Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Cell Biochem ; 122(3-4): 403-412, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33166425

RESUMO

Acute myeloid leukaemia (AML) is a blood cancer where undifferentiated myeloid cells are increased in the bone marrow and peripheral blood. As AML is dangerous and shows poor prognosis, many researchers categorised the relevant cytogenetic factors according to risk and prognosis. However, the specific reasons for poor cytogenetic factors remain unknown. We analysed a large data set from AML patients and found that TPD52 expression is elevated in patient groups with poor cytogenetic factors. As the amino acid sequence of TPD52 is evolutionally conserved in vertebrates, zebrafish embryos were used to investigate the function of TPD52. Since myeloid-biased haematopoietic stem cells (HSCs) are relevant to AML, the function of TPD52 in the development of HSCs was investigated. We determined that the zebrafish paralog, tpd52, is important for the maintenance of HSCs through regulation of cell proliferation. As tpd52 is linked to cell proliferation in zebrafish embryos, the proliferation-related gene, CD59, was correlated to TPD52 in every AML cohort with a high correlation coefficient. We suggest that TPD52 can be a novel therapeutic target for AML patients with poor cytogenetic factors. Additionally, more studies between TPD52 and CD59 will further increase the value of TPD52 as a novel target.


Assuntos
Proliferação de Células/fisiologia , Hematopoese/fisiologia , Leucemia Mieloide Aguda/metabolismo , Células Mieloides/metabolismo , Proteínas de Neoplasias/metabolismo , Adulto , Animais , Proliferação de Células/genética , Embrião não Mamífero/metabolismo , Feminino , Hematopoese/genética , Humanos , Leucemia Mieloide Aguda/genética , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Peixe-Zebra
2.
Biochem Biophys Res Commun ; 533(4): 1088-1094, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33036757

RESUMO

Currently, there is increasing evidence that long noncoding RNAs (lncRNAs) initiate and promote the progression of epithelial ovarian cancer (EOC). In this study, we revealed the roles and the potential mechanisms of long intergenic non-protein coding RNA 1133 (LINC01133) in EOC, which remains not well understood. We found that LINC01133 was upregulated in EOC tissues and cell lines. Besides, it was associated with the clinicopathological feature of metastasis. Functional experiments demonstrated that LINC01133 could facilitate cancer cell migration and invasion in vitro and tumor metastasis in vivo. Further molecular mechanisms studies indicated that LINC01133 and miR-495-3p reciprocally repressed expression of each other. We also realized that LINC01133 shared the same binding sites for miR-495-3p with tumor protein D52 (TPD52). We confirmed that TPD52 functioned as a direct target of miR-495-3p and mediated the enhancing effect of LINC01133 on cancer metastasis. Generally, our study showed that LINC01133 interacted with miR-495-3p to promote metastasis in EOC by regulating TPD52. LINC01133 also provided a potential therapeutic perspective for future clinical treatment.


Assuntos
Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/secundário , Movimento Celular/genética , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Invasividade Neoplásica/genética , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , RNA Longo não Codificante/genética , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Endocr Regul ; 54(1): 31-42, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32597148

RESUMO

OBJECTIVE: The aim of the present study was to investigate the effect of adipokine NAMPT (nicotinamide phosphoribosyltransferase) silencing on the expression of genes encoding IRS1 (insulin receptor substrate 1) and some other proliferation related proteins in U87 glioma cells for evaluation of the possible significance of this adipokine in intergenic interactions. METHODS: The silencing of NAMPT mRNA was introduced by NAMPT specific siRNA. The expression level of NAMPT, IGFBP3, IRS1, HK2, PER2, CLU, BNIP3, TPD52, GADD45A, and MKI67 genes was studied in U87 glioma cells by quantitative polymerase chain reaction. Anti-visfatin antibody was used for detection of NAMPT protein by Western-blot analysis. RESULTS: It was shown that the silencing of NAMPT mRNA led to a strong down-regulation of NAMPT protein and significant modification of the expression of IRS1, IGFBP3, CLU, HK2, BNIP3, and MKI67 genes in glioma cells and a strong up-regulation of IGFBP3 and IRS1 and down-regulation of CLU, BNIP3, HK2, and MKI67 gene expressions. At the same time, no significant changes were detected in the expression of GADD45A, PER2, and TPD52 genes in glioma cells treated by siRNA specific to NAMPT. Furthermore, the silencing of NAMPT mRNA suppressed the glioma cell proliferation. CONCLUSIONS: Results of this investigation demonstrated that silencing of NAMPT mRNA with corresponding down-regulation of NAMPT protein and suppression of the glioma cell proliferation affected the expression of IRS1 gene as well as many other genes encoding the proliferation related proteins. It is possible that dysregulation of most of the studied genes in glioma cells after silencing of NAMPT is reflected by a complex of intergenic interactions and that NAMPT is an important factor for genome stability and regulatory mechanisms contributing to the control of glioma cell metabolism and proliferation.


Assuntos
Citocinas/genética , Regulação Neoplásica da Expressão Gênica/genética , Expressão Gênica/genética , Glioma/genética , Proteínas Substratos do Receptor de Insulina/genética , Nicotinamida Fosforribosiltransferase/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Clusterina/genética , Regulação para Baixo , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Proteínas Circadianas Period/genética , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro , RNA Interferente Pequeno , Regulação para Cima
4.
J Cell Biochem ; 120(3): 3672-3678, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30203488

RESUMO

Generating accurate prognoses is extremely important for treating patients with cancer. Prognostic prediction based on messenger RNA (mRNA) expression has shown superior clinical value to other markers for some cancers but is not currently used for acute myeloid leukemia (AML). Lipid metabolism is associated with biological aspects of cancer progression, including massive proliferation, and abnormal signaling. Moreover, abnormalities in lipid metabolism have prognostic significance. Patients with AML display abnormalities in sphingolipid metabolism and fatty acid oxidation. TPD52 is a regulator of lipid metabolism and plays a role in the formation of lipid droplets and fatty acid storage. Although the prognostic significance of TPD52 expression has been reported for many types of cancer, it has not yet been assessed in patients with AML. Therefore, the aim of the current study was to assess the prognostic significance of TPD52 in AML using three independent AML cohorts: one from The Cancer Genome Atlas (TGCA; n = 142) and two from the National Center for Biotechnology Information: GSE12417 (GPL96-97; n = 162) and GSE12417 (GPL570; n = 78). TPD52 was found to be overexpressed in patients with AML (GSE84881; n = 23). The Kaplan-Meier curve revealed that TPD52 overexpression was associated with a poor prognosis for patients with AML with good discrimination ( P = 0.013, P = 0.005, and P = 0.032 for the TGCA, GSE12417, and GSE12417, respectively). Analysis of C-indices and area under the receiver operating characteristic curve values further supported this discriminative ability. Moreover, multivariate analysis confirmed the prognostic significance of TPD52 expression levels ( P = 0.0196). These results suggest that the TPD52 mRNA level is a potential biomarker for AML.


Assuntos
Biomarcadores Tumorais/biossíntese , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda , Proteínas de Neoplasias/biossíntese , Adulto , Intervalo Livre de Doença , Feminino , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidade , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Taxa de Sobrevida
5.
Biochem J ; 474(10): 1669-1687, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28298474

RESUMO

Although tumor protein D52 (TPD52) family proteins were first identified nearly 20 years ago, their molecular regulatory mechanisms remain unclear. Therefore, we investigated the post-transcriptional regulation of TPD52 family genes. An RNA immunoprecipitation (RIP) assay showed the potential binding ability of TPD52 family mRNAs to several RNA-binding proteins, and an RNA degradation assay revealed that TPD52 is subject to more prominent post-transcriptional regulation than are TPD53 and TPD54. We subsequently focused on the 3'-untranslated region (3'-UTR) of TPD52 as a cis-acting element in post-transcriptional gene regulation. Several deletion mutants of the 3'-UTR of TPD52 mRNA were constructed and ligated to the 3'-end of a reporter green fluorescence protein gene. An RNA degradation assay revealed that a minimal cis-acting region, located in the 78-280 region of the 5'-proximal region of the 3'-UTR, stabilized the reporter mRNA. Biotin pull-down and RIP assays revealed specific binding of the region to T-cell intracellular antigen 1 (TIA-1) and TIA-1-related protein (TIAR). Knockdown of TIA-1/TIAR decreased not only the expression, but also the stability of TPD52 mRNA; it also decreased the expression and stability of the reporter gene ligated to the 3'-end of the 78-280 fragment. Stimulation of transforming growth factor-ß and epidermal growth factor decreased the binding ability of these factors, resulting in decreased mRNA stability. These results indicate that the 78-280 fragment and TIA-1/TIAR concordantly contribute to mRNA stability as a cis-acting element and trans-acting factor(s), respectively. Thus, we here report the specific interactions between these elements in the post-transcriptional regulation of the TPD52 gene.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , RNA Mensageiro/metabolismo , RNA Neoplásico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Elementos de Resposta , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Silenciamento de Genes , Genes Reporter , Humanos , Imunoprecipitação , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Proteínas de Ligação a Poli(A)/antagonistas & inibidores , Proteínas de Ligação a Poli(A)/genética , Interferência de RNA , Estabilidade de RNA , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/química , RNA Neoplásico/antagonistas & inibidores , RNA Neoplásico/química , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Antígeno-1 Intracelular de Células T
6.
Tumour Biol ; 37(8): 10435-46, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26846108

RESUMO

The tumour protein D52 isoform 1 (PC-1), a member of the tumour protein D52 (TPD52) protein family, is androgen-regulated and prostate-specific expressed. Previous studies confirmed that PC-1 contributes to malignant progression in prostate cancer with an important role in castration-resistant stage. In the present work, we identified its impact in mechanisms leading to neuroendocrine (NE) transdifferentiation. We established for long-term PC-1 overexpression an inducible expression system derived from the prostate carcinoma cell line LNCaP. We observed that PC-1 overexpression itself initiates characteristics of neuroendocrine cells, but the effect was much more pronounced in the presence of the cytokine interleukin-6 (IL-6). Moreover, to our knowledge, this is the first report that treatment with IL-6 leads to a significant upregulation of PC-1 in LNCaP cells. Other TPD52 isoforms were not affected. Proceeding from this result, we conclude that PC-1 overexpression enhances the IL-6-mediated differentiation of LNCaP cells into a NE-like phenotype, noticeable by morphological changes and increased expression of typical NE markers, like chromogranin A, synaptophysin or beta-3 tubulin. Immunofluorescent staining of IL-6-treated PC-1-overexpressing LNCaP cells indicates a considerable PC-1 accumulation at the end of the long-branched neuron-like cell processes, which are typically formed by NE cells. Additionally, the experimentally initiated NE transdifferentiation correlates with the androgen receptor status, which was upregulated additively. In summary, our data provide evidence for an involvement of PC-1 in NE transdifferentiation, frequently associated with castration resistance, which is a major therapeutic challenge in the treatment of advanced prostate cancer.


Assuntos
Adenocarcinoma/patologia , Antagonistas de Androgênios/uso terapêutico , Androgênios , Antineoplásicos Hormonais/uso terapêutico , Transdiferenciação Celular/fisiologia , Interleucina-6/farmacologia , Proteínas de Neoplasias/fisiologia , Neoplasias Hormônio-Dependentes/patologia , Células Neuroendócrinas/patologia , Neoplasias da Próstata/patologia , Biomarcadores , Linhagem Celular Tumoral , Transdiferenciação Celular/efeitos dos fármacos , Humanos , Interleucina-6/uso terapêutico , Masculino , Proteínas de Neoplasias/análise , Proteínas de Neoplasias/genética , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Células Neuroendócrinas/química , Neoplasias da Próstata/tratamento farmacológico , Domínios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Receptores Androgênicos/biossíntese , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
7.
Tumour Biol ; 37(6): 7481-91, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26678891

RESUMO

The tumor protein D52 (TPD52) is an oncogene overexpressed in breast cancer. Although the oncogenic effects of TPD52 are well recognized, how its expression and the role in migration/invasion is still not clear. This study tried to explore the regulative role of microRNA-34a (miR-34a), a tumor suppressive miRNA, on TPD52 expression in breast cancer. The expression of miR-34a was found significantly decreased in breast cancer specimens with lymph node metastases and breast cancer cell lines. The clinicopathological characteristics analyzed showed that lower expression levels of miR-34a were associated with advanced clinical stages. Moreover, TPD52 was demonstrated as one of miR-34a direct targets in human breast cancer cells. miR-34a was further found significantly repress epithelial-mesenchymal transition (EMT) and inhibit breast cancer cell migration and invasion via TPD52. These findings indicate that miR-34a inhibits breast cancer progression and metastasis through targeting TPD52. Consequently, our data strongly suggested that oncogenic TPD52 pathway regulated by miR-34a might be useful to reveal new therapeutic targets for breast cancer.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/secundário , Carcinoma Lobular/secundário , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proteínas de Neoplasias/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/metabolismo , Carcinoma Lobular/genética , Carcinoma Lobular/metabolismo , Transição Epitelial-Mesenquimal , Feminino , Seguimentos , Humanos , Metástase Linfática , Pessoa de Meia-Idade , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Estadiamento de Neoplasias , Oncogenes , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
8.
Biochem Biophys Res Commun ; 456(3): 804-9, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25511701

RESUMO

The tumor protein D52 (TPD52) is an oncogene overexpressed in prostate cancer (PC) due to gene amplification. Although the oncogenic effect of TPD52 is well recognized, how its expression is regulated is still not clear. This study tried to explore the regulative role of miR-218, a tumor suppressing miRNA on TPD52 expression and prostate cancer cell proliferation. We found the expression of miR-218 was significantly lower in PC specimens. Based on gain and loss of function analysis, we found miR-218 significantly inhibit cancer cell proliferation by inducing apoptosis. These results strongly suggest that miR-218 plays a tumor suppressor role in PC cells. In addition, our data firstly demonstrated that miR-218 directly regulates oncogenic TPD52 in PC3 cells and the miR-218-TPD52 axis can regulate growth of this prostate cancer cell line. Knockdown of TPD52 resulted in significantly increased cancer cell apoptosis. Clearly understanding of oncogenic TPD52 pathways regulated by miR-218 might be helpful to reveal new therapeutic targets for PC.


Assuntos
Apoptose/fisiologia , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/patologia , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Masculino , MicroRNAs/genética , Proteínas de Neoplasias/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo
9.
Cell Biol Int ; 39(3): 264-71, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25262828

RESUMO

Tumor protein D52-like 2 (TPD52L2) and its family members form homo- and hetero-meric complexes essential for cell proliferation in multiple human cancers. TPD52L2 is involved in cell migration and attachment in oral squamous cell carcinoma (OSCC). To confirm the role of TPD52L2 in OSCC, we employed the lentivirus-delivered small interfering RNA (siRNA) technique to knock down TPD52L2 expression in two OSCC cell lines, CAL27, and KB. Knockdown of TPD52L2 by RNA interference markedly suppressed cell proliferation and colony formation. Cell cycle analysis showed that depletion of TPD52L2 led to CAL27 cells arrest in the S phase. We found an excessive accumulation of cells in the sub-G1 phase, which can represent apoptotic cells. TPD52L2 silencing also induced the cleavage of PARP. These results suggest that TPD52L2 is involved in OSCC cell growth and serves as a potential therapeutic target in human OSCC.


Assuntos
Apoptose/genética , Proteínas de Neoplasias/metabolismo , RNA Interferente Pequeno/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Interferência de RNA , Pontos de Checagem da Fase S do Ciclo Celular
10.
Artigo em Inglês | MEDLINE | ID: mdl-38305309

RESUMO

BACKGROUND: Aberrant expression of tumor protein D52 (TPD52) is associated with some tumors. The role of TPD52 in uterine corpus endometrial carcinoma (UCEC) remains uncertain. OBJECTIVE: We aimed to investigate the involvement of TPD52 in the pathogenesis of UCEC. METHODS: We employed bioinformatics analysis and experimental validation in our study. RESULTS: Our findings indicated that elevated TPD52 expression in UCEC was significantly associated with various clinical factors, including clinical stage, race, weight, body mass index (BMI), histological type, histological grade, surgical approach, and age (p < 0.01). Furthermore, high TPD52 expression was a predictor of poorer overall survival (OS), progress-free survival (PFS), and disease-specific survival (DSS) (p = 0.011, p = 0.006, and p = 0.003, respectively). TPD52 exhibited a significant correlation with DSS (HR: 2.500; 95% CI: 1.153-5.419; p = 0.02). TPD52 was involved in GPCR ligand binding and formation of the cornified envelope in UCEC. Moreover, TPD52 expression was found to be associated with immune infiltration, immune checkpoints, tumor mutation burden (TMB)/ microsatellite instability (MSI), and mRNA stemness indices (mRNAsi). The somatic mutation rate of TPD52 in UCEC was 1.9%. A ceRNA network of AC011447.7/miR-1-3p/TPD52 was constructed. There was excessive TPD52 protein expression. The upregulation of TPD52 expression in UCEC cell lines was found to be statistically significant. CONCLUSION: TPD52 is upregulated in UCEC and may be a useful patent for prognostic biomarkers of UCEC, which may have important value for clinical treatment and supervision of UCEC patients.

11.
Chin Clin Oncol ; 13(3): 33, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38859601

RESUMO

BACKGROUND: Breast cancer (BRCA) represents a significant health challenge for women globally, with refractory cases showing resistance to current therapeutic strategies. The discovery of novel molecular markers and therapeutic targets is critical for improving outcomes in these patients. The primary aim of this study is to elucidate the role of tumor protein D52 (TPD52) as a novel molecular marker and potential therapeutic target to improve outcomes for BRCA patients. METHODS: Using bioinformatics methods, we screened and evaluated the expression, prognosis, and associated mechanisms of TPD52 in BRCA. Two hundred and thirty-eight BRCA cases and 19 control cases were collected from Shanghai First Maternity and Infant Hospital, and the protein expression of TPD52 was detected by immunohistochemistry, and the correlation between TPD52 and the prognosis of BRCA was analyzed. RESULTS: The expression of TPD52 in BRCA tissues was significantly higher than that in the control (P<0.001), displaying a strong association with key clinical variables, concurrently indicating an unfavorable prognostic implication. The survival analysis revealed high TPD52 expression was an independent adverse prognostic factor for overall (P=0.008) and disease-specific survival (P=0.005). Gene set enrichment analysis showed that TPD52 negatively correlated with estradiol, AMP-activated protein kinase, and other responses. Immune infiltration analysis showed that TPD52 was associated with immune cell infiltration, Th-1/Th-2 cell balance, and immune defense cells such as dendritic and plasmacytoid dendritic cells. It is further found that high TPD52 expression is associated with progression-free and disease-free survival from the analysis of immunohistochemical data of the patients at our hospital. CONCLUSIONS: In summary, TPD52 may serve as an independent prognostic biomarker for BRCA, which may represent a promising novel therapeutic target, particularly for the refractory estrogen receptor-positive (ER+)/progesterone receptor-positive (PR+)/human epidermal growth factor receptor 2-positive (HER2+) BRCA cases that have failed endocrine therapy and targeted treatment.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Prognóstico , Biomarcadores Tumorais/metabolismo , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Receptores de Estrogênio/metabolismo , Receptor ErbB-2/metabolismo , Adulto , Receptores de Progesterona/metabolismo
12.
Am J Physiol Gastrointest Liver Physiol ; 305(6): G439-52, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23868405

RESUMO

Zymogen granule (ZG) formation in acinar cells involves zymogen cargo sorting from trans-Golgi into immature secretory granules (ISGs). ISG maturation progresses by removal of lysosomal membrane and select content proteins, which enter endosomal intermediates prior to their apical exocytosis. Constitutive and stimulated secretion through this mechanism is termed the constitutive-like and minor-regulated pathways, respectively. However, the molecular components that control membrane trafficking within these endosomal compartments are largely unknown. We show that tumor protein D52 is highly expressed in endosomal compartments following pancreatic acinar cell stimulation and regulates apical exocytosis of an apically directed endolysosomal compartment. Secretion from the endolysosomal compartment was detected by cell-surface antigen labeling of lysosome-associated membrane protein LAMP1, which is absent from ZGs, and had incomplete overlap with surface labeling of synaptotagmin 1, a marker of ZG exocytosis. Although culturing (16-18 h) of isolated acinar cells is accompanied by a loss of secretory responsiveness, the levels of SNARE proteins necessary for ZG exocytosis were preserved. However, levels of endolysosomal proteins D52, EEA1, Rab5, and LAMP1 markedly decreased with culture. When D52 levels were restored by adenoviral delivery, the levels of these regulatory proteins and secretion of both LAMP1 (endolysosomal) and amylase was strongly enhanced. These secretory effects were absent in alanine and aspartate substitutions of serine 136, the major D52 phosphorylation site, and were inhibited by brefeldin A, which does not directly affect the ZG compartment. Our results indicate that D52 directly regulates apical endolysosomal secretion and are consistent with previous studies, suggesting that this pathway indirectly regulates ZG secretion of digestive enzymes.


Assuntos
Células Acinares/metabolismo , Lisossomos/metabolismo , Proteínas de Neoplasias/metabolismo , Pâncreas/citologia , Via Secretória , Proteínas de Transporte Vesicular/metabolismo , Animais , Células Cultivadas , Endossomos/metabolismo , Exocitose , Mutação , Proteínas de Neoplasias/genética , Fosforilação , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Vesículas Secretórias/metabolismo
13.
Int J Biol Sci ; 19(12): 3709-3725, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564195

RESUMO

Lung cancer, as the most commonly diagnosed malignancy, still accounts for the leading cause of cancer-related deaths worldwide. The high rate of mortality and tumor recurrence has prompted clinicians and scientists to urgently explore new targets for improved treatment. Previous studies have indicated a potential role of the androgen receptor (AR) in the progression of non-small cell lung cancer (NSCLC). However, the precise mechanisms underlying this association, particularly its relation to TPD52-mediated cell invasion and cisplatin (DDP) response, have not been fully elucidated. Therefore, further investigation is necessary to gain a better understanding of these mechanisms and their potential implications for lung cancer treatment. In this study, we discovered that AR can suppress NSCLC cell invasion and increase cisplatin response by downregulating the expression of circular RNA (circRNA), specifically circ-SLCO1B7. This suppression is achieved through the direct binding of AR to the 5' promoter region of the host gene SLCO1B7. The decreased expression of circ-SLCO1B7, mediated by AR, released miR-139-5p back to the RISC (RNA induced silencing complex), where it bonds to the 3' untranslated region (3'UTR) of Tumor Protein D52 (TPD52) messenger RNA, resulting in TPD52 reduction. The in vivo data also validated the functional contribution of AR/circ-SLCO1B7/miR-139-5p/TPD52 axis to lung cancer progression. Furthermore, analysis of human NSCLC databases and clinical specimens confirmed the association of the AR/circ-SLCO1B7/miR-139-5p/TPD52 signaling pathway with NSCLC progression. Collectively, the results from our study suggest that AR can suppress lung cancer cell invasion and increase DDP response by modulating the circ-SLCO1B7/miR-139-5p/TPD52 signaling pathway. Targeting this novel signaling pathway may be a new therapeutic strategy to effectively constrain NSCLC development.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Receptores Androgênicos , MicroRNAs/metabolismo , Recidiva Local de Neoplasia , Fatores de Transcrição , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Proteínas de Neoplasias/metabolismo
14.
J Ovarian Res ; 16(1): 202, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833790

RESUMO

BACKGROUND: Gynecologic cancers comprise malignancies in the female reproductive organs. Ovarian cancer ranks sixth in terms of incidence rates while seventh in terms of mortality rates. The stage at which ovarian cancer is diagnosed mainly determines the survival outcomes of patients. Various screening approaches are presently employed for diagnosing ovarian cancer; however, these techniques have low accuracy and are non-specific, resulting in high mortality rates of patients due to this disease. Hence, it is crucial to identify improved screening and diagnostic markers to overcome this cancer. This study aimed to find new biomarkers to facilitate the prognosis and diagnosis of ovarian cancer. METHODS: Bioinformatics approaches were used to predict the tertiary structure and cellular localization along with phylogenetic analysis of TPD52. Its molecular interactions were determined through KEGG analysis, and real-time PCR-based expression analysis was performed to assess its co-expression with another oncogenic cellular pathway (miR-223, KLF9, and PKCε) proteins in ovarian cancer. RESULTS: Bioinformatics analysis depicted the cytoplasmic localization of TPD52 and the high conservation of its coiled-coil domains. Further study revealed that TPD52 mRNA and miRNA-223 expression was elevated, while the expression of KLF 9 and PKCε was reduced in the blood of ovarian cancer patients. Furthermore, TPD52 and miR-223 expression were upregulated in the early stages of cancer and non-metastatic cancers. CONCLUSION: TPD52, miR-223, PKCε, and KLF9, can be used as a blood based markers for disease prognosis, metastasis, and treatment response. The study outcomes hold great potential to be translated at the clinical level after further validation on larger cohorts.


Assuntos
Fatores de Transcrição Kruppel-Like , MicroRNAs , Proteínas de Neoplasias , Neoplasias Ovarianas , Proteína Quinase C-épsilon , Feminino , Humanos , Fatores de Transcrição Kruppel-Like/genética , MicroRNAs/genética , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Filogenia , Proteína Quinase C-épsilon/genética
15.
Hum Vaccin Immunother ; 19(3): 2273699, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37904517

RESUMO

Overexpressed tumor-associated antigens (TAAs) are a large group that includes proteins found at increased levels in tumors compared to healthy cells. Universal tumor expression can be defined as overexpression in all cancers examined as has been shown for Tumor Protein D52. TPD52 is an over expressed TAA actively involved in transformation, leading to increased proliferation and metastasis. TPD52 overexpression has been demonstrated in many human adult and pediatric malignancies. The murine orthologue of TPD52 (mD52) parallels normal tissue expression patterns and known functions of human TPD52 (hD52). Here in we present our preclinical studies over the past 15 years which have demonstrated that vaccine induced immunity against mD52 is effective against multiple cancers in murine models, without inducing autoimmunity against healthy tissues and cells.


Assuntos
Vacinas Anticâncer , Neoplasias , Adulto , Criança , Humanos , Animais , Camundongos , Proteínas de Neoplasias , Neoplasias/prevenção & controle , Antígenos de Neoplasias , Autoimunidade , Linhagem Celular Tumoral
16.
Front Oncol ; 13: 1210910, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074636

RESUMO

Background: Tumor Protein D52-Like 2 (TPD52L2) is a tumor-associated protein that participates in B-cell differentiation. However, the role of TPD52L2 in the pathological process of clear cell renal cell carcinoma (ccRCC) is unclear. Methods: Multiple omics data of ccRCC samples were obtained from public databases, and 5 pairs of ccRCC tissue samples were collected from the operating room. Wilcox, chi-square test, Kaplan-Meier method, receiver operating characteristic curve, regression analysis, meta-analysis, and correlation analysis were used to clarify the relationship of TPD52L2 with clinical features, prognosis, and immune microenvironment. Functional enrichment analysis was performed to reveal the potential pathways in which TPD52L2 participates in the progression of ccRCC. The siRNA technique was used to knockdown in the expression level of TPD52L2 in 786-O cells to verify its effect on ccRCC progression. Results: First, TPD52L2 was found to be upregulated in ccRCC at both mRNA and protein levels. Second, TPD52L2 was significantly associated with poor prognosis and served as an independent prognostic factor. Moreover, TPD52L2 expression was regulated by DNA methylation, and some methylation sites were associated with ccRCC prognosis. Third, TPD52L2 overexpression may participate in the pathological process through various signaling pathways such as cytokine-cytokine receptor interactions, PI3K-Akt, IL-17, Wnt, Hippo signaling pathway, and ECM-receptor interactions. Interestingly, TPD52L2 expression level was also closely related to the abundance of various immune cells, immune checkpoint expression, and TMB. Finally, in vitro experiments confirmed that knocking down TPD52L2 can inhibit the proliferation, migration, and invasion abilities of ccRCC cells. Conclusion: This study for the first time revealed the upregulation of TPD52L2 expression in ccRCC, which is closely associated with poor prognosis of patients and is a potentially valuable therapeutic and efficacy assessment target for immunotherapy.

17.
Curr Mol Med ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-38178662

RESUMO

BACKGROUND: Some tumors have a poor prognosis regarding TPD52 (tumor protein D52). This study aims to explore TPD52's role in the cancer process from a pan-cancer perspective. METHODS: A pan-cancer analysis was conducted to investigate how TPD52 may be involved in cancer as well as its association with prognosis. RESULTS: A variety of human cancers express TPD52 abnormally and correlate with clinical stage. There was a significant association between low expression of TPD52 and poor survival in BRCA, KIRP, LAML, LIHC, UCEC, and UVM. TPD52 alterations were most frequently amplified in pan-cancer. The co-occurrence of 10 genes alterations was found in the TPD52 altered group. There was a significant association between TPD52 expression and MSI in four cancer types and TMB in twelve cancer types. There was a significant correlation between TPD52 expression and immunerelated cell infiltration. A significant correlation was found between TPD52 expression in many tumor types and 8 immune checkpoint genes. There were signaling pathways involved in pan-cancer caused by TPD52, including endocytosis, Fc gamma Rmediated phagocytosis, and so on. TPD52 may be involved in chemotherapy and chemoresistance. CONCLUSION: The TPD52 gene may be important for human cancer treatment.

18.
J Cell Commun Signal ; 17(3): 957-974, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37040029

RESUMO

Tumor protein D52 (TPD52) is a proto-oncogene overexpressed in prostate cancer (PCa) due to gene amplification and it is involved in the cancer progression of many cancers including PCa. However, the molecular mechanisms underlying the role of TPD52 in cancer progression are still under investigation. In this study, we report that the activation of AMP-activated protein kinase (AMPK) by AICAR (5-Aminoimidazole-4-carboxamide ribonucleotide) inhibited the LNCaP and VCaP cells growth by silencing TPD52 expression. Activation of AMPK inhibited the proliferation and migration of LNCaP and VCaP cells. Interestingly, AICAR treatment to LNCaP and VCaP cells led to the downregulation of TPD52 via activation of GSK3ß by a decrease of inactive phosphorylation at Ser9. Moreover, in AICAR treated LNCaP cells, inhibition of GSK3ß by LiCl attenuated downregulation of TPD52 indicating that AICAR acts via GSK3ß. Furthermore, we found that TPD52 interacts with serine/threonine kinase 11 or Liver kinase B1 (LKB1) a known tumor suppressor and an upstream kinase for AMPK. The molecular modeling and MD simulations indicates that the interaction between TPD52 and LKB1 leads to inhibition of the kinase activity of LKB1 as its auto-phosphorylation sites were masked in the complex. Consequently, TPD52-LKB1 interaction may lead to inactivation of AMPK. Moreover, overexpression of TPD52 is found to be responsible for the reduction of pLKB1 (Ser428) and pAMPK (Thr172). Therefore, TPD52 may be playing its oncogenic role via suppressing the AMPK activation. Altogether, our results revealed a new mechanism of PCa progression in which TPD52 overexpression inhibits AMPK activation by interacting with LKB1. These results support that the use of AMPK activators and/or small molecules that could disrupt the TPD52-LKB1 interaction might be useful to suppress PCa cell growth. TPD52 interacts LKB1 and interfere with activation of AMPK in PCa cells.

19.
Diagn Pathol ; 18(1): 105, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735390

RESUMO

BACKGROUND: Inflammatory myofibroblastic tumor (IMT) is a distinctive tumor composed of spindle cells accompanied by mixed inflammatory cells, and immunohistochemical positivity for ALK (anaplastic lymphoma kinase protein) can be detected in half of IMTs. The diagnosis of ALK-negative IMT could be a challenge. Recently, the fusions of some kinase genes, such as RET, NTRK1, ROS1, etc., are revealed in ALK-negative IMT. CASE PRESENTATION: A 19-year-old woman presented with swelling of the left upper arm. Magnetic resonance imaging (MRI) scan revealed a tumor in the left postbrachium extended to the left axillary, serratus anterior muscle, and latissimus dorsi muscle. Histopathologically, the irregular-circumscribed tumor was composed of dense spindle-shaped cells with eosinophilic abundant cytoplasm and hyalinized mesenchyme in an inflammatory background. Immunohistochemically (IHC), tumor cells were positive for SMA, MDM2, and p16; the cells were negative for desmin, MyoD1, Myogenin, pan-cytokeratin, S100, SOX10, HMB45, Malen-A, CD34, CD31, CD99, and ALK. By RNA-based NGS, a novel fusion between TPD52L2 3' end of exon 1-4 and ROS1 5' end of exon 36-43 was revealed. ROS1 IHC staining was negative. The final diagnosis of IMT with TPD52L2-ROS1 fusion was made. Subsequently, the patient experienced a good clinical response to Crizotinib, and clinical follow-up showed stable disease after 9 months. CONCLUSION: This report expands the spectrum of ROS1 gene rearrangements in the IMT and highlights the importance of molecular analysis of IMT for getting a diagnostic clue and determining potential therapeutic strategies.


Assuntos
Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas , Feminino , Humanos , Adulto Jovem , Anticorpos Monoclonais , Éxons , Fusão Gênica , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética
20.
Cancer Med ; 12(1): 488-499, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35666017

RESUMO

BACKGROUND: The AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis, with deregulation leading to cancer and other diseases. However, how this pathway is dysregulated in cancer has not been well clarified. METHODS: Using a tandem affinity purification/mass-spec technique and biochemical analyses, we identified tumor protein D52 (TPD52) as an AMPKα-interacting molecule. To explore the biological effects of TPD52 in cancers, we conducted biochemical and metabolic assays in vitro and in vivo with cancer cells and TPD52 transgenic mice. Finally, we assessed the clinical significance of TPD52 expression in breast cancer patients using bioinformatics techniques. RESULTS: TPD52, initially identified to be overexpressed in many human cancers, was found to form a stable complex with AMPK in cancer cells. TPD52 directly interacts with AMPKα and inhibits AMPKα kinase activity in vitro and in vivo. In TPD52 transgenic mice, overexpression of TPD52 leads to AMPK inhibition and multiple metabolic defects. Clinically, high TPD52 expression predicts poor survival of breast cancer patients. CONCLUSION: The findings revealed that TPD52 is a novel regulator of energy stress-induced AMPK activation and cell metabolism. These results shed new light on AMPK regulation and understanding of the etiology of cancers with TPD52 overexpression.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias da Mama , Camundongos , Animais , Humanos , Feminino , Proteínas Quinases Ativadas por AMP/genética , Proteínas de Neoplasias/metabolismo , Neoplasias da Mama/patologia , Camundongos Transgênicos , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa