Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891448

RESUMO

Several series of new polymers were synthesized in this study: binary copolyesters of vanillic (VA) and 4'-hydroxybiphenyl-4-carboxylic (HBCA) acids, as well as ternary copolyesters additionally containing 4-hydroxybenzoic acid (HBA) and obtained via three different ways (in solution, in melt, and in solid state). The high values of logarithmic intrinsic viscosities and the insolubility of several samples proved their high molecular weights. It was found that the use of vanillic acid leads to the production of copolyesters with a relatively high glass transition temperature (~130 °C). Thermogravimetric analysis revealed that the onset of weight loss temperatures of ternary copolyesters occurred at 330-350 °C, and the temperature of 5% mass loss was in the range of 390-410 °C. Two-stage thermal destruction was observed for all aromatic copolyesters of vanillic acid: decomposition began with VA units at 420-480 °C, and then the decomposition of more heat-resistant units took place above 520 °C. The copolyesters were thermotropic and exhibited a typical nematic type of liquid crystalline order. The mechanical characteristics of the copolyesters were similar to those of semi-aromatic copolyesters, but they were much lower than the typical values for fully aromatic thermotropic polymers. Thus, vanillic acid is a mesogenic monomer suitable for the synthesis of thermotropic fully aromatic and semi-aromatic copolyesters, but the processing temperature must not exceed 280 °C.

2.
Polymers (Basel) ; 15(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37177149

RESUMO

According to the demand for high-performance fibers for high-latitude ocean exploration and development, this paper selects representative products of high-performance liquid crystal fibers: thermotropic liquid crystal polymer fibers (TLCP) and poly p-phenylene terephthalamide (PPTA) fibers. Through a series of freeze-thaw (F-T) experiments for simulating a real, cold marine environment, we then measure the retention of mechanical properties of these two kinds of fibers. Before that, due to the difference in their chemical structures, we tested their Yang-Laplace contact angle (YLCA) and water absorption; the results suggested that PPTA fibers would absorb more moisture. Surprisingly, then, compared with thermotropic liquid crystal polymer (TLCP) fibers, the retention of the mechanical properties of poly p-phenylene terephthalamide (PPTA) fibers decreased by around 25% after the F-T experiments. The Fourier-transformed infrared (FT-IR) analysis, the attenuated total reflection (ATR) accessory analysis and the degree of crystal orientation measured by two-dimensional wide-angle X-ray diffraction (2D-WAXD) confirm that no changes in the chemical and the orientation structure of the crystal region of the fibers occurred after they underwent the F-T cycles. However, as observed by scanning electron microscopy (SEM), there are microcracks of various extents on the surface of the PPTA fibers, but they do not appear on the surface of TLCP fibers. It is obvious that these microcracks will lead to the loss of mechanical properties; we infer that the moisture absorbed by the PPTA fibers freezes below the freezing point, and the volume expansion of the ice causes the collapse of the microfibrillar structure. The two sorts of fibers subjected to the F-T experiments are immersed in a sodium chloride solution, and the amount of water infiltrated into the PPTA microfibrillar structure is evaluated according to the content of sodium ions in the fiber surface and subsurface layers through X-ray spectroscopy (EDS) elemental analysis. From the above analysis, we found that TLCP fibers can more effectively meet the operating standards of the severe and cold marine environment.

3.
Polymers (Basel) ; 13(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918257

RESUMO

High-speed melt spinning of thermotropic liquid crystalline polymer (TLCP) resin composed of 4-hydroxybenzoic acid (HBA) and 2-hydroxy-6-napthoic acid (HNA) monomers in a molar ratio of 73/27 was conducted to investigate the characteristic structure development of the fibers under industrial spinning conditions, and the obtained as-spun TLCP fibers were analyzed in detail. The tensile strength and modulus of the fibers increased with shear rate in nozzle hole, draft in spin-line and spinning temperature and exhibited the high values of approximately 1.1 and 63 GPa, respectively, comparable to those of industrial as-spun TLCP fibers, at a shear rate of 70,000 s-1 and a draft of 25. X-ray diffraction demonstrated that the mechanical properties of the fibers increased with the crystalline orientation factor (fc) and the fractions of highly oriented crystalline and non-crystalline anisotropic phases. The results of structure analysis indicated that a characteristic skin-core structure developed at high drafts (i.e., spinning velocity) and low spinning temperatures, which contributed to weakening the mechanical properties of the TLCP fibers. It is supposed that this heterogeneous structure in the cross-section of the fibers was induced by differences in the cooling rates of the skin and core of the fiber in the spin-line.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa