RESUMO
The spatiotemporal cellular distribution of lysosomes depends on active transport mainly driven by microtubule motors such as kinesins and dynein. Different protein complexes attach these molecular motors to their vesicular cargo. TMEM55B (also known as PIP4P1), as an integral lysosomal membrane protein, is a component of such a complex that mediates the retrograde transport of lysosomes by establishing interactions with the cytosolic scaffold protein JIP4 (also known as SPAG9) and dynein-dynactin. Here, we show that TMEM55B and its paralog TMEM55A (PIP4P2) are S-palmitoylated proteins that are lipidated at multiple cysteine residues. Mutation of all cysteines in TMEM55B prevents S-palmitoylation and causes retention of the mutated protein in the Golgi. Consequently, non-palmitoylated TMEM55B is no longer able to modulate lysosomal positioning and the perinuclear clustering of lysosomes. Additional mutagenesis of the dileucine-based lysosomal sorting motif in non-palmitoylated TMEM55B leads to partial missorting to the plasma membrane instead of retention in the Golgi, implicating a direct effect of S-palmitoylation on the adaptor protein-dependent sorting of TMEM55B. Our data suggest a critical role for S-palmitoylation in the trafficking of TMEM55B and TMEM55B-dependent lysosomal positioning.
Assuntos
Lipoilação , Lisossomos , Complexo de Golgi/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Transporte ProteicoRESUMO
Transcriptional activation, based on Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) and known as CRISPR activation (CRISPRa), is a specific and safe tool to upregulate endogenous genes. Therefore, CRISPRa is valuable not only for analysis of molecular mechanisms of cellular events, but also for treatment of various diseases. Regulating autophagy has been proposed to enhance effects of some therapies. In this study, we upregulated genes for phosphoinositide phosphatases, SACM1L, PIP4P1, and PIP4P2, using CRISPRa, and their effects on autophagy were examined. Our results suggested that TMEM55A/PIP4P2, a phosphatidylinositol-4,5-bisphosphate 4-phosphatase, positively regulates basal autophagy in 293A cells. Furthermore, it was also suggested that SAC1, a phosphatidylinositol 4-phosphatase, negatively regulates basal autophagic degradation.
Assuntos
Autofagia , Fosfatases de Fosfoinositídeos , Humanos , Sistemas CRISPR-Cas , Células HEK293 , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Fosfatases de Fosfoinositídeos/metabolismo , Fosfatases de Fosfoinositídeos/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismoRESUMO
TMEM55a (also known as PIP4P2) is an enzyme that dephosphorylates the phosphatidylinositol (PtdIns) PtdIns(4,5)P2 to form PtdIns(5)P in vitro However, the in vivo conversion of the polyphosphoinositide into PtdIns(5)P by the phosphatase has not yet been demonstrated, and the role of TMEM55a remains poorly understood. Here, we found that mouse macrophages (Raw264.7) deficient in TMEM55a showed an increased engulfment of large particles without affecting the phagocytosis of Escherichia coli Transfection of a bacterial phosphatase with similar substrate specificity to TMEM55a, namely IpgD, into Raw264.7 cells inhibited the engulfment of IgG-erythrocytes in a manner dependent on its phosphatase activity. In contrast, cells transfected with PIP4K2a, which catalyzes PtdIns(4,5)P2 production from PtdIns(5)P, increased phagocytosis. Fluorescent TMEM55a transfected into Raw264.7 cells was found to mostly localize to the phagosome. The accumulation of PtdIns(4,5)P2, PtdIns(3,4,5)P3 and F-actin on the phagocytic cup was increased in TMEM55a-deficient cells, as monitored by live-cell imaging. Phagosomal PtdIns(5)P was decreased in the knockdown cells, but the augmentation of phagocytosis in these cells was unaffected by the exogenous addition of PtdIns(5)P. Taken together, these results suggest that TMEM55a negatively regulates the phagocytosis of large particles by reducing phagosomal PtdIns(4,5)P2 accumulation during cup formation.