Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 340
Filtrar
1.
Physiol Rev ; 104(3): 1335-1385, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38451235

RESUMO

The endomembrane system consists of organellar membranes in the biosynthetic pathway [endoplasmic reticulum (ER), Golgi apparatus, and secretory vesicles] as well as those in the degradative pathway (early endosomes, macropinosomes, phagosomes, autophagosomes, late endosomes, and lysosomes). These endomembrane organelles/vesicles work together to synthesize, modify, package, transport, and degrade proteins, carbohydrates, and lipids, regulating the balance between cellular anabolism and catabolism. Large ion concentration gradients exist across endomembranes: Ca2+ gradients for most endomembrane organelles and H+ gradients for the acidic compartments. Ion (Na+, K+, H+, Ca2+, and Cl-) channels on the organellar membranes control ion flux in response to cellular cues, allowing rapid informational exchange between the cytosol and organelle lumen. Recent advances in organelle proteomics, organellar electrophysiology, and luminal and juxtaorganellar ion imaging have led to molecular identification and functional characterization of about two dozen endomembrane ion channels. For example, whereas IP3R1-3 channels mediate Ca2+ release from the ER in response to neurotransmitter and hormone stimulation, TRPML1-3 and TMEM175 channels mediate lysosomal Ca2+ and H+ release, respectively, in response to nutritional and trafficking cues. This review aims to summarize the current understanding of these endomembrane channels, with a focus on their subcellular localizations, ion permeation properties, gating mechanisms, cell biological functions, and disease relevance.


Assuntos
Canais Iônicos , Humanos , Animais , Canais Iônicos/metabolismo , Membranas Intracelulares/metabolismo , Organelas/metabolismo , Organelas/fisiologia
2.
Rev Physiol Biochem Pharmacol ; 185: 259-276, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-32748124

RESUMO

Among the infectious diseases caused by pathogenic microorganisms such as bacteria, viruses, parasites, or fungi, the most prevalent ones today are malaria, tuberculosis, influenza, HIV/AIDS, Ebola, dengue fever, and methicillin-resistant Staphylococcus aureus (MRSA) infection, and most recently Covid-19 (SARS-CoV2). Others with a rather devastating history and high fatality rates such as plague, cholera, or typhus seem less threatening today but have not been eradicated, and with a declining efficacy of current antibiotics they ought to be watched carefully. Another emerging issue in this context is health-care associated infection. About 100,000 hospitalized patients in the USA ( www.cdc.gov ) and 33,000 in Europe ( https://www.ecdc.europa.eu ) die each year as a direct consequence of an infection caused by bacteria resistant to antibiotics. Among viral infections, influenza is responsible for about 3-5 million cases of severe illness, and about 250,000 to 500,000 deaths annually ( www.who.int ). About 37 million people are currently living with HIV infection and about one million die from it each year. Coronaviruses such as MERS-CoV, SARS-CoV, but in particular the recent outbreak of Covid-19 (caused by SARS-CoV2) have resulted in large numbers of infections worldwide with an estimated several hundred thousand deaths (anticipated fatality rate: <5%). With a comparatively low mortality rate dengue virus causes between 50 and 100 million infections every year, leading to 50,000 deaths. In contrast, Ebola virus is the causative agent for one of the deadliest viral diseases. The Ebola outbreak in West Africa in 2014 is considered the largest outbreak in history with more than 11,000 deaths. Many of the deadliest pathogens such as Ebola virus, influenza virus, mycobacterium tuberculosis, dengue virus, and cholera exploit the endo-lysosomal trafficking system of host cells for penetration into the cytosol and replication. Defects in endo-lysosomal maturation, trafficking, fusion, or pH homeostasis can efficiently reduce the cytotoxicity caused by these pathogens. Most of these functions critically depend on endo-lysosomal membrane proteins such as transporters and ion channels. In particular, cation channels such as the mucolipins (TRPMLs) or the two-pore channels (TPCs) are involved in all of these aspects of endo-lysosomal integrity. In this review we will discuss the correlations between pathogen toxicity and endo-lysosomal cation channel function, and their potential as drug targets for infectious disease therapy.


Assuntos
COVID-19 , Cólera , Ebolavirus , Infecções por HIV , Doença pelo Vírus Ebola , Influenza Humana , Staphylococcus aureus Resistente à Meticilina , Humanos , COVID-19/metabolismo , Doença pelo Vírus Ebola/metabolismo , Influenza Humana/metabolismo , Cólera/metabolismo , Infecções por HIV/metabolismo , RNA Viral/metabolismo , SARS-CoV-2 , Lisossomos/metabolismo , Cátions/metabolismo
3.
Biol Cell ; 116(5): e2300067, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537110

RESUMO

BACKGROUND INFORMATION: Two pore channels (TPCs) are voltage-gated ion channel superfamily members that release Ca2+ from acidic intracellular stores and are ubiquitously present in both animals and plants. Starvation initiates multicellular development in Dictyostelium discoideum. Increased intracellular calcium levels bias Dictyostelium cells towards the stalk pathway and thus we decided to analyze the role of TPC2 in development, differentiation, and autophagy. RESULTS: We showed TPC2 protein localizes in lysosome-like acidic vesicles and the in situ data showed stalk cell biasness. Deletion of tpc2 showed defective and delayed development with formation of multi-tipped structures attached to a common base, while tpc2OE cells showed faster development with numerous small-sized aggregates and wiry fruiting bodies. The tpc2OE cells showed higher intracellular cAMP levels as compared to the tpc2- cells while pinocytosis was found to be higher in the tpc2- cells. Also, TPC2 regulates cell-substrate adhesion and cellular morphology. Under nutrient starvation, deletion of tpc2 reduced autophagic flux as compared to Ax2. During chimera formation, tpc2- cells showed a bias towards the prestalk/stalk region while tpc2OE cells showed a bias towards the prespore/spore region. tpc2 deficient strain exhibits aberrant cell-type patterning and loss of distinct boundary between the prestalk/prespore regions. CONCLUSION: TPC2 is required for effective development and differentiation in Dictyostelium and supports autophagic cell death and cell-type patterning. SIGNIFICANCE: Decreased calcium due to deletion of tpc2 inhibit autophagic flux.


Assuntos
Autofagia , Dictyostelium , Proteínas de Protozoários , Dictyostelium/genética , Dictyostelium/metabolismo , Dictyostelium/citologia , Dictyostelium/crescimento & desenvolvimento , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Deleção de Genes , Canais de Cálcio/metabolismo , Canais de Cálcio/genética , Cálcio/metabolismo , Diferenciação Celular
4.
J Physiol ; 602(8): 1623-1636, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598430

RESUMO

Two-pore channels and TRP mucolipins are ubiquitous endo-lysosomal cation channels of pathophysiological relevance. Both are Ca2+-permeable and regulated by phosphoinositides, principally PI(3,5)P2. Accumulating evidence has uncovered synergistic channel activation by PI(3,5)P2 and endogenous metabolites such as the Ca2+ mobilizing messenger NAADP, synthetic agonists including approved drugs and physical cues such as voltage and osmotic pressure. Here, we provide an overview of this coordination.


Assuntos
Canais de Cálcio , Canais de Potencial de Receptor Transitório , Canais de Cálcio/metabolismo , Canais de Dois Poros , Cálcio/metabolismo , Lisossomos/metabolismo , NADP/metabolismo , Pressão Osmótica , Canais de Potencial de Receptor Transitório/metabolismo
5.
Mol Biol Evol ; 40(6): msad121, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37325551

RESUMO

When challenged by similar environmental conditions, phylogenetically distant taxa often independently evolve similar traits (convergent evolution). Meanwhile, adaptation to extreme habitats might lead to divergence between taxa that are otherwise closely related. These processes have long existed in the conceptual sphere, yet molecular evidence, especially for woody perennials, is scarce. The karst endemic Platycarya longipes, and its only congeneric species, P. strobilacea, which is widely distributed in the mountains in East Asia, provide an ideal model for examining the molecular basis of both convergent evolution and speciation. Using chromosome-level genome assemblies of both species, and whole genome resequencing data from 207 individuals spanning their entire distribution range, we demonstrate that P. longipes and P. strobilacea form two species-specific clades, which diverged around 2.09 million years ago. We find an excess of genomic regions exhibiting extreme interspecific differentiation, potentially due to long-term selection in P. longipes, likely contributing to the incipient speciation of the genus Platycarya. Interestingly, our results unveil underlying karst adaptation in both copies of the calcium influx channel gene TPC1 in P. longipes. TPC1 has previously been identified as a selective target in certain karst-endemic herbs, indicating a convergent adaptation to high calcium stress among karst-endemic species. Our study reveals the genic convergence of TPC1 among karst endemics, and the driving forces underneath the incipient speciation of the two Platycarya lineages.


Assuntos
Carbonato de Cálcio , Juglandaceae , Cálcio , Especiação Genética , Genômica
6.
Mol Biol Evol ; 40(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37216901

RESUMO

When challenged by similar environmental conditions, phylogenetically distant taxa often independently evolve similar traits (convergent evolution). Meanwhile, adaptation to extreme habitats might lead to divergence between taxa that are otherwise closely related. These processes have long existed in the conceptual sphere, yet molecular evidence, especially for woody perennials, is scarce. The karst endemic Platycarya longipes and its only congeneric species, Platycarya strobilacea, which is widely distributed in the mountains in East Asia, provide an ideal model for examining the molecular basis of both convergent evolution and speciation. Using chromosome-level genome assemblies of both species, and whole-genome resequencing data from 207 individuals spanning their entire distribution range, we demonstrate that P. longipes and P. strobilacea form two species-specific clades, which diverged around 2.09 million years ago. We find an excess of genomic regions exhibiting extreme interspecific differentiation, potentially due to long-term selection in P. longipes, likely contributing to the incipient speciation of the genus Platycarya. Interestingly, our results unveil underlying karst adaptation in both copies of the calcium influx channel gene TPC1 in P. longipes. TPC1 has previously been identified as a selective target in certain karst-endemic herbs, indicating a convergent adaptation to high calcium stress among karst-endemic species. Our study reveals the genic convergence of TPC1 among karst endemics and the driving forces underneath the incipient speciation of the two Platycarya lineages.


Assuntos
Carbonato de Cálcio , Juglandaceae , Ásia Oriental , Cálcio , Especiação Genética , Genômica , Juglandaceae/genética , Juglandaceae/fisiologia
7.
EMBO J ; 39(14): e104058, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32510172

RESUMO

Macrophages clear pathogens by phagocytosis and lysosomes that fuse with phagosomes are traditionally regarded as to a source of membranes and luminal degradative enzymes. Here, we reveal that endo-lysosomes act as platforms for a new phagocytic signalling pathway in which FcγR activation recruits the second messenger NAADP and thereby promotes the opening of Ca2+ -permeable two-pore channels (TPCs). Remarkably, phagocytosis is driven by these local endo-lysosomal Ca2+ nanodomains rather than global cytoplasmic or ER Ca2+ signals. Motile endolysosomes contact nascent phagosomes to promote phagocytosis, whereas endo-lysosome immobilization prevents it. We show that TPC-released Ca2+ rapidly activates calcineurin, which in turn dephosphorylates and activates the GTPase dynamin-2. Finally, we find that different endo-lysosomal Ca2+ channels play diverse roles, with TPCs providing a universal phagocytic signal for a wide range of particles and TRPML1 being only required for phagocytosis of large targets.


Assuntos
Calcineurina/metabolismo , Dinamina II/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , NADP/análogos & derivados , Fagocitose , Animais , Calcineurina/genética , Dinamina II/genética , Endossomos/genética , Lisossomos/genética , Camundongos , Camundongos Knockout , NADP/metabolismo
8.
J Exp Biol ; 227(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38699869

RESUMO

Understanding how tropical corals respond to temperatures is important to evaluating their capacity to persist in a warmer future. We studied the common Pacific coral Pocillopora over 44° of latitude, and used populations at three islands with different thermal regimes to compare their responses to temperature using thermal performance curves (TPCs) for respiration and gross photosynthesis. Corals were sampled in the local autumn from Moorea, Guam and Okinawa, where mean±s.d. annual seawater temperature is 28.0±0.9°C, 28.9±0.7°C and 25.1±3.4°C, respectively. TPCs for respiration were similar among latitudes, the thermal optimum (Topt) was above the local maximum temperature at all three islands, and maximum respiration was lowest at Okinawa. TPCs for gross photosynthesis were wider, implying greater thermal eurytopy, with a higher Topt in Moorea versus Guam and Okinawa. Topt was above the maximum temperature in Moorea, but was similar to daily temperatures over 13% of the year in Okinawa and 53% of the year in Guam. There was greater annual variation in daily temperatures in Okinawa than Guam or Moorea, which translated to large variation in the supply of metabolic energy and photosynthetically fixed carbon at higher latitudes. Despite these trends, the differences in TPCs for Pocillopora spp. were not profoundly different across latitudes, reducing the likelihood that populations of these corals could better match their phenotypes to future more extreme temperatures through migration. Any such response would place a premium on high metabolic plasticity and tolerance of large seasonal variations in energy budgets.


Assuntos
Antozoários , Fotossíntese , Temperatura , Animais , Antozoários/fisiologia , Fotossíntese/fisiologia , Estações do Ano , Água do Mar/química
9.
Cell Biol Int ; 48(4): 521-540, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38263578

RESUMO

The ion channel two-pore channel 2 (TPC2), localised on the membranes of acidic organelles such as endo-lysosomes and melanosomes, has been shown to play a role in pathologies including cancer, and it is differently expressed in primary versus metastatic melanoma cells. Whether TPC2 plays a pro- or anti-oncogenic role in different tumour conditions is a relevant open question which we have explored in melanoma at different stages of tumour progression. The behaviour of primary melanoma cell line B16F0 and its metastatic subline B16F10 were compared in response to TPC2 modulation by silencing (by small interfering RNA), knock-out (by CRISPR/Cas9) and overexpression (by mCherry-TPC2 transfected plasmid). TPC2 silencing increased cell migration, epithelial-to-mesenchymal transition and autophagy in the metastatic samples, but abated them in the silenced primary ones. Interestingly, while TPC2 inactivation failed to affect markers of proliferation in both samples, it strongly enhanced the migratory behaviour of the metastatic cells, again suggesting that in the more aggressive phenotype TPC2 plays a specific antimetastatic role. In line with this, overexpression of TPC2 in B16F10 cells resulted in phenotype rescue, that is, a decrease in migratory ability, thus collectively resuming traits of the B16F0 primary cell line. Our research shows a novel role of TPC2 in melanoma cells that is intriguingly different in initial versus late stages of cancer progression.


Assuntos
Melanoma , Humanos , Melanoma/metabolismo , Canais de Dois Poros , Lisossomos/metabolismo , Linhagem Celular , Autofagia/fisiologia , Cálcio/metabolismo
10.
Bioorg Chem ; 143: 107099, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38190798

RESUMO

INTRODUCTION: Antihypertensive drugs that are chemically synthesized usually tend to initiate different health complications. The quest for bioactive molecules to create novel medicines has focused on Marine resources like seaweeds. These molecules can furnish a positive probability for patients to gain benefits from these natural substances. METHODS: This study aims to identify phytoconstituents present in brown seaweed-Padina boergesenii. Five different solvents were used to prepare extracts and their antioxidant activity as well as antihypertensive activity was evaluated. Phytoconstituents were identified using LC-MS/MS, and subjected to molecular interaction against ACE enzyme. RESULTS: The 70% ethanolic extract exhibited the highest total phenolic content (TPC), significant radical scavenging activity and concentration dependent Angiotensin Converting Enzyme (ACE) inhibition activity. LC-MS/MS analysis confirmed the presence of bioactive compounds from which 7,8 dihydroxycoumarin had the highest affinity against ACE enzyme in molecular docking study. CONCLUSION: These findings advocate that Padina boergesenii can be a potential source for developing novel antihypertensive therapeutic drug(s) and could pave the way for evolving effective and safe remedies from natural resources.


Assuntos
Anti-Hipertensivos , Alga Marinha , Humanos , Anti-Hipertensivos/farmacologia , Simulação de Acoplamento Molecular , Cromatografia Líquida , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectrometria de Massas em Tandem , Antioxidantes/farmacologia , Alga Marinha/química
11.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34845029

RESUMO

Arabidopsis thaliana two-pore channel AtTPC1 is a voltage-gated, Ca2+-modulated, nonselective cation channel that is localized in the vacuolar membrane and responsible for generating slow vacuolar (SV) current. Under depolarizing membrane potential, cytosolic Ca2+ activates AtTPC1 by binding at the EF-hand domain, whereas luminal Ca2+ inhibits the channel by stabilizing the voltage-sensing domain II (VSDII) in the resting state. Here, we present 2.8 to 3.3 Å cryoelectron microscopy (cryo-EM) structures of AtTPC1 in two conformations, one in closed conformation with unbound EF-hand domain and resting VSDII and the other in a partially open conformation with Ca2+-bound EF-hand domain and activated VSDII. Structural comparison between the two different conformations allows us to elucidate the structural mechanisms of voltage gating, cytosolic Ca2+ activation, and their coupling in AtTPC1. This study also provides structural insight into the general voltage-gating mechanism among voltage-gated ion channels.


Assuntos
Proteínas de Arabidopsis/metabolismo , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Canais de Cálcio/genética , Cátions/metabolismo , Microscopia Crioeletrônica/métodos , Citosol/metabolismo , Ativação do Canal Iônico , Potenciais da Membrana/fisiologia , Vacúolos/metabolismo
12.
Molecules ; 29(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611794

RESUMO

In this study, the phytochemical composition, in vitro antioxidant, and anti-inflammatory effects of the aqueous and 60% ethanolic (EtOH) extracts of Santolina rosmarinifolia leaf, flower, and root were examined. The antioxidant activity of S. rosmarinifolia extracts was determined by 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays. The total phenolic content (TPC) of the extracts was measured by the Folin-Ciocalteu assay. The anti-inflammatory effect of the extracts was monitored by the Griess assay. The chemical composition of S. rosmarinifolia extracts was analysed using the LC-MS technique. According to our findings, 60% EtOH leaf extracts showed the highest Trolox equivalent antioxidant capacity (TEAC) values in both ABTS (8.39 ± 0.43 µM) and DPPH (6.71 ± 0.03 µM) antioxidant activity assays. The TPC values of the samples were in good correspondence with the antioxidant activity measurements and showed the highest gallic acid equivalent value (130.17 ± 0.01 µg/mL) in 60% EtOH leaf extracts. In addition, the 60% EtOH extracts of the leaves were revealed to possess the highest anti-inflammatory effect. The LC-MS analysis of S. rosmarinifolia extracts proved the presence of ascorbic acid, catalpol, chrysin, epigallocatechin, geraniol, isoquercitrin, and theanine, among others, for the first time. However, additional studies are needed to investigate the direct relationship between the chemical composition and physiological effects of the herb. The 60% EtOH extracts of S. rosmarinifolia leaves are potential new sources of natural antioxidants and anti-inflammatory molecules in the production of novel nutraceutical products.


Assuntos
Antioxidantes , Asteraceae , Benzotiazóis , Antioxidantes/farmacologia , Ácido Ascórbico , Ácidos Sulfônicos , Anti-Inflamatórios/farmacologia
13.
Molecules ; 29(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543013

RESUMO

Phytochemicals from waste materials generated by agricultural and industrial processes have become globally significant due to their accessibility and potential effectiveness with few side effects. These compounds have essential implications in both medicine and the economy. Therefore, a quantitative analysis of the phytochemical profile, sugar types, and water-soluble vitamins of dried Corchorus olitorius L."DJMS" extract (dried Jew's mallow stem) was carried out with HPLC. In addition, the chemical composition, TPC, chlorophyll a and b, beta-carotene, and antioxidant effect using DPPH were investigated. Furthermore, the anticancer activity of the DJMS was evaluated by SRB assay using Huh-7 and MDA-MB-231 cell lines. In the quantitative study, DJMS extract showed a high antioxidant potential (67%) due to its content of bioactive compounds such as TPC (276.37 mg 100 g-1) and chlorophyll a and b (20.31, 12.02 mg 100 g-1, respectively), as well as some vitamins and minerals such as B-complex (B12; 146.8 mg 100 g-1 and vitamin C 6.49 mg 100 g-1) and selenium (<0.2 µg kg-1). Moreover, the main sugar types found were sucrose and stachyose, which recorded 9.23 and 6.25 mg 100 g-1, respectively. Identifying phenolic and flavonoids showed that the major components were ellagic acid (4905.26 µg kg-1), ferulic acid (3628.29 µg kg-1), chlorogenic acid (3757.08 µg kg-1), luteolin-7-O-glucoside (4314.48 µg kg-1), naringin (4296.94 µg kg-1) and apigenin-6-rhamnose-8 glucoside (3078.87 µg kg-1). The dried stem extract showed significant MDA-MB-231 inhibition activity and reached 80% at a concentration of 1000 µg/mL of DJMS extract, related to the content of phytochemical components such as isoflavones like genistein (34.96 µg kg-1), which had a tremendous anticancer effect. Hence, the stem of Jew's mallow (which is edible and characterized by its viability and low production cost) possesses the capacity to serve as a pharmaceutical agent for combating cancer owing to its abundance of bioactive components.


Assuntos
Antineoplásicos , Antioxidantes , Humanos , Antioxidantes/análise , Clorofila A , Egito , Judeus , Flavonoides/farmacologia , Antineoplásicos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Vitaminas , Açúcares
14.
Trends Biochem Sci ; 44(2): 110-124, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30424907

RESUMO

Lysosomes, the degradation center of the cell, are filled with acidic hydrolases. Lysosomes generate nutrient-sensitive signals to regulate the import of H+, hydrolases, and endocytic and autophagic cargos, as well as the export of their degradation products (catabolites). In response to environmental and cellular signals, lysosomes change their positioning, number, morphology, size, composition, and activity within minutes to hours to meet the changing cellular needs. Ion channels in the lysosome are essential transducers that mediate signal-initiated Ca2+/Fe2+/Zn2+ release and H+/Na+/K+-dependent changes of membrane potential across the perimeter membrane. Dysregulation of lysosomal ion flux impairs lysosome movement, membrane trafficking, nutrient sensing, membrane repair, organelle membrane contact, and lysosome biogenesis and adaptation. Hence, activation and inhibition of lysosomal channels by synthetic modulators may tune lysosome function to maintain cellular health and promote cellular clearance in lysosome storage disorders.


Assuntos
Canais Iônicos/metabolismo , Lisossomos/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Humanos , Canais Iônicos/química , Lisossomos/química , Modelos Moleculares , Tamanho da Partícula
15.
J Physiol ; 601(14): 2935-2958, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37278367

RESUMO

The acrosome is a lysosome-related vesicular organelle located in the sperm head. The acrosomal reaction (AR) is an exocytic process mediated by Ca2+ and essential for mammalian fertilization. Recent findings support the importance of acrosomal alkalinization for the AR. Mibefradil (Mib) and NNC 55-0396 (NNC) are two amphipathic weak bases that block the sperm-specific Ca2+ channel (CatSper) and induce acrosomal pH (pHa ) increase by accumulating in the acrosomal lumen of mammalian sperm. This accumulation and pHa elevation increase the intracellular Ca2+ concentration ([Ca2+ ]i ) and trigger the AR by unknown mechanisms of Ca2+ transport. Here, we investigated the pathways associated with the pHa increase-induced Ca2+ signals using mouse sperm as a model. To address these questions, we used single-cell Ca2+ imaging, the lysosomotropic agent Gly-Phe-ß-naphthylamide (GPN) and pharmacological tools. Our findings show that Mib and NNC increase pHa and release acrosomal Ca2+ without compromising acrosomal membrane integrity. Our GPN results indicate that the osmotic component does not significantly contribute to acrosomal Ca2+ release caused by pHa rise. Inhibition of two-pore channel 1 (TPC1) channels reduced the [Ca2+ ]i increase stimulated by acrosomal alkalinization. In addition, blockage of Ca2+ release-activated Ca2+ (CRAC) channels diminished Ca2+ uptake triggered by pHa alkalinization. Finally, our findings contribute to understanding how pHa controls acrosomal Ca2+ efflux and extracellular Ca2+ entry during AR in mouse sperm. KEY POINTS: The acrosomal vesicle is a lysosome-related organelle located in the sperm head. The acrosome reaction (AR) is a highly regulated exocytic process mediated by Ca2+ , which is essential for fertilization. However, the molecular identity of Ca2+ transporters involved in the AR and their mechanisms to regulate Ca2+ fluxes are not fully understood. In mammalian sperm, acrosomal alkalinization induces intracellular Ca2+ concentration ([Ca2+ ]i ) increase and triggers the AR by unknown molecular mechanisms of Ca2+ transport. In this study, we explored the molecular mechanisms underlying Ca2+ signals caused by acrosomal alkalinization using mouse sperm as a model. TPC1 and CRAC channels contribute to [Ca2+ ]i elevation during acrosomal alkalinization. Our findings expand our understanding of how the acrosomal pH participates in the physiological induction of the AR.


Assuntos
Cálcio , Sêmen , Masculino , Animais , Camundongos , Cálcio/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Acrossomo/metabolismo , Mibefradil/metabolismo , Mibefradil/farmacologia , Concentração de Íons de Hidrogênio , Mamíferos/metabolismo
16.
Neurobiol Dis ; 178: 106020, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36708960

RESUMO

Lysosomal function and organellar Ca2+ homeostasis become dysfunctional in Stroke causing disturbances in autophagy, the major process for the degradation of abnormal protein aggregates and dysfunctional organelles. However, the role of autophagy in Stroke is controversial since excessive or prolonged autophagy activation exacerbates ischemic brain injury. Of note, glutamate evokes NAADP-dependent Ca2+ release via lysosomal TPC2 channels thus controlling basal autophagy. Considering the massive release of excitotoxins in Stroke, autophagic flux becomes uncontrolled with abnormal formation of autophagosomes causing, in turn, disruption of excitotoxins clearance and neurodegeneration. Here, a fine regulation of autophagy via a proper pharmacological modulation of lysosomal TPC2 channel has been tested in preclinical Stroke models. Primary cortical neurons were subjected to oxygen and glucose deprivation+reoxygenation to reproduce in vitro brain ischemia. Focal brain ischemia was induced in rats by transient middle cerebral artery occlusion (tMCAO). Under these conditions, TPC2 protein expression as well as autophagy and endoplasmic reticulum (ER) stress markers were studied by Western blotting, while TPC2 localization and activity were measured by immunocytochemistry and single-cell video-imaging, respectively. TPC2 protein expression and immunosignal were highly modulated in primary cortical neurons exposed to extreme hypoxic conditions causing dysfunction in organellar Ca2+ homeostasis, ER stress and autophagy-induced cell death. TPC2 knocking down and pharmacological inhibition by Ned-19 during hypoxia induced neuroprotection. The effect of Ned-19 was reversed by the permeable form of TPC2 endogenous agonist, NAADP-AM. Of note, Ned-19 prevented ER stress, as measured by GRP78 (78 kDa glucose-regulated protein) protein reduction and caspase 9 downregulation. In this way Ned-19 restored organellar Ca2+ level. Interestingly, Ned-19 reduced the infarct volume and neurological deficits in rats subjected to tMCAO and prevented hypoxia-induced cell death by blocking autophagic flux. Collectively, the pharmacological inhibition of TPC2 lysosomal channel by Ned-19 protects from focal ischemia by hampering a hyperfunctional autophagy.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Animais , Ratos , Autofagia , Isquemia Encefálica/metabolismo , Chaperona BiP do Retículo Endoplasmático , Hipóxia/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Lisossomos/metabolismo , Neuroproteção , Neurotoxinas , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo
17.
Environ Sci Technol ; 57(8): 3270-3279, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36787409

RESUMO

Ecotoxicological studies typically cover only a limited part of the natural thermal range of populations and ignore daily temperature fluctuations (DTFs). Therefore, we may miss important stressor interaction patterns and have poor knowledge on how pollutants affect thermal performance curves (TPCs), which is needed to improve insights into the fate of populations to warming in a polluted world. We tested the single and combined effects of pesticide exposure and DTFs on the TPCs of low- and high-latitude populations of Ischnura elegans damselfly larvae. While chlorpyrifos did not have any effect at the intermediate mean temperatures (20-24 °C), it became toxic (reflecting synergisms) at lower (≤16 °C, reduced growth) and especially at higher (≥28 °C, reduced survival and growth) mean temperatures, resulting in more concave-shaped TPCs. Remarkably, these toxicity patterns were largely consistent at both latitudes and hence across a natural thermal gradient. Moreover, DTFs magnified the pesticide-induced survival reductions at 34 °C. The TPC perspective allowed us to identify different toxicity patterns and interaction types (mainly additive vs synergistic) across the thermal gradient. This highlights the importance of using thermal gradients to make more realistic predictions about the impact of pesticides in a warming world and of warming in a polluted world.


Assuntos
Clorpirifos , Praguicidas , Animais , Temperatura Alta , Aquecimento Global , Praguicidas/toxicidade , Clorpirifos/toxicidade , Temperatura , Larva
18.
Handb Exp Pharmacol ; 278: 71-92, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36639434

RESUMO

Two-pore channels (TPCs) are novel intracellular cation channels, which play a key role in numerous (patho-)physiological and immunological processes. In this chapter, we focus on their function in immune cells and immune reactions. Therefore, we first give an overview of the cellular immune response and the partaking immune cells. Second, we concentrate on ion channels which in the past have been shown to play an important role in the regulation of immune cells. The main focus is then directed to TPCs, which are primarily located in the membranes of acidic organelles, such as lysosomes or endolysosomes but also certain other vesicles. They regulate Ca2+ homeostasis and thus Ca2+ signaling in immune cells. Due to this important functional role, TPCs are enjoying increasing attention within the field of immunology in the last few decades but are also becoming more pertinent as pharmacological targets for the treatment of pro-inflammatory diseases such as allergic hypersensitivity. However, to uncover the precise molecular mechanism of TPCs in immune cell responses, further molecular, genetic, and ultrastructural investigations on TPCs are necessary, which then may pave the way to develop novel therapeutic strategies to treat diseases such as anaphylaxis more specifically.


Assuntos
Canais de Cálcio , Lisossomos , Humanos , Canais de Cálcio/metabolismo , Lisossomos/genética , Lisossomos/metabolismo , Sistema Imunitário/metabolismo , Endossomos/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio
19.
Handb Exp Pharmacol ; 278: 35-56, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35902437

RESUMO

Two-pore channels, TPC1 and TPC2, are Ca2+- and Na+-permeable cation channels expressed on the membranes of endosomes and lysosomes in nearly all mammalian cells. These channels have been implicated in Ca2+ signaling initiated from the endolysosomes, vesicular trafficking, cellular metabolism, macropinocytosis, and viral infection. Although TPCs have been shown to mediate Ca2+ release from acidic organelles in response to NAADP (nicotinic acid adenine dinucleotide phosphate), the most potent Ca2+ mobilizing messenger, questions remain whether NAADP is a direct ligand of these channels. In whole-endolysosomal patch clamp recordings, it has been difficult to detect NAADP-evoked currents in vacuoles that expressed TPC1 or TPC2, while PI(3,5)P2 (phosphatidylinositol 3,5-bisphosphate) activated a highly Na+-selective current under the same experimental configuration. In this chapter, we summarize recent progress in this area and provide our observations on NAADP-elicited TPC2 currents from enlarged endolysosomes as well as their possible relationships with the currents evoked by PI(3,5)P2. We propose that TPCs are channels dually regulated by PI(3,5)P2 and NAADP in an interdependent manner and the two endogenous ligands may have both distinguished and cooperative roles.


Assuntos
Canais de Cálcio , Transdução de Sinais , Animais , Humanos , Canais de Cálcio/metabolismo , NADP/metabolismo , Lisossomos/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Mamíferos/metabolismo
20.
Handb Exp Pharmacol ; 278: 277-304, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36894791

RESUMO

Endo-lysosomes are membrane-bound acidic organelles that are involved in endocytosis, recycling, and degradation of extracellular and intracellular material. The membranes of endo-lysosomes express several Ca2+-permeable cation ion channels, including two-pore channels (TPC1-3) and transient receptor potential mucolipin channels (TRPML1-3). In this chapter, we will describe four different state-of-the-art Ca2+ imaging approaches, which are well-suited to investigate the function of endo-lysosomal cation channels. These techniques include (1) global cytosolic Ca2+ measurements, (2) peri-endo-lysosomal Ca2+ imaging using genetically encoded Ca2+ sensors that are directed to the cytosolic endo-lysosomal membrane surface, (3) Ca2+ imaging of endo-lysosomal cation channels, which are engineered in order to redirect them to the plasma membrane in combination with approaches 1 and 2, and (4) Ca2+ imaging by directing Ca2+ indicators to the endo-lysosomal lumen. Moreover, we will review useful small molecules, which can be used as valuable tools for endo-lysosomal Ca2+ imaging. Rather than providing complete protocols, we will discuss specific methodological issues related to endo-lysosomal Ca2+ imaging.


Assuntos
Cálcio , Canais de Potencial de Receptor Transitório , Humanos , Cálcio/metabolismo , Lisossomos/metabolismo , Sinalização do Cálcio , Cátions/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa