RESUMO
Peritoneal metastasis is very common in gastrointestinal, reproductive, and genitourinary tract cancers in late stages or postsurgery, causing poor prognosis, so effective and nontoxic prophylactic strategies against peritoneal metastasis are highly imperative. Herein, we demonstrate the first gene transfection as a nontoxic prophylaxis preventing peritoneal metastasis or operative metastatic dissemination. Lipopolyplexes of TNF-related-apoptosis-inducing-ligand (TRAIL) transfected peritonea and macrophages to express TRAIL for over 15 days. The expressed TRAIL selectively induced tumor cell apoptosis while exempting normal tissue, providing long-term tumor surveillance. Therefore, tumor cells inoculated in the pretransfected peritoneal cavity quickly underwent apoptosis and, thus, barely formed tumor nodules, significantly prolonging the mouse survival time compared with chemotherapy prophylaxis. Furthermore, lipopolyplex transfection showed no sign of toxicity. Therefore, this peritoneal TRAIL-transfection is an effective and safe prophylaxis, preventing peritoneal metastasis.
Assuntos
Proteínas Reguladoras de Apoptose , Neoplasias Peritoneais , Animais , Camundongos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/farmacologia , Ligantes , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/prevenção & controle , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/farmacologia , Apoptose/genética , Fator de Necrose Tumoral alfa/genética , Transfecção , Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genéticaRESUMO
Preclinical studies showed that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) therapy is safe and effective to combat cancers, but clinical outcomes have been less than optimal due to short half-life of TRAIL protein, insufficient induction of apoptosis, and TRAIL resistance displayed in many tumors. In this study, we explored co-delivery of a TRAIL expressing plasmid (pTRAIL) and complementary small interfering RNAs (siRNAs) (silencing Bcl2-like 12 [BCL2L12] and superoxide dismutase 1 [SOD1]) to improve the response of breast cancer cells against TRAIL therapy. It is desirable to co-deliver the pDNA along with siRNA using a single delivery agent, but this is challenging given different structures of long/flexible pDNA and short/rigid siRNA. Toward this goal, we identified an aliphatic lipid-grafted low-molecular weight polyethylenimine (PEI) that accommodated both pDNA and siRNA in a single complex. The co-delivery of pTRAIL with BCL2L12- or SOD1-specific siRNAs resulted more significant cell death in different breast cancer cells compared with separate delivery without affecting nonmalignant cells viability. Ternary complexes of lipopolymer with pTRAIL and BCL2L12 siRNA significantly retarded the growth of breast cancer xenografts in mice. The enhanced anticancer activity was attributed to increased in situ secretion of TRAIL and sensitization of breast cancer cells against TRAIL by the co-delivered siRNAs. The lipid-grafted PEIs capable of co-delivering multiple types of nucleic acids can serve as powerful carriers for more effective complementary therapeutics. Graphical Abstract [Figure: see text].