RESUMO
Cannabidiol (CBD), one of the major components extracted from the plant Cannabis sativa L., has been used as a prescription drug to treat seizures in many countries. CBD-induced male reproductive toxicity has been reported in animal models; however, the underlying mechanisms remain unclear. We previously reported that CBD induced apoptosis in primary human Leydig cells, which constitute the primary steroidogenic cell population in the testicular interstitium. In this study, we investigated the effects of CBD and its metabolites on TM3 mouse Leydig cells. CBD, at concentrations below 30 µM, reduced cell viability, induced G1 cell cycle arrest, and inhibited DNA synthesis. CBD induced apoptosis after exposure to high concentrations (≥ 50 µM) for 24 h or a low concentration (20 µM) for 6 days. 7-Hydroxy-CBD and 7-carboxy-CBD, the main CBD metabolites of CBD, exhibited the similar toxic effects as CBD. In addition, we conducted a time-course mRNA-sequencing analysis in both primary human Leydig cells and TM3 mouse Leydig cells to understand and compare the mechanisms underlying CBD-induced cytotoxicity. mRNA-sequencing analysis of CBD-treated human and mouse Leydig cells over a 5-day time-course indicated similar responses in both cell types. Mitochondria and lysosome dysfunction, oxidative stress, and autophagy were the major enriched pathways in both cell types. Taken together, these findings demonstrate comparable toxic effects and underlying mechanisms in CBD-treated mouse and primary human Leydig cells.
Assuntos
Apoptose , Canabidiol , Sobrevivência Celular , Células Intersticiais do Testículo , Canabidiol/toxicidade , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Masculino , Animais , Humanos , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Linhagem Celular , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Células CultivadasRESUMO
BACKGROUND: Boron (B) is an abundant element on earth and presents at physiological pH in the form of boric acid (BA). It has both positive and negative effects on biological systems. BA and sodium borates have been considered as being toxic to the reproduction system in animal experiments. Unfortunately, the molecular mechanism underlying the toxic effects of BA is not fully understood. METHODS: Here, we demonstrate the influence of BA on mouse TM3 Leydig cells which are male reproductive system cells targeted by BA exposure. The cytotoxicity was evaluated by MTT and NRU assays. Annexin V-FITC/PI double staining kit, mitochondria membrane potential (ΔΨm) assay kit with JC-1 and caspase-3 colorimetric assay kit were used to indicate the cell death pathway. To estimate the role of oxidative stress in BA induced toxicity, glutathione (GSH) level, catalase (CAT) and superoxide dismutase (SOD) activities were measured manually. RESULTS: The cell viability assays showed that BA was not cytotoxic within the tested concentrations up to 1000 µM. Sub-toxic concentrations were used for detecting oxidative stress status. BA exposure was significantly reduced GSH level at 1000 µM and CAT activity in a concentration-dependent manner. However, SOD activity was increased at the tested concentrations (100-1000 µM). Moreover, ΔΨm was significantly decreased at 500 and 1000 µM of BA, while caspase-3 activity was not changed apparently. CONCLUSION: These findings demonstrated that BA is not cytotoxic and apoptotic but may slightly induces oxidative stress in TM3 Leydig cells at higher concentrations.