two FtTIFYs, FtTIFY1 and FtJAZ7, interacted with FtABI5, a homolog protein of AtABI5 involved in ABA-mediated germination and stress responses, implying crosstalk between ABA and JA signaling in Tartary buckwheat. Furthermore, the overexpression of FtJAZ10 and FtJAZ12 enhanced the heat stress tolerance of tobacco. Consequently, our study suggests that the FtTIFY family plays important roles in responses to abiotic stress and provides two candidate genes (FtJAZ10 and FtJAZ12) for the cultivation of stress-resistant crops.


Assuntos
Fagopyrum , Fagopyrum/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas
7.
BMC Genomics ; 23(1): 190, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35255828

RESUMO

BACKGROUND: Walnuts (Juglans regia L.) are known for their nutrient-rich nuts and are one of the important economic tree species in the world. However, due to global warming and soil salinization, walnuts suffer from various abiotic stresses. TIFY (TIF[F/Y]XG) proteins play an essential role in the growth and development of plants, signal transduction, and stress response in plants. At present, although the TIFY gene family of a number of plants has been identified and studied, how TIFY takes part in stress tolerance remains obscure and many functions of TIFY require further investigation. RESULT: In this study, twenty-one TIFY transcription factors were identified in the walnut genome database, and they were divided into four subfamilies (TIFY, JAZ, ZML, and PPD) by bioinformatics analysis. Chromosome location revealed tandem duplication of some genes. Phylogenetic tree analysis showed JrTIFYs were closely related to the TIFY gene family of Arabidopsis thaliana (A. thaliana). qRT-PCR (quantitative real-time PCR) analysis revealed the TIFY genes have different expression patterns in 'Qingxiang' and 'Xiangling' walnut varieties under drought, heat, and salt stress. JAZ subfamily was more expressed in different abiotic stress than other subfamilies. The expressions of JrTIFY14 under heat and salt stress were significantly higher than those under drought stress. However, the expression of JrTIFYs was not significant in 'Xiangling'. CONCLUSION: This study reveals the TIFY gene family plays an important role in walnuts facing abiotic stresses and provides a theoretical basis for walnut breeding.


Assuntos
Juglans , Regulação da Expressão Gênica de Plantas , Juglans/genética , Família Multigênica , Nozes/metabolismo , Filogenia , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
8.
Int J Mol Sci ; 21(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167605

RESUMO

The TIFY family is a plant-specific gene family that is involved in regulating a variety of plant processes, including developmental and defense responses. The chromosome-level genome of the tea plant (Camellia sinensis) has recently been released, but a comprehensive view of the TIFY family in C. sinensis (the CsTIFY genes) is lacking. The current study performed an extensive genome-wide identification of CsTIFY genes. The phylogenetics, chromosome location, exon/intron structure, and conserved domains of these genes were analyzed to characterize the members of the CsTIFY family. The expression profiles of the CsTIFY genes in four organs were analyzed, and they showed different spatial expression patterns. All CsJAZ genes were observed to be induced by jasmonate acid (JA) and exhibited different responses to abiotic and biotic stresses. Six of seven CsJAZ genes (CsJAZ1, CsJAZ2, CsJAZ3, CsJAZ4, CsJAZ7, and CsJAZ8) were upregulated by mechanical wounding and infestation with the tea geometrid (Ectropis obliqua), while infection with tea anthracnose (Colletotrichum camelliae) primarily upregulated the expression levels of CsJAZ1 and CsJAZ10. In addition, CsJAZs were observed to interact with CsMYC2 and AtMYC2. Therefore, the results of this study may contribute to the functional characterization of the CsTIFY genes, especially the members of the JAZ subfamily, as regulators of the JA-mediated defense response in tea plant.


Assuntos
Camellia sinensis/genética , Reguladores de Crescimento de Plantas/genética , Estresse Fisiológico/genética , Ciclopentanos/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/efeitos dos fármacos , Família Multigênica , Oxilipinas/metabolismo , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais/genética , Estresse Fisiológico/fisiologia , Fatores de Transcrição/genética , Transcriptoma/genética , Dedos de Zinco/genética
9.
Curr Genomics ; 20(5): 371-388, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32476994

RESUMO

BACKGROUND: The TIFY gene family is a group of plant-specific proteins involved in the jasmonate (JA) metabolic process, which plays a vital role in plant growth and development as well as stress response. Although it has been extensively studied in many species, the significance of this family is not well studied in wheat. OBJECTIVE: To comprehensively understand the genome organization and evolution of TIFY family in wheat, a genome-wide identification was performed in wheat and its two progenitors using updated genome information provided here. RESULTS: In total, 63, 13 and 17 TIFY proteins were identified in wheat, Triticum urartu and Aegilops tauschii respectively. Phylogenetic analysis clustered them into 18 groups with 14 groups possessing A, B and D copies in wheat, demonstrating the completion of the genome as well as the two rounds of allopolyploidization events. Gene structure, conserved protein motif and cis-regulatory element divergence of A, B, D homoeologous copies were also investigated to gain insight into the evolutionary conservation and divergence of homoeologous genes. Furthermore, the expression profiles of the genes were detected using the available RNA-seq and the expression of 4 drought-responsive candidates was further validated through qRT-PCR analysis. Finally, the co-expression network was constructed and a total of 22 nodes with 121 edges of gene pairs were found. CONCLUSION: This study systematically reported the characteristics of the wheat TIFY family, which ultimately provided important targets for further functional analysis and also facilitated the elucidation of the evolution mechanism of TIFY genes in wheat and more.

10.
Mol Genet Genomics ; 291(6): 2173-2187, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27640194

RESUMO

Jasmonates control many aspects of plant biological processes. They are important for regulating plant responses to various biotic and abiotic stresses, including drought, which is one of the most serious threats to sustainable agricultural production. However, little is known regarding how jasmonate ZIM-domain (JAZ) proteins mediate jasmonic acid signals to improve stress tolerance in cotton. This represents the first comprehensive comparative study of TIFY transcription factors in both diploid A, D and tetraploid AD cotton species. In this study, we identified 21 TIFY family members in the genome of Gossypium arboretum, 28 members from Gossypium raimondii and 50 TIFY genes in Gossypium hirsutum. The phylogenetic analyses indicated the TIFY gene family could be divided into the following four subfamilies: TIFY, PPD, ZML, and JAZ subfamilies. The cotton TIFY genes have expanded through tandem duplications and segmental duplications compared with other plant species. Gene expression profile revealed temporal and tissue specificities for TIFY genes under simulated drought conditions in Gossypium arboretum. The JAZ subfamily members were the most highly expressed genes, suggesting that they have a vital role in responses to drought stress. Over-expression of GaJAZ5 gene decreased water loss, stomatal openings, and the accumulation of H2O2 in Arabidopsis thaliana. Additionally, the results of drought tolerance assays suggested that this subfamily might be involved in increasing drought tolerance. Our study provides new data regarding the genome-wide analysis of TIFY gene families and their important roles in drought tolerance in cotton species. These data may form the basis of future studies regarding the relationship between drought and jasmonic acid.


Assuntos
Mapeamento Cromossômico/métodos , Perfilação da Expressão Gênica/métodos , Gossypium/genética , Fatores de Transcrição/genética , Diploide , Secas , Regulação da Expressão Gênica de Plantas , Gossypium/química , Família Multigênica , Especificidade de Órgãos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Poliploidia , Domínios Proteicos , Fatores de Transcrição/química
11.
Plants (Basel) ; 11(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35270137

RESUMO

The TIFY gene family plays important roles in various plant biological processes and responses to stress and hormones. The chromosome-level genome of the Brassiceae species has been released, but knowledge concerning the TIFY family is lacking in the Brassiceae species. The current study performed a bioinformatics analysis on the TIFY family comparing three diploid (B. rapa, B. nigra, and B. oleracea) and two derived allotetraploid species (B. juncea, and B. napus). A total of 237 putative TIFY proteins were identified from five Brassiceae species, and classified into ten subfamilies (six JAZ types, one PPD type, two TIFY types, and one ZML type) based on their phylogenetic relationships with TIFY proteins in A. thaliana and Brassiceae species. Duplication and synteny analysis revealed that segmental and tandem duplications led to the expansion of the TIFY family genes during the process of polyploidization, and most of these TIFY family genes (TIFYs) were subjected to purifying selection after duplication based on Ka/Ks values. The spatial and temporal expression patterns indicated that different groups of BnaTIFYs have distinct spatiotemporal expression patterns under normal conditions and heavy metal stresses. Most of the JAZIII subfamily members were highest in all tissues, but JAZ subfamily members were strongly induced by heavy metal stresses. BnaTIFY34, BnaTIFY59, BnaTIFY21 and BnaTIFY68 were significantly upregulated mostly under As3+ and Cd2+ treatment, indicating that they could be actively induced by heavy metal stress. Our results may contribute to further exploration of TIFYs, and provided valuable information for further studies of TIFYs in plant tolerance to heavy metal stress.

12.
Artigo em Chinês | WPRIM | ID: wpr-872661

RESUMO

Objective:The TIFY gene family will be identified and characterized from the whole genome level in Cannabis sativa,which will lay the foundation for gene function study on TIFY family genes and their regulation mechanism on the biosynthesis of cannabinoids and other secondary metabolites. Method:Using the existing genomic data of cannabis,the CsTIFY genes were identified through bioinformatics analysis tools such as NCBI,PlantTFDB,MEME and TBtools etc.,and physicochemical properties,phylogenetic trees,gene structures,chromosome locations and gene expression patterns were analyzed and visualized. Result:Fourteen TIFY family genes(CsTIFY1-CsTIFY14) were identified in Cannabis sativa,which belong to four subfamilies:TIFY,JAZ,ZML,and PPD. The CsTIFYs are composed of 365-1 369 bp nucleotides encoding 118-442 amino acid residues,and their isoelectric points are 4.64-9.96. The 14 CsTIFYs are unevenly distributed on 8 chromosomes,and their proteins are all located in the nucleus. The promoter of CsTIFYs contain multiple abiotic stress responsive cis-acting elements,which indicated that CsTIFYs might involved in the regulation of different abiotic stresses. Transcriptome profiling revealed that CsTIFYs expressed differently in female flowers of 10 differently cannabis varieties,or in flowers,bracts,stems,and leaves of the same variety. Conclusion:Fourteen TIFY family genes were characterized from the whole genome level in C. sativa,and their phylogenetic evolutions and gene expression patterns were analyzed,indicating that CsTIFYs may play important regulatory roles in JA signal transduction,abiotic stress and cannabinoid biosynthesis. This study will provide valuable reference for gene function study of the TIFY family genes in cannabis and cannabis breeding.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa