Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Genes Dev ; 35(3-4): 218-233, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33446568

RESUMO

Pancreatic ductal adenocarcinoma is a lethal disease characterized by late diagnosis, propensity for early metastasis and resistance to chemotherapy. Little is known about the mechanisms that drive innate therapeutic resistance in pancreatic cancer. The ataxia-telangiectasia group D-associated gene (ATDC) is overexpressed in pancreatic cancer and promotes tumor growth and metastasis. Our study reveals that increased ATDC levels protect cancer cells from reactive oxygen species (ROS) via stabilization of nuclear factor erythroid 2-related factor 2 (NRF2). Mechanistically, ATDC binds to Kelch-like ECH-associated protein 1 (KEAP1), the principal regulator of NRF2 degradation, and thereby prevents degradation of NRF2 resulting in activation of a NRF2-dependent transcriptional program, reduced intracellular ROS and enhanced chemoresistance. Our findings define a novel role of ATDC in regulating redox balance and chemotherapeutic resistance by modulating NRF2 activity.


Assuntos
Carcinogênese/genética , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Pancreáticas/fisiopatologia , Fatores de Transcrição/metabolismo , Humanos , Ligação Proteica , Neoplasias Pancreáticas
2.
Genes Dev ; 33(11-12): 641-655, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31048544

RESUMO

Pancreatic adenocarcinoma (PDA) is an aggressive disease driven by oncogenic KRAS and characterized by late diagnosis and therapeutic resistance. Here we show that deletion of the ataxia-telangiectasia group D-complementing (Atdc) gene, whose human homolog is up-regulated in the majority of pancreatic adenocarcinoma, completely prevents PDA development in the context of oncogenic KRAS. ATDC is required for KRAS-driven acinar-ductal metaplasia (ADM) and its progression to pancreatic intraepithelial neoplasia (PanIN). As a result, mice lacking ATDC are protected from developing PDA. Mechanistically, we show ATDC promotes ADM progression to PanIN through activation of ß-catenin signaling and subsequent SOX9 up-regulation. These results provide new insight into PDA initiation and reveal ATDC as a potential target for preventing early tumor-initiating events.


Assuntos
Carcinogênese , Carcinoma Ductal Pancreático/fisiopatologia , Neoplasias Pancreáticas/fisiopatologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fatores de Transcrição/fisiologia , Células Acinares/metabolismo , Células Acinares/patologia , Animais , Carcinoma in Situ/patologia , Carcinoma in Situ/fisiopatologia , Carcinoma Ductal Pancreático/patologia , Transdiferenciação Celular , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Técnicas de Silenciamento de Genes , Humanos , Metaplasia , Camundongos , Camundongos Transgênicos , Ductos Pancreáticos/metabolismo , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , beta Catenina/metabolismo
3.
Drug Resist Updat ; 74: 101079, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518727

RESUMO

AIMS: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease. Chemotherapy based on gemcitabine (GEM) remains the first-line drug for patients with advanced PDAC. However, GEM resistance impairs its therapeutic effectiveness. Therefore, identifying effective therapeutic targets are urgently needed to overcome GEM resistance. METHODS: The clinical significance of Tripartite Motif Containing 29 (TRIM29) was identified by exploring GEO datasets and TCGA database and its potential biological functions were predicted by GSEA analysis. The regulatory axis was established by bioinformatics analysis and validated by mechanical experiments. Then, in vitro and in vivo assays were performed to validate the roles of TRIM29 in PDAC GEM resistance. RESULTS: High TRIM29 expression was associated with poor prognosis of PDAC and functional experiments demonstrated that TRIM29 promoted GEM resistance in PDAC GEM-resistant (GR) cells. Furthermore, we revealed that circRPS29 promoted TRIM29 expression via competitive interaction with miR-770-5p and then activated MEK/ERK signaling pathway. Additionally, both in vitro and in vivo functional experiments demonstrated that circRPS29/miR-770-5p/TRIM29 axis promoted PDAC GEM resistance via activating MEK/ERK signaling pathway. CONCLUSION: Our results identify the significance of the signaling axis, circRPS29/miR-770-5p/TRIM29-MEK/ERK, in PDAC GEM resistance, which will provide novel therapeutic targets for PDAC treatment.


Assuntos
Carcinoma Ductal Pancreático , Resistencia a Medicamentos Antineoplásicos , Gencitabina , Sistema de Sinalização das MAP Quinases , Neoplasias Pancreáticas , Fatores de Transcrição , Animais , Humanos , Camundongos , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Prognóstico , RNA Circular/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cancer Sci ; 114(8): 3176-3189, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37248790

RESUMO

Epigenetic alterations marked by DNA methylation are frequent events during the early development of nasopharyngeal carcinoma (NPC). We identified that TRIM29 is hypomethylated and overexpressed in NPC cell lines and tissues. TRIM29 silencing not only limited the growth of NPC cells in vitro and in vivo, but also induced cellular senescence, along with reactive oxygen species (ROS) accumulation. Mechanistically, we found that TRIM29 interacted with voltage-dependent anion-selective channel 1 (VDAC1) to activate mitophagy clearing up damaged mitochondria, which are the major source of ROS. In patients with NPC, high levels of TRIM29 expression are associated with an advanced clinical stage. Moreover, we detected hypomethylation of TRIM29 in patient nasopharyngeal swab DNA. Our findings indicate that TRIM29 depends on VDAC1 to induce mitophagy and prevents cellular senescence by decreasing ROS. Detection of aberrantly methylated TRIM29 in the nasopharyngeal swab DNA could be a promising strategy for the early detection of NPC.


Assuntos
Carcinoma , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma/metabolismo , Neoplasias Nasofaríngeas/patologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Metilação de DNA , Epigênese Genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética
5.
Cell Biol Int ; 47(6): 1126-1135, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36841942

RESUMO

Diabetic nephropathy (DN) is one of the most common complications of diabetes. Gradual loss of podocytes is a sign of DN and pyroptosis mechanistically correlates with podocyte injury in DN; however, the mechanism(s) involved remain unknown. Here we reveal that TRIM29 is overexpressed in high glucose (HG)-treated murine podocytes cells and that TRIM29 silencing significantly inhibits podocyte damage due to HG treatment, as evidenced by lower desmin expression and greater nephrin expression. Additionally, flow cytometry analysis showed that TRIM29 silencing significantly inhibited HG treatment-induced pyroptosis, which was confirmed by immunoblotting for NLRP3, active Caspase-1, GSDMD-N, and phosphorylated NF-κB-p65. Conversely, overexpression of TRIM29 could trigger pyroptosis that was attenuated by NF-κB inhibition, indicating that TRIM29 promotes pyroptosis through the NF-κB pathway. Mechanistic studies revealed that TRIM29 interacts with IκBα to mediate its ubiquitination-dependent degradation, which in turn leads to NF-κB activation. Taken together, our data demonstrate that TRIM29 can promote podocyte pyroptosis by activating the NF-κB/NLRP3 pathway. Thus, TRIM29 represents a potentially novel therapeutic target that may also be clinically relevant in the management of DN.


Assuntos
Nefropatias Diabéticas , Podócitos , Animais , Camundongos , Nefropatias Diabéticas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Inflamassomos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Podócitos/metabolismo , Piroptose , Fatores de Transcrição/metabolismo
6.
Acta Biochim Biophys Sin (Shanghai) ; 55(3): 484-497, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36876422

RESUMO

Long noncoding RNA (lncRNA) extracellular leucine rich repeat and fibronectin type III domain containing 1-antisense RNA 1 (ELFN1-AS1) has been found to be upregulated in various tumors. However, the biological functions of ELFN1-AS1 in gastric cancer (GC) are not entirely understood. In the present study, the expression levels of ELFN1-AS1, miR-211-3p, and TRIM29 are determined using reverse transcription-quantitative PCR. Subsequently, CCK8, EdU, and colony formation assays are performed to determine GC cell vitality. The migratory and invasive capabilities of GC cells are further evaluated using transwell invasion and cell scratch assays. Western blot analysis is performed to quantify the levels of proteins associated with GC cell apoptosis and epithelialmesenchymal transition (EMT). The competing endogenous RNA (ceRNA) activity of ELFN1-AS1 on TRIM29 through miR-211-3p is confirmed by pull-down, RIP, and luciferase reporter assays. Our study proves that ELFN1-AS1 and TRIM29 are highly expressed in GC tissues. ELFN1-AS1 silencing inhibits GC cell proliferation, migration, invasion and EMT, and induces cell apoptosis. Rescue experiments reveal that the oncogenicity of ELFN1-AS1 is modulated by acting as a sponge for miR-211-3p, thereby increasing the expression of the target gene of miR-211-3p, TRIM29. In summary, ELFN1-AS1 maintains GC cell tumorigenicity via the ELFN1-AS1/miR-211-3p/TRIM29 axis, indicating that this axis can be directed for GC treatment in the future.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/patologia , Fatores de Transcrição/metabolismo
7.
Environ Toxicol ; 38(8): 2002-2010, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37219039

RESUMO

BACKGROUND: Tripartite motif-containing 29 (TRIM29) has been found to be involved in the regulation of cancer progression and its function varies depending on the type of cancer. However, the role of TRIM29 in cholangiocarcinoma has yet to be revealed. PURPOSE: This study initially explored the role of TRIM29 in cholangiocarcinoma. METHODS: TRIM29 expression in cholangiocarcinoma cells were scrutinized by quantitative real-time reverse transcription polymerase chain reaction and Western blot. The function of TRIM29 on cholangiocarcinoma cell viability, proliferation, migration and sphere formation abilities were studied by cell count kit-8, clone formation, Transwell and sphere formation assays. TRIM29 effect on the expression of proteins associated with epithelial-mesenchymal transition and cancer stem cell characteristics were researched by Western blot. TRIM29 effect on MAPK and ß-catenin pathway activity was researched through Western blot. RESULTS: TRIM29 was overexpressed in cholangiocarcinoma cells. TRIM29 silencing mitigated the viability, proliferation, migration and sphere formation abilities of cholangiocarcinoma cells, increased E-cadherin expression and decreased the expression of N-cadherin, Vimentin, CD33, Sox2 and Nanog proteins in cholangiocarcinoma cells. The loss of TRIM29 suppressed the expression of p-MEK1/2/MEK1/2 and p-ERK1/2/ERK1/2 in cholangiocarcinoma cells. The inhibition of the MAPK and ß-catenin signaling pathways abrogated the promotion of TRIM29 on cholangiocarcinoma cell viability, proliferation, migration, EMT, and cancer stem cell characteristics. CONCLUSION: TRIM29 plays an oncogenic role in cholangiocarcinoma. It may promote the malignancy of cholangiocarcinoma via inducing the activation of the MAPK and ß-catenin pathways. Thus, TRIM29 may aid in the creation of innovative treatment strategies for cholangiocarcinoma.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proliferação de Células , Caderinas/genética , Linhagem Celular Tumoral , Colangiocarcinoma/genética , Transição Epitelial-Mesenquimal , Movimento Celular , Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos/metabolismo , Regulação Neoplásica da Expressão Gênica
8.
Mol Cancer ; 20(1): 167, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922544

RESUMO

BACKGROUND: Accumulating studies have revealed that aberrant expression of circular RNAs (circRNAs) is widely involved in the tumorigenesis and progression of malignant cancers, including colorectal cancer (CRC). Nevertheless, the clinical significance, levels, features, biological function, and molecular mechanisms of novel circRNAs in CRC remain largely unexplored. METHODS: CRC-related circRNAs were identified through bioinformatics analysis and verified in clinical specimens by qRT-PCR and in situ hybridization (ISH). Then, in vitro and in vivo experiments were performed to determine the clinical significance of, functional roles of, and clinical characteristics associated with circIL4R in CRC specimens and cells. Mechanistically, RNA pull-down, fluorescence in situ hybridization (FISH), luciferase reporter, and ubiquitination assays were performed to confirm the underlying mechanism of circIL4R. RESULTS: CircIL4R was upregulated in CRC cell lines and in sera and tissues from CRC patients and was positively correlated with advanced clinicopathological features and poor prognosis. Functional experiments demonstrated that circIL4R promotes CRC cell proliferation, migration, and invasion via the PI3K/AKT signaling pathway. Mechanistically, circIL4R was regulated by TFAP2C and competitively interacted with miR-761 to enhance the expression of TRIM29, thereby targeting PHLPP1 for ubiquitin-mediated degradation to activate the PI3K/AKT signaling pathway and consequently facilitate CRC progression. CONCLUSIONS: Our findings demonstrate that upregulation of circIL4R plays an oncogenic role in CRC progression and may serve as a promising diagnostic and prognostic biomarker for CRC detection and as a potential therapeutic target for CRC treatment.


Assuntos
Neoplasias Colorretais/etiologia , Neoplasias Colorretais/metabolismo , Proteínas de Ligação a DNA/genética , Subunidade alfa de Receptor de Interleucina-4/genética , MicroRNAs/genética , Proteínas Nucleares/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas Fosfatases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Circular/genética , Fatores de Transcrição/genética , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Biologia Computacional/métodos , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Camundongos , Modelos Biológicos , Curva ROC , Transdução de Sinais , Transcriptoma
9.
J Transl Med ; 19(1): 332, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34353343

RESUMO

BACKGROUND: Pancreatic cancer (PC) is one of the most fatal digestive system cancers. tripartite motif-29 (TRIM29) has been reported as oncogene in several human cancers. However, the precise role and underlying signal cascade of TRIM29 in PC progression remain unclear. METHODS: Western blot, qRT-PCR and immunohistochemistry were used to analyze TRIM29 and Yes-associated protein 1 (YAP1) levels. CCK8 assays, EdU assays and flow cytometry were designed to explore the function and potential mechanism of TRIM29 and YAP1 in the proliferation of PC. Next, a nude mouse model of PC was established for validating the roles of TRIM29 and YAP1 in vivo. The relationship among TRIM29 and YAP1 was explored by co-immunoprecipitation and in vitro ubiquitination assay. RESULTS: TRIM29 and YAP1 was significantly upregulated in PC patient samples, and TRIM29 expression was closely related to a malignant phenotype and poorer overall survival (OS) of PC patients. Functional assays revealed that TRIM29 knockdown suppresses cell growth, arrests cell cycle progression and promotes cell apoptosis of PC cells in vivo and in vitro. Furthermore, the rescue experiments demonstrated that TRIM29-induced proliferation is dependent on YAP1 in PC cells. Mechanistically, TRIM29 regulates YAP1 expression by directly binding to YAP1, and reduced its ubiquitination and degradation. CONCLUSION: Taken together, these results identify a novel mechanism used by PC growth, and provide insight regarding the role of TRIM29 in PC.


Assuntos
Proteínas de Ligação a DNA , Neoplasias Pancreáticas , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Neoplasias Pancreáticas/genética , Fatores de Transcrição , Ubiquitina-Proteína Ligases
10.
Exp Dermatol ; 30(8): 1023-1032, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32681572

RESUMO

The epidermal compartment of the skin is regenerated constantly by proliferation of epidermal keratinocytes. Differentiation of a subset of these keratinocytes allows the epidermis to retain its barrier properties. Regulation of keratinocyte fate-whether to remain proliferative or terminally differentiate-is complex and not fully understood. The objective of our study was to assess if DNA methylation changes contribute to the regulation of keratinocyte fate. We employed genome-wide MethylationEPIC beadchip array measuring approximately 850 000 probes combined with RNA sequencing of in vitro cultured non-differentiated and terminally differentiated adult human primary keratinocytes. We did not observe a correlation between methylation status and transcriptome changes. Moreover, only two differentially methylated probes were detected, of which one was located in the TRIM29 gene. Although TRIM29 knock-down resulted in lower expression levels of terminal differentiation genes, these changes were minor. From these results, we conclude that-in our in vitro experimental setup-it is unlikely that changes in DNA methylation have an important regulatory role in terminal keratinocyte differentiation.


Assuntos
Diferenciação Celular/genética , Metilação de DNA/genética , Epigenoma/genética , Queratinócitos/metabolismo , Adulto , Proteínas de Ligação a DNA/genética , Humanos , Fatores de Transcrição/genética
11.
Development ; 143(7): 1192-204, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26903501

RESUMO

The transcription factor grainyhead-like 2 (GRHL2) is expressed in non-neural ectoderm (NNE) and Grhl2 loss results in fully penetrant cranial neural tube defects (NTDs) in mice. GRHL2 activates expression of several epithelial genes; however, additional molecular targets and functional processes regulated by GRHL2 in the NNE remain to be determined, as well as the underlying cause of the NTDs in Grhl2 mutants. Here, we find that Grhl2 loss results in abnormal mesenchymal phenotypes in the NNE, including aberrant vimentin expression and increased cellular dynamics that affects the NNE and neural crest cells. The resulting loss of NNE integrity contributes to an inability of the cranial neural folds to move toward the midline and results in NTD. Further, we identified Esrp1, Sostdc1, Fermt1, Tmprss2 and Lamc2 as novel NNE-expressed genes that are downregulated in Grhl2 mutants. Our in vitro assays show that they act as suppressors of the epithelial-to-mesenchymal transition (EMT). Thus, GRHL2 promotes the epithelial nature of the NNE during the dynamic events of neural tube formation by both activating key epithelial genes and actively suppressing EMT through novel downstream EMT suppressors.


Assuntos
Transição Epitelial-Mesenquimal/genética , Crista Neural/embriologia , Tubo Neural/embriologia , Fatores de Transcrição/genética , Animais , Caderinas/metabolismo , Linhagem Celular , Movimento Celular , Proteínas de Ligação a DNA/metabolismo , Ectoderma/embriologia , Ectoderma/metabolismo , Técnicas de Cultura Embrionária , Mesoderma/citologia , Mesoderma/embriologia , Camundongos , Camundongos Knockout , Defeitos do Tubo Neural/genética , Neurulação/fisiologia , Fatores de Transcrição/biossíntese , Vimentina/biossíntese
12.
J Biol Chem ; 290(45): 27146-27157, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26381412

RESUMO

Induction of DNA damage by ionizing radiation (IR) and/or cytotoxic chemotherapy is an essential component of cancer therapy. The ataxia telangiectasia group D complementing gene (ATDC, also called TRIM29) is highly expressed in many malignancies. It participates in the DNA damage response downstream of ataxia telangiectasia-mutated (ATM) and p38/MK2 and promotes cell survival after IR. To elucidate the downstream mechanisms of ATDC-induced IR protection, we performed a mass spectrometry screen to identify ATDC binding partners. We identified a direct physical interaction between ATDC and the E3 ubiquitin ligase and DNA damage response protein, RNF8, which is required for ATDC-induced radioresistance. This interaction was refined to the C-terminal portion (amino acids 348-588) of ATDC and the RING domain of RNF8 and was disrupted by mutation of ATDC Ser-550 to alanine. Mutations disrupting this interaction abrogated ATDC-induced radioresistance. The interaction between RNF8 and ATDC, which was increased by IR, also promoted downstream DNA damage responses such as IR-induced γ-H2AX ubiquitination, 53BP1 phosphorylation, and subsequent resolution of the DNA damage foci. These studies define a novel function for ATDC in the RNF8-mediated DNA damage response and implicate RNF8 binding as a key determinant of the radioprotective function of ATDC.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Tolerância a Radiação/fisiologia , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Transporte Ativo do Núcleo Celular/efeitos da radiação , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteína BRCA1/metabolismo , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Células HEK293 , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosforilação , Ligação Proteica/efeitos da radiação , Domínios e Motivos de Interação entre Proteínas , Tolerância a Radiação/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitinação
13.
Biochim Biophys Acta ; 1853(10 Pt A): 2296-305, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26071105

RESUMO

Cell invasion and adhesion play an important role in cancer metastasis and are orchestrated by a complicated network of transcription factors including p63. Here, we show that a member of the tripartite motif protein family, TRIM29, is required for regulation of the p63-mediated pathway in cervical cancer cells. TRIM29 knockdown alters the adhesion and invasion activities of cervical cancer cells. TRIM29 knockdown and overexpression cause a significant decrease and increase of TAp63α expression, respectively. TRIM29 knockdown alters the expression pattern of integrins and increases ZEB1 expression. TRIM29 is required for suppression of an increase in the adhesion activity of cells by TAp63α. These findings suggest that TRIM29 regulates the p63-mediated pathway and the behavior of cervical cancer cells.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Neoplasias do Colo do Útero/metabolismo , Proteínas de Ligação a DNA/genética , Feminino , Células HeLa , Humanos , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
14.
Vet Comp Oncol ; 22(3): 447-451, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38984644

RESUMO

Sarcoids are the most frequently diagnosed dermatological tumour in horses. It is a disease that can affect various species of equids, such as donkeys, mules and zebras. This type of tumour can develop in all horse breeds, regardless of age and gender. Treatment options depend on many factors, such as the type of lesion, location, extent, owner preference and financial considerations. In the present study, we investigated the TRIM29 expression, the methylation status of its first exon and its involvement in the formation of equine sarcoids. Bisulfite sequencing PCR (BSP) was used to determine DNA methylation at CpG sites and real-time quantitative polymerase chain reaction (qPCR) was used to detect TRIM29 expression level. Our results showed that TRIM29 is significantly downregulated in lesional samples (FC = -3.72; p < 0.001). Furthermore, TRIM29 expression was significantly correlated (R = -0.73; p < 0.001) with hypermethylation of its specific CpG sites in the first exon of this gene. Our research has demonstrated that the identification of increased methylation of CpG sequences in horse sarcoids, along with the decreased expression of the TRIM29 gene, is an important step towards understanding the molecular mechanisms underlying the disease. These findings can serve in the future as a diagnostic biomarker for horse sarcoids and help in detecting the disease.


Assuntos
Metilação de DNA , Doenças dos Cavalos , Animais , Cavalos/genética , Doenças dos Cavalos/genética , Doenças dos Cavalos/metabolismo , Neoplasias Cutâneas/veterinária , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Masculino , Regulação Neoplásica da Expressão Gênica
15.
Cell Oncol (Dordr) ; 47(3): 1025-1041, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38345749

RESUMO

PURPOSE: Glucose not only provides energy for tumor cells, but also provides various biomolecules that are essential for their survival, proliferation and invasion. Therefore, it is of great clinical significance to understand the mechanism of how tumor cells adapt to metabolic stress and maintain their survival. The aim of this research was to study the critical role of OGT and TRIM29 O-GlcNAc modification driven adaptability of PDAC cells to low glucose stress, which might have important medical implications for PDAC therapy. METHODS: Western blotting, mass spectrometry and WGA-immunoprecipitation were used to examined the levels of OGT and O-GlcNAc glycosylated proteins in BxPC3 and SW1990 cells in normal culture and under glucose deprivation conditions. Crystal violet assay, flow cytometry, RIP, RT-qPCR, protein stability assay, biotin pull down were used to investigate the mechanism of OGT and TRIM29-mediated adaptive response to glucose deficiency in PDAC cells. RESULTS: The current study found that under the condition of low glucose culture, the levels of OGT and O-GlcNAc glycosylation in PDAC cells were significantly higher than those in normal culture. Moreover, the high expression of OGT has a protective effect on PDAC cells under low glucose stress. This study confirmed that there was no significant change in mRNA level and protein degradation of OGT under low glucose stress, which was mainly reflected in the increase of protein synthesis. In addition, O-GlcNAc modification at T120 site plays a critical role in the metabolic adaptive responses mediated by TRIM29. CONCLUSIONS: Taken together, our study indicated that O-GlcNAcylation of TRIM29 at T120 site and OGT translation forms a loop feedback to facilitate survival of PDAC under glucose deficiency.


Assuntos
Glucose , N-Acetilglucosaminiltransferases , Neoplasias Pancreáticas , Fatores de Transcrição , Humanos , Acetilglucosamina/metabolismo , Acilação , Adaptação Fisiológica/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Retroalimentação Fisiológica , Glucose/metabolismo , Glicosilação , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Biossíntese de Proteínas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
16.
Cancer Lett ; 581: 216510, 2024 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-38029830

RESUMO

Tripartite motif-containing protein 29 (TRIM29) is a member of TRIM family protein which has been reported to play a role in the progress of inflammatory and cancer diseases. However, its specific role in gastric cancer (GC) has yet to be fully understood. Here, we investigated the expression of TRIM29 in gastric cancer and its functions in the antitumor immunity. TRIM29 expression was lower in tumor tissues than that in paired normal tissues. Lower expression of TRIM29 was related to aberrant hypermethylation of CpG islands in TRIM29 gene. Comprehensive proteomics and immunoprecipitation analyses identified IGF2BP1 as TRIM29 interactors. TRIM29 interacted with IGF2BP1 and induced its ubiquitination at Lys440 and Lys450 site by K48-mediated linkage for protein degradation. IGF2BP1 promoted PD-L1 mRNA stability and expression in a 3'UTR and m6A-dependent manner. Functionally, TRIM29 enhanced antitumor T-cell immunity in gastric cancer dependent on the IGF2BP1/PD-L1 axis in vivo and in vitro. Clinical correlation analysis revealed that TRIM29 expression in patient samples was associated with CD8+ immune cell infiltration in the GC microenvironment and the overall survival rates of GC patients. Our findings revealed a crucial role of TRIM29 in regulating the antitumor T-cell immunity in GC. We also suggested that the TRIM29/IGF2BP1/PD-L1 axis could be used as a diagnostic and prognostic marker of gastric cancer and a promising target for GC immunotherapy.


Assuntos
Antígeno B7-H1 , Neoplasias Gástricas , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Neoplasias Gástricas/patologia , Linfócitos T/metabolismo , Fatores de Transcrição/genética , Microambiente Tumoral
17.
Epigenetics Chromatin ; 17(1): 6, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38481282

RESUMO

BACKGROUND: Prostate adenocarcinoma (PRAD) is the second leading cause of cancer-related deaths in men. High variability in DNA methylation and a high rate of large genomic rearrangements are often observed in PRAD. RESULTS: To investigate the reasons for such high variance, we integrated DNA methylation, RNA-seq, and copy number alterations datasets from The Cancer Genome Atlas (TCGA), focusing on PRAD, and employed weighted gene co-expression network analysis (WGCNA). Our results show that only single cluster of co-expressed genes is associated with genomic and epigenomic instability. Within this cluster, TP63 and TRIM29 are key transcription regulators and are downregulated in PRAD. We discovered that TP63 regulates the level of enhancer methylation in prostate basal epithelial cells. TRIM29 forms a complex with TP63 and together regulates the expression of genes specific to the prostate basal epithelium. In addition, TRIM29 binds DNA repair proteins and prevents the formation of the TMPRSS2:ERG gene fusion typically observed in PRAD. CONCLUSION: Our study demonstrates that TRIM29 and TP63 are important regulators in maintaining the identity of the basal epithelium under physiological conditions. Furthermore, we uncover the role of TRIM29 in PRAD development.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/metabolismo , Metilação de DNA , Sequências Reguladoras de Ácido Nucleico , Instabilidade Cromossômica , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética
18.
Med Oncol ; 41(3): 79, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393440

RESUMO

Tripartite motif-containing 29 (TRIM29), also known as the ataxia telangiectasia group D-complementing (ATDC) gene, has been reported to play an oncogenic or tumor suppressive role in developing different tumors. So far, its expression and biological functions in hepatocellular carcinoma (HCC) remain unclear. We investigated TRIM29 expression pattern in human HCC samples using quantitative RT-PCR and immunohistochemistry. Relationships between TRIM29 expression level, clinical prognostic indicators, overall survival (OS), and disease-free survival (DFS) were evaluated by Kaplan-Meier analysis and Cox proportional hazards model. A series of in vitro experiments and a xenograft tumor model were conducted to detect the functions of TRIM29 in HCC cells. RNA sequencing, western blotting, and immunochemical staining were performed to assess the molecular regulation of TRIM29 in HCC. We found that the mRNA and protein levels of TRIM29 were significantly reduced in HCC samples, compared with adjacent noncancerous tissues, and were negatively correlated with poor differentiation of HCC tissues. Survival analysis confirmed that lower TRIM29 expression significantly correlated with shorter OS and DFS of HCC patients. TRIM29 overexpression remarkably inhibited cell proliferation, migration, and EMT in HCC cells, whereas knockdown of TRIM29 reversed these effects. Moreover, deactivation of the PTEN/AKT/mTOR and JAK2/STAT3 pathways might be involved in the tumor suppressive role of TRIM29 in HCC. Our findings indicate that TRIM29 in HCC exerts its tumor suppressive effects through inhibition of the PTEN/AKT/mTOR and JAK2/STAT3 signaling pathways and may be used as a potential biomarker for survival in patients with HCC.


Assuntos
Carcinoma Hepatocelular , Proteínas de Ligação a DNA , Janus Quinase 2 , Neoplasias Hepáticas , Fator de Transcrição STAT3 , Fatores de Transcrição , Humanos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/genética , Animais
19.
Cancer Rep (Hoboken) ; 7(6): e2085, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837682

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the second most common cause of cancer-related death worldwide. Long noncoding RNA (lncRNA) is involved in many malignant tumors. This study aimed to clarify the role of the lncRNA plasmacytoma variant translocation 1 (PVT1) in CRC growth and metastasis. METHODS: Differentially expressed lncRNAs in CRC were analyzed using the Cancer Genome Atlas. Gene expression profiling interactive analysis and a comprehensive resource for lncRNAs from cancer arrays databases were used to analyze lncRNA PVT1 expression and CRC prognosis, respectively. Cell counting kit-8, wound healing, colony formation, Transwell, and immunofluorescence assays were used to evaluate CRC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT), respectively. Tumor growth and metastasis models were used to explore the PVT1 effect on the growth and metastasis of CRC in vivo. RESULTS: PVT1 was highly expressed in CRC, associated with a poor prognosis of CRC, and showed good diagnostic value. Transfection of sh-PVT1 or pcDNA3.1-PVT1 reduced or increased the proliferation, wound healing rate, colony formation, invasion, and EMT of CRC cells. PVT1 and miR-3619-5p were co-expressed in CRC cytoplasm, and PVT1 acted as a competitive endogenous RNA (ceRNA) by sponging miR-3619-5p to up-regulate tripartite motif containing 29 (TRIM29) expression. MiR-3619-5p overexpression and TRIM29 knockdown reduced proliferation, wound healing rate, invasion, and EMT of CRC cells. However, simultaneous PVT1 and miR-3619-5p overexpression or knockdown of miR-3619-5p and TRIM29 knockdown rescued the malignant phenotype of CRC cells. CONCLUSIONS: We first clarified the ceRNA mechanism of PVT1 in CRC, which induced growth and metastasis by sponging with miR-3619-5p to regulate TRIM29.


Assuntos
Movimento Celular , Proliferação de Células , Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , MicroRNAs , RNA Longo não Codificante , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , RNA Longo não Codificante/genética , MicroRNAs/genética , Proliferação de Células/genética , Camundongos , Animais , Prognóstico , Transição Epitelial-Mesenquimal/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Masculino , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos Nus , Feminino , Linhagem Celular Tumoral , Metástase Neoplásica , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Open Life Sci ; 18(1): 20220711, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37671092

RESUMO

To investigate the specific role of TRIM29 in colon cancer progression, bioinformatic analysis was performed on TRIM29. Colon cancer tissues were collected and colon cancer cells were cultured for further experiments. Cell viability and proliferation were determined using CCK-8, colony formation, and EDU staining assays. The mRNA and protein levels of TRIM29 and KRT5 were determined using quantitative real-time PCR and western blotting, respectively. The interaction between TRIM29 and KRT5 was detected using a co-immunoprecipitation (CO-IP) assay. Cycloheximide treatment was performed to analyse the stability of KRT5. TRIM29 was upregulated in colon cancer tissues and cells. TRIM29 knockdown decreased the cell viability and proliferation and ubiquitination levels of KRT5 and enhanced the protein stability and expression of KRT5. The CO-IP assay confirmed that TRIM29 and KRT5 binded to each other. KRT5 knockdown neutralises the inhibitory effect of sh-TRIM29 on colon cancer cell growth and TRIM29 knockdown prevented the proliferation of colon cancer cells by decreasing ubiquitination of KRT5, which enhanced the protein stability and expression of KRT5 in cancer cells. Thus, targeting TRIM29-mediated ubiquitination levels of KRT5 might be a new direction for colon cancer therapy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa