Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 698
Filtrar
1.
Cell ; 181(4): 784-799.e19, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32413299

RESUMO

Swelling of the brain or spinal cord (CNS edema) affects millions of people every year. All potential pharmacological interventions have failed in clinical trials, meaning that symptom management is the only treatment option. The water channel protein aquaporin-4 (AQP4) is expressed in astrocytes and mediates water flux across the blood-brain and blood-spinal cord barriers. Here we show that AQP4 cell-surface abundance increases in response to hypoxia-induced cell swelling in a calmodulin-dependent manner. Calmodulin directly binds the AQP4 carboxyl terminus, causing a specific conformational change and driving AQP4 cell-surface localization. Inhibition of calmodulin in a rat spinal cord injury model with the licensed drug trifluoperazine inhibited AQP4 localization to the blood-spinal cord barrier, ablated CNS edema, and led to accelerated functional recovery compared with untreated animals. We propose that targeting the mechanism of calmodulin-mediated cell-surface localization of AQP4 is a viable strategy for development of CNS edema therapies.


Assuntos
Aquaporina 4/metabolismo , Edema/metabolismo , Edema/terapia , Animais , Aquaporina 4/fisiologia , Astrócitos/metabolismo , Encéfalo/metabolismo , Edema Encefálico/metabolismo , Calmodulina/metabolismo , Sistema Nervoso Central/metabolismo , Edema/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Trifluoperazina/farmacologia
2.
Immunity ; 54(9): 2072-2088.e7, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34320366

RESUMO

Cardiac macrophages represent a heterogeneous cell population with distinct origins, dynamics, and functions. Recent studies have revealed that C-C Chemokine Receptor 2 positive (CCR2+) macrophages derived from infiltrating monocytes regulate myocardial inflammation and heart failure pathogenesis. Comparatively little is known about the functions of tissue resident (CCR2-) macrophages. Herein, we identified an essential role for CCR2- macrophages in the chronically failing heart. Depletion of CCR2- macrophages in mice with dilated cardiomyopathy accelerated mortality and impaired ventricular remodeling and coronary angiogenesis, adaptive changes necessary to maintain cardiac output in the setting of reduced cardiac contractility. Mechanistically, CCR2- macrophages interacted with neighboring cardiomyocytes via focal adhesion complexes and were activated in response to mechanical stretch through a transient receptor potential vanilloid 4 (TRPV4)-dependent pathway that controlled growth factor expression. These findings establish a role for tissue-resident macrophages in adaptive cardiac remodeling and implicate mechanical sensing in cardiac macrophage activation.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Ativação de Macrófagos/fisiologia , Macrófagos/metabolismo , Remodelação Ventricular/fisiologia , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação , Miocárdio/metabolismo , Troponina T/genética
3.
Immunity ; 49(1): 107-119.e4, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29958798

RESUMO

Intestinal macrophages are critical for gastrointestinal (GI) homeostasis, but our understanding of their role in regulating intestinal motility is incomplete. Here, we report that CX3C chemokine receptor 1-expressing muscularis macrophages (MMs) were required to maintain normal GI motility. MMs expressed the transient receptor potential vanilloid 4 (TRPV4) channel, which senses thermal, mechanical, and chemical cues. Selective pharmacologic inhibition of TRPV4 or conditional deletion of TRPV4 from macrophages decreased intestinal motility and was sufficient to reverse the GI hypermotility that is associated with chemotherapy treatment. Mechanistically, stimulation of MMs via TRPV4 promoted the release of prostaglandin E2 and elicited colon contraction in a paracrine manner via prostaglandin E receptor signaling in intestinal smooth muscle cells without input from the enteric nervous system. Collectively, our data identify TRPV4-expressing MMs as an essential component required for maintaining normal GI motility and provide potential drug targets for GI motility disorders.


Assuntos
Colo/fisiologia , Motilidade Gastrointestinal , Macrófagos/metabolismo , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais , Canais de Cátion TRPV/metabolismo , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Colo/fisiopatologia , Ciclo-Oxigenase 1/deficiência , Ciclo-Oxigenase 1/metabolismo , Dinoprostona/análise , Dinoprostona/metabolismo , Feminino , Mucosa Gástrica/citologia , Expressão Gênica , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Contração Muscular , Receptores de Prostaglandina E/antagonistas & inibidores , Receptores de Prostaglandina E/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genética
4.
Proc Natl Acad Sci U S A ; 121(15): e2322135121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568964

RESUMO

Endothelial cells (ECs) line the wall of blood vessels and regulate arterial contractility to tune regional organ blood flow and systemic pressure. Chloride (Cl-) is the most abundant anion in ECs and the Cl- sensitive With-No-Lysine (WNK) kinase is expressed in this cell type. Whether intracellular Cl- signaling and WNK kinase regulate EC function to alter arterial contractility is unclear. Here, we tested the hypothesis that intracellular Cl- signaling in ECs regulates arterial contractility and examined the signaling mechanisms involved, including the participation of WNK kinase. Our data obtained using two-photon microscopy and cell-specific inducible knockout mice indicated that acetylcholine, a prototypical vasodilator, stimulated a rapid reduction in intracellular Cl- concentration ([Cl-]i) due to the activation of TMEM16A, a Cl- channel, in ECs of resistance-size arteries. TMEM16A channel-mediated Cl- signaling activated WNK kinase, which phosphorylated its substrate proteins SPAK and OSR1 in ECs. OSR1 potentiated transient receptor potential vanilloid 4 (TRPV4) currents in a kinase-dependent manner and required a conserved binding motif located in the channel C terminus. Intracellular Ca2+ signaling was measured in four dimensions in ECs using a high-speed lightsheet microscope. WNK kinase-dependent activation of TRPV4 channels increased local intracellular Ca2+ signaling in ECs and produced vasodilation. In summary, we show that TMEM16A channel activation reduces [Cl-]i, which activates WNK kinase in ECs. WNK kinase phosphorylates OSR1 which then stimulates TRPV4 channels to produce vasodilation. Thus, TMEM16A channels regulate intracellular Cl- signaling and WNK kinase activity in ECs to control arterial contractility.


Assuntos
Cloretos , Proteínas Serina-Treonina Quinases , Camundongos , Animais , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Cloretos/metabolismo , Células Endoteliais/metabolismo , Canais de Cátion TRPV/metabolismo , Transdução de Sinais/fisiologia
5.
Annu Rev Physiol ; 84: 307-329, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34637325

RESUMO

Many aspects of mammalian physiology are mechanically regulated. One set of molecules that can mediate mechanotransduction are the mechanically activated ion channels. These ionotropic force sensors are directly activated by mechanical inputs, resulting in ionic flux across the plasma membrane. While there has been much research focus on the role of mechanically activated ion channels in touch sensation and hearing, recent data have highlighted the broad expression pattern of these molecules in mammalian cells. Disruption of mechanically activated channels has been shown to impact (a) the development of mechanoresponsive structures, (b) acute mechanical sensing, and (c) mechanically driven homeostatic maintenance in multiple tissue types. The diversity of processes impacted by these molecules highlights the importance of mechanically activated ion channels in mammalian physiology.


Assuntos
Canais Iônicos , Mecanotransdução Celular , Animais , Humanos , Canais Iônicos/metabolismo , Mamíferos , Mecanotransdução Celular/fisiologia , Tato/fisiologia
6.
J Neurosci ; 44(30)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38777598

RESUMO

Magnetogenetics was developed to remotely control genetically targeted neurons. A variant of magnetogenetics uses magnetic fields to activate transient receptor potential vanilloid (TRPV) channels when coupled with ferritin. Stimulation with static or RF magnetic fields of neurons expressing these channels induces Ca2+ transients and modulates behavior. However, the validity of ferritin-based magnetogenetics has been questioned due to controversies surrounding the underlying mechanisms and deficits in reproducibility. Here, we validated the magnetogenetic approach Ferritin-iron Redistribution to Ion Channels (FeRIC) using electrophysiological (Ephys) and imaging techniques. Previously, interference from RF stimulation rendered patch-clamp recordings inaccessible for magnetogenetics. We solved this limitation for FeRIC, and we studied the bioelectrical properties of neurons expressing TRPV4 (nonselective cation channel) and transmembrane member 16A (TMEM16A; chloride-permeable channel) coupled to ferritin (FeRIC channels) under RF stimulation. We used cultured neurons obtained from the rat hippocampus of either sex. We show that RF decreases the membrane resistance (Rm) and depolarizes the membrane potential in neurons expressing TRPV4FeRIC RF does not directly trigger action potential firing but increases the neuronal basal spiking frequency. In neurons expressing TMEM16AFeRIC, RF decreases the Rm, hyperpolarizes the membrane potential, and decreases the spiking frequency. Additionally, we corroborated the previously described biochemical mechanism responsible for RF-induced activation of ferritin-coupled ion channels. We solved an enduring problem for ferritin-based magnetogenetics, obtaining direct Ephys evidence of RF-induced activation of ferritin-coupled ion channels. We found that RF does not yield instantaneous changes in neuronal membrane potentials. Instead, RF produces responses that are long-lasting and moderate, but effective in controlling the bioelectrical properties of neurons.


Assuntos
Ferritinas , Neurônios , Animais , Ferritinas/metabolismo , Ratos , Neurônios/fisiologia , Masculino , Feminino , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Células Cultivadas , Campos Magnéticos , Ratos Sprague-Dawley , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp , Hipocampo/fisiologia , Hipocampo/citologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-36378366

RESUMO

Transient receptor potential vanilloid type 4 (TRPV4) channels are Ca2+-permeable non-selective cation channels which mediate a wide range of physiological functions and are activated and modulated by a diverse array of stimuli. One of this ion channel's least discussed functions is in relation to the generation and maintenance of certain pain sensations. However, in the two decades which have elapsed since the identification of this ion channel, considerable data has emerged concerning its function in mediating pain sensations. TRPV4 is a mediator of mechanical hyperalgesia in the various contexts in which a mechanical stimulus, comprising trauma (at the macro-level) or discrete extracellular pressure or stress (at the micro-level), results in pain. TRPV4 is also recognised as constituting an essential component in mediating inflammatory pain. It also plays a role in relation to many forms of neuropathic-type pain, where it functions in mediating mechanical allodynia and hyperalgesia.Here, we review the role of TRPV4 in mediating pain sensations.


Assuntos
Antineoplásicos , Neuralgia , Humanos , Canais de Cátion TRPV/uso terapêutico , Hiperalgesia/tratamento farmacológico
8.
Arterioscler Thromb Vasc Biol ; 44(3): 653-665, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38269590

RESUMO

BACKGROUND: Single-cell RNA-Seq analysis can determine the heterogeneity of cells between different tissues at a single-cell level. Coronary artery endothelial cells (ECs) are important to coronary blood flow. However, little is known about the heterogeneity of coronary artery ECs, and cellular identity responses to flow. Identifying endothelial subpopulations will contribute to the precise localization of vascular endothelial subpopulations, thus enabling the precision of vascular injury treatment. METHODS: Here, we performed a single-cell RNA sequencing of 31 962 cells and functional assays of 3 branches of the coronary arteries (right coronary artery/circumflex left coronary artery/anterior descending left coronary artery) in wild-type mice. RESULTS: We found a compendium of 7 distinct cell types in mouse coronary arteries, mainly ECs, granulocytes, cardiac myocytes, smooth muscle cells, lymphocytes, myeloid cells, and fibroblast cells, and showed spatial heterogeneity between arterial branches. Furthermore, we revealed a subpopulation of coronary artery ECs, CD133+TRPV4high ECs. TRPV4 (transient receptor potential vanilloid 4) in CD133+TRPV4high ECs is important for regulating vasodilation and coronary blood flow. CONCLUSIONS: Our study elucidates the nature and range of coronary arterial cell diversity and highlights the importance of coronary CD133+TRPV4high ECs in regulating coronary vascular tone.


Assuntos
Células Endoteliais , Canais de Cátion TRPV , Camundongos , Animais , Células Endoteliais/metabolismo , Canais de Cátion TRPV/genética , Análise da Expressão Gênica de Célula Única , Vasodilatação/fisiologia , Endotélio Vascular/metabolismo
9.
Brain ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39021275

RESUMO

Dominant mutations in the calcium-permeable ion channel TRPV4 (transient receptor potential vanilloid 4) cause diverse and largely distinct channelopathies, including inherited forms of neuromuscular disease, skeletal dysplasias, and arthropathy. Pathogenic TRPV4 mutations cause gain of ion channel function and toxicity that can be rescued by small molecule TRPV4 antagonists in cellular and animal models, suggesting that TRPV4 antagonism could be therapeutic for patients. Numerous variants in TRPV4 have been detected with targeted and whole exome/genome sequencing, but for the vast majority, their pathogenicity remains unclear. Here, we used a combination of clinical information and experimental structure-function analyses to evaluate 30 TRPV4 variants across various functional protein domains. We report clinical features of seven patients with TRPV4 variants of unknown significance and provide extensive functional characterization of these and an additional 17 variants, including structural position, ion channel function, subcellular localization, expression level, cytotoxicity, and protein-protein interactions. We find that gain-of-function mutations within the TRPV4 intracellular ankyrin repeat domain target charged amino acid residues important for RhoA interaction, whereas ankyrin repeat domain residues outside of the RhoA interface have normal or reduced ion channel activity. We further identify a cluster of gain-of-function variants within the intracellular intrinsically disordered region that may cause toxicity via altered interactions with membrane lipids. In contrast, assessed variants in the transmembrane domain and other regions of the intrinsically disordered region do not cause gain of function and are likely benign. Clinical features associated with gain of function and cytotoxicity include congenital onset of disease, vocal cord weakness, and motor predominant disease, whereas patients with likely benign variants often demonstrated late-onset and sensory-predominant disease. These results provide a framework for assessing additional TRPV4 variants with respect to likely pathogenicity, which will yield critical information to inform patient selection for future clinical trials for TRPV4 channelopathies.

10.
Brain ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917025

RESUMO

Dominant missense mutations of the calcium-permeable cation channel TRPV4 cause Charcot-Marie-Tooth disease (CMT) type 2C and two forms of distal spinal muscular atrophy. These conditions are collectively referred to as TRPV4-related neuromuscular disease and share features of motor greater than sensory dysfunction and frequent vocal fold weakness. Pathogenic variants lead to gain of ion channel function that can be rescued by TRPV4 antagonists in cellular and animal models. As small molecule TRPV4 antagonists have proven safe in trials for other disease indications, channel inhibition is a promising therapeutic strategy for TRPV4 patients. However, the current knowledge of the clinical features and natural history of TRPV4-related neuromuscular disease is insufficient to enable rational clinical trial design. To address these issues, we developed a TRPV4 patient database and administered a TRPV4-specific patient questionnaire. Here, we report demographic and clinical information, including CMT examination scores (CMTES), from 68 patients with known pathogenic TRPV4 variants, 40 of whom also completed the TRPV4 patient questionnaire. TRPV4 patients showed a bimodal age of onset, with the largest peak occurring in the first 2 years of life. Compared to CMT1A patients, TRPV4 patients showed distinct symptoms and signs, manifesting more ambulatory difficulties and more frequent involvement of proximal arm and leg muscles. Although patients reported fewer sensory symptoms, sensory dysfunction was often detected clinically. Many patients were affected by vocal fold weakness (55%) and shortness of breath (55%), and 11% required ventilatory support. Skeletal abnormalities were common, including scoliosis (64%), arthrogryposis (33%), and foot deformities. Strikingly, patients with infantile onset of disease showed less sensory involvement and less progression of symptoms. These results highlight distinctive clinical features in TRPV4 patients, including motor-predominant disease, proximal arm and leg weakness, severe ambulatory difficulties, vocal fold weakness, respiratory dysfunction, and skeletal involvement. In addition, patients with infantile onset of disease appeared to have a distinct phenotype with less apparent disease progression based on CMTES. These collective observations indicate that clinical trial design for TRPV4-related neuromuscular disease should include outcome measures that reliably capture non-length dependent motor dysfunction, vocal fold weakness, and respiratory disease.

11.
Cell Mol Life Sci ; 81(1): 60, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279064

RESUMO

Zebrafish have a remarkable ability to regenerate injured hearts. Altered hemodynamic forces after larval ventricle ablation activate the endocardial Klf2a-Notch signaling cascade to direct zebrafish cardiac regeneration. However, how the heart perceives blood flow changes and initiates signaling pathways promoting regeneration is not fully understood. The present study demonstrated that the mechanosensitive channel Trpv4 sensed the altered hemodynamic forces in injured hearts and its expression was regulated by blood flow. In addition to mediating the endocardial Klf2a-Notch signal cascade around the atrioventricular canal (AVC), we discovered that Trpv4 regulated nitric oxide (NO) signaling in the bulbus arteriosus (BA). Further experiments indicated that Notch signaling primarily acted at the early stage of regeneration, and the major role of NO signaling was at the late stage and through TGF-ß pathway. Overall, our findings revealed that mechanosensitive channels perceived the changes in hemodynamics after ventricle injury, and provide novel insights into the temporal and spatial coordination of multiple signaling pathways regulating heart regeneration.


Assuntos
Óxido Nítrico , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Óxido Nítrico/metabolismo , Coração , Endocárdio/metabolismo , Hemodinâmica , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
12.
Am J Respir Cell Mol Biol ; 70(6): 457-467, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38346220

RESUMO

Sepsis is a systemic inflammatory response that requires effective macrophage metabolic functions to resolve ongoing inflammation. Previous work showed that the mechanosensitive cation channel, transient receptor potential vanilloid 4 (TRPV4), mediates macrophage phagocytosis and cytokine production in response to lung infection. Here, we show that TRPV4 regulates glycolysis in a stiffness-dependent manner by augmenting macrophage glucose uptake by GLUT1. In addition, TRPV4 is required for LPS-induced phagolysosome maturation in a GLUT1-dependent manner. In a cecal slurry mouse model of sepsis, TRPV4 regulates sepsis-induced glycolysis as measured by BAL fluid (BALF) lactate and sepsis-induced lung injury as measured by BALF total protein and lung compliance. TRPV4 is necessary for bacterial clearance in the peritoneum to limit sepsis-induced lung injury. It is interesting that BALF lactate is increased in patients with sepsis compared with healthy control participants, supporting the relevance of lung cell glycolysis to human sepsis. These data show that macrophage TRPV4 is required for glucose uptake through GLUT1 for effective phagolysosome maturation to limit sepsis-induced lung injury. Our work presents TRPV4 as a potential target to protect the lung from injury in sepsis.


Assuntos
Transportador de Glucose Tipo 1 , Glicólise , Lesão Pulmonar , Macrófagos , Sepse , Canais de Cátion TRPV , Animais , Canais de Cátion TRPV/metabolismo , Sepse/metabolismo , Sepse/complicações , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Camundongos , Lesão Pulmonar/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Humanos , Masculino , Glucose/metabolismo , Fagossomos/metabolismo , Líquido da Lavagem Broncoalveolar , Lipopolissacarídeos/farmacologia , Fagocitose , Modelos Animais de Doenças , Pulmão/metabolismo , Pulmão/patologia , Pulmão/imunologia
13.
Am J Physiol Cell Physiol ; 327(2): C403-C414, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38881423

RESUMO

Aqueous humor drainage from the anterior eye determines intraocular pressure (IOP) under homeostatic and pathological conditions. Swelling of the trabecular meshwork (TM) alters its flow resistance but the mechanisms that sense and transduce osmotic gradients remain poorly understood. We investigated TM osmotransduction and its role in calcium and chloride homeostasis using molecular analyses, optical imaging, and electrophysiology. Anisosmotic conditions elicited proportional changes in TM cell volume, with swelling, but not shrinking, evoking elevations in intracellular calcium concentration [Ca2+]TM. Hypotonicity-evoked calcium signals were sensitive to HC067047, a selective blocker of TRPV4 channels, whereas the agonist GSK1016790A promoted swelling under isotonic conditions. TRPV4 inhibition partially suppressed hypotonicity-induced volume increases and reduced the magnitude of the swelling-induced membrane current, with a substantial fraction of the swelling-evoked current abrogated by Cl- channel antagonists 4,4'-diisothiocyanato-2,2'-stilbenedisulfonic acid (DIDS) and niflumic acid. The transcriptome of volume-sensing chloride channel candidates in primary human was dominated by ANO6 transcripts, with moderate expression of ANO3, ANO7, and ANO10 transcripts and low expression of LTTRC genes that encode constituents of the volume-activated anion channel. Imposition of 190 mosM but not 285 mosM hypotonic gradients increased conventional outflow in mouse eyes. TRPV4-mediated cation influx thus works with Cl- efflux to sense and respond to osmotic stress, potentially contributing to pathological swelling, calcium overload, and intracellular signaling that could exacerbate functional disturbances in inflammatory disease and glaucoma.NEW & NOTEWORTHY Intraocular pressure is dynamically regulated by the flow of aqueous humor through paracellular passages within the trabecular meshwork (TM). This study shows hypotonic gradients that expand the TM cell volume and reduce the outflow facility in mouse eyes. The swelling-induced current consists of TRPV4 and chloride components, with TRPV4 as a driver of swelling-induced calcium signaling. TRPV4 inhibition reduced swelling, suggesting a novel treatment for trabeculitis and glaucoma.


Assuntos
Tamanho Celular , Canais de Cloreto , Canais de Cátion TRPV , Malha Trabecular , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/agonistas , Malha Trabecular/metabolismo , Malha Trabecular/efeitos dos fármacos , Canais de Cloreto/metabolismo , Canais de Cloreto/genética , Animais , Camundongos , Tamanho Celular/efeitos dos fármacos , Humanos , Cálcio/metabolismo , Camundongos Endogâmicos C57BL , Pressão Osmótica , Sinalização do Cálcio/efeitos dos fármacos , Masculino , Pressão Intraocular/fisiologia , Pressão Intraocular/efeitos dos fármacos , Células Cultivadas , Feminino , Leucina/análogos & derivados , Morfolinas , Pirróis , Sulfonamidas
14.
J Cell Mol Med ; 28(13): e18509, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38957035

RESUMO

Pruritus is often accompanied with bacterial infections, but the underlying mechanism is not fully understood. Although previous studies revealed that lipopolysaccharides (LPS) could directly activate TRPV4 channel and TRPV4 is involved in the generation of both acute itch and chronic itch, whether and how LPS affects TRPV4-mediated itch sensation remains unclear. Here, we showed that LPS-mediated TRPV4 sensitization exacerbated GSK101-induced scratching behaviour in mice. Moreover, this effect was compromised in TLR4-knockout mice, suggesting LPS acted through a TLR4-dependent mechanism. Mechanistically, LPS enhanced GSK101-evoked calcium influx in mouse ear skin cells and HEK293T cells transfected with TRPV4. Further, LPS sensitized TRPV4 channel through the intracellular TLR4-PI3K-AKT signalling. In summary, our study found a modulatory role of LPS in TRPV4 function and highlighted the TLR4-TRPV4 interaction in itch signal amplification.


Assuntos
Lipopolissacarídeos , Fosfatidilinositol 3-Quinases , Prurido , Transdução de Sinais , Canais de Cátion TRPV , Receptor 4 Toll-Like , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Animais , Receptor 4 Toll-Like/metabolismo , Prurido/metabolismo , Prurido/induzido quimicamente , Prurido/patologia , Lipopolissacarídeos/farmacologia , Humanos , Camundongos , Células HEK293 , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL , Masculino , Cálcio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
15.
J Physiol ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642051

RESUMO

Macrophages (MΦ) play pivotal roles in tissue homeostasis and repair. Their mechanical environment has been identified as a key modulator of various cell functions, and MΦ mechanosensitivity is likely to be critical - in particular in a rhythmically contracting organ such as the heart. Cultured MΦ, differentiated in vitro from bone marrow (MΦBM), form a popular research model. This study explores the activity of mechanosensitive ion channels (MSC) in murine MΦBM and compares it to MSC activity in MΦ enzymatically isolated from cardiac tissue (tissue-resident MΦ; MΦTR). We show that MΦBM and MΦTR have stretch-induced currents, indicating the presence of functional MSC in their plasma membrane. The current profiles in MΦBM and in MΦTR show characteristics of cation non-selective MSC such as Piezo1 or transient receptor potential channels. While Piezo1 ion channel activity is detectable in the plasma membrane of MΦBM using the patch-clamp technique, or by measuring cytosolic calcium concentration upon perfusion with the Piezo1 channel agonist Yoda1, no Piezo1 channel activity was observed in MΦTR. The selective transient receptor potential vanilloid 4 (TRPV4) channel agonist GSK1016790A induces calcium entry in MΦTR and in MΦBM. In MΦ isolated from left-ventricular scar tissue 28 days after cryoablation, stretch-induced current characteristics are not significantly different compared to non-injured control tissue, even though scarred ventricular tissue is expected to be mechanically remodelled and to contain an altered composition of pre-existing cardiac and circulation-recruited MΦ. Our data suggest that the in vitro differentiation protocols used to obtain MΦBM generate cells that differ from MΦ recruited from the circulation during tissue repair in vivo. Further investigations are needed to explore MSC identity in lineage-traced MΦ in scar tissue, and to compare mechanosensitivity of circulating monocytes with that of MΦBM. KEY POINTS: Bone marrow-derived (MΦBM) and tissue resident (MΦTR) macrophages have stretch-induced currents, indicating expression of functional mechanosensitive channels (MSC) in their plasma membrane. Stretch-activated current profiles show characteristics of cation non-selective MSC; and mRNA coding for MSC, including Piezo1 and TRPV4, is expressed in murine MΦBM and in MΦTR. Calcium entry upon pharmacological activation of TRPV4 confirms functionality of the channel in MΦTR and in MΦBM. Piezo1 ion channel activity is detected in the plasma membrane of MΦBM but not in MΦTR, suggesting that MΦBM may not be a good model to study the mechanotransduction of MΦTR. Stretch-induced currents, Piezo1 mRNA expression and response to pharmacological activation are not significantly changed in cardiac MΦ 28 days after cryoinjury compared to sham operated mice.

16.
Am J Physiol Heart Circ Physiol ; 326(1): H190-H202, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37921665

RESUMO

Myoendothelial feedback (MEF), the endothelium-dependent vasodilation following sympathetic vasoconstriction (mediated by smooth muscle to endothelium gap junction communication), has been well studied in resistance arteries of males, but not females. We hypothesized that MEF responses would be similar between the sexes, but different in the relative contribution of the underlying nitric oxide and hyperpolarization mechanisms, given that these mechanisms differ between the sexes in agonist-induced endothelium-dependent dilation. We measured MEF responses (diameter changes) of male and female first- to second-order mouse mesenteric arteries to phenylephrine (10 µM) over 30 min using isolated pressure myography ± blinded inhibition of nitric oxide synthase (NOS) using Nω-nitro-l-arginine methyl ester (l-NAME; 0.1-1.0 mM), hyperpolarization using 35 mM KCl, or transient receptor potential vanilloid 4 (TRPV4) channels using GSK219 (0.1-1.0 µM) or RN-1734 (30 µM). MEF was similar [%dilation (means ± SE): males = 26.7 ± 2.0 and females = 26.1 ± 1.9 at 15 min] and significantly inhibited by l-NAME (1.0 mM) at 15 min [%dilation (means ± SE): males = 8.2 ± 3.3, P < 0.01; females = 6.8 ± 1.9, P < 0.001] and over time (P < 0.01) in both sexes. l-NAME (0.1 mM) + 35 mM KCl nearly eliminated MEF in both sexes (P < 0.001-0.0001). Activation of TRPV4 with GSK101 (0.1-10 µM) induced similar dilation between the sexes. Inhibition of TRPV4, which is reportedly involved in the hyperpolarization mechanism, did not inhibit MEF in either sex. Similar expression of eNOS was found between the sexes with Western blot. Thus, MEF is prominent and similar in murine first- and second-order mesenteric resistance arteries of both sexes, and reliant primarily on NOS and secondarily on hyperpolarization, but not TRPV4.NEW & NOTEWORTHY We found that female mesenteric resistance arteries have similar postconstriction dilatory responses (i.e., myoendothelial feedback) to a sympathetic neurotransmitter analog as male arteries. Both sexes use nitric oxide synthase (NOS) and hyperpolarization, but not TRPV4, in this response. Moreover, the key protein involved in this pathway (eNOS) is similarly expressed in these arteries between the sexes. These similarities are surprising given that agonist-induced endothelium-dependent dilatory mechanisms differ in these arteries between the sexes.


Assuntos
Óxido Nítrico Sintase , Canais de Cátion TRPV , Camundongos , Masculino , Feminino , Animais , NG-Nitroarginina Metil Éster/farmacologia , Retroalimentação , Canais de Cátion TRPV/metabolismo , Artérias Mesentéricas/metabolismo , Vasodilatação , Óxido Nítrico/metabolismo , Endotélio Vascular/metabolismo
17.
Biochem Biophys Res Commun ; 699: 149562, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38277726

RESUMO

Hydrogen sulfide (H2S) acts as a gas-signaling agent in various tissues. Although it has been reported that endogenous enzymes that generate H2S are expressed abundantly in the kidney, few reports examine cellular responses to H2S in renal tubular epithelial cells. In this study, we investigated the effects of NaHS, an H2S donor, and l-cysteine, a substrate for H2S production, on the principal cells of rat cortical collecting ducts (CCDs). NaHS increased the intracellular Ca2+ concentration ([Ca2+]i) in the principal cells. The removal of extracellular Ca2+ largely attenuated the [Ca2+]i response. The TRPV4 channel blocker significantly inhibited the effect of NaHS. Extracellular administration of l-cysteine also elicited a rise in [Ca2+]i. Prior treatment of CCDs with AOAA, an inhibitor of H2S production enzyme, l-cysteine-induced [Ca2+]i response was significantly reduced. These results suggest that not only exogenous H2S but also endogenously produced H2S triggers the extracellular influx pathway of Ca2+ in the principal cells of rat CCDs.


Assuntos
Sulfeto de Hidrogênio , Ratos , Animais , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Cisteína/metabolismo , Sulfetos/farmacologia , Transdução de Sinais
18.
Biochem Biophys Res Commun ; 731: 150402, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39024979

RESUMO

Given that the corneal epithelium is situated on the outermost part of the eye, its functions can be influenced by external temperatures and chemical substances. This study aimed to elucidate the expression profile of chemosensory receptors in corneal epithelial cells and analyze their role in eye function regulation. A comprehensive analysis of 425 chemosensory receptors in human corneal epithelial cells-transformed (HCE-T) revealed the functional expression of TRPV4. The activation of TRPV4 in HCE-T cells significantly increased the expression of membrane-associated mucins MUC1, MUC4, and MUC16, which are crucial for stabilizing tear films, with efficacy comparable to the active components of dry eye medications. The present study suggests that TRPV4, which is activated by body temperature, regulates mucin expression and proposes it as a novel target for dry eye treatment.


Assuntos
Epitélio Corneano , Mucina-1 , Mucina-4 , Mucinas , Canais de Cátion TRPV , Humanos , Antígeno Ca-125/metabolismo , Antígeno Ca-125/genética , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Epitélio Corneano/metabolismo , Epitélio Corneano/citologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Mucina-1/metabolismo , Mucina-1/genética , Mucina-4/metabolismo , Mucina-4/genética , Mucinas/metabolismo , Mucinas/biossíntese , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética
19.
Microcirculation ; 31(2): e12839, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38044795

RESUMO

OBJECTIVES: The objective of our study is to evaluate the involvement of the transient receptor potential vanilloid 4 (TRPV4) in the alteration of lymphatic pumping in response to flow and determine the signaling pathways involved. METHODS: We used immunofluorescence imaging and western blotting to assess TRPV4 expression in rat mesenteric lymphatic vessels. We examined inhibition of TRPV4 with HC067047, nitric oxide synthase (NOS) with L-NNA and cyclooxygenases (COXs) with indomethacin on the contractile response of pressurized lymphatic vessels to flow changes induced by a stepwise increase in pressure gradients, and the functionality of endothelial TRPV4 channels by measuring the intracellular Ca2+ response of primary lymphatic endothelial cell cultures to the selective agonist GSK1016790A. RESULTS: TRPV4 protein was expressed in both the endothelial and the smooth muscle layer of rat mesenteric lymphatics with high endothelial expression around the valve sites. When maintained under constant transmural pressure, most lymphatic vessels displayed a decrease in contraction frequency under conditions of flow and this effect was ablated through inhibition of NOS, COX or TRPV4. CONCLUSIONS: Our findings demonstrate a critical role for TRPV4 in the decrease in contraction frequency induced in lymphatic vessels by increases in flow rate via the production and action of nitric oxide and dilatory prostanoids.


Assuntos
Vasos Linfáticos , Canais de Potencial de Receptor Transitório , Ratos , Animais , Canais de Cátion TRPV , Canais de Potencial de Receptor Transitório/metabolismo , Endotélio , Vasos Linfáticos/metabolismo , Óxido Nítrico/metabolismo , Vasodilatação
20.
J Neuroinflammation ; 21(1): 72, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521959

RESUMO

BACKGROUND: Blood-brain barrier (BBB) dysfunction and immune cell migration into the central nervous system (CNS) are pathogenic drivers of multiple sclerosis (MS). Ways to reinstate BBB function and subsequently limit neuroinflammation present promising strategies to restrict disease progression. However, to date, the molecular players directing BBB impairment in MS remain poorly understood. One suggested candidate to impact BBB function is the transient receptor potential vanilloid-type 4 ion channel (TRPV4), but its specific role in MS pathogenesis remains unclear. Here, we investigated the role of TRPV4 in BBB dysfunction in MS. MAIN TEXT: In human post-mortem MS brain tissue, we observed a region-specific increase in endothelial TRPV4 expression around mixed active/inactive lesions, which coincided with perivascular microglia enrichment in the same area. Using in vitro models, we identified that microglia-derived tumor necrosis factor-α (TNFα) induced brain endothelial TRPV4 expression. Also, we found that TRPV4 levels influenced brain endothelial barrier formation via expression of the brain endothelial tight junction molecule claudin-5. In contrast, during an inflammatory insult, TRPV4 promoted a pathological endothelial molecular signature, as evidenced by enhanced expression of inflammatory mediators and cell adhesion molecules. Moreover, TRPV4 activity mediated T cell extravasation across the brain endothelium. CONCLUSION: Collectively, our findings suggest a novel role for endothelial TRPV4 in MS, in which enhanced expression contributes to MS pathogenesis by driving BBB dysfunction and immune cell migration.


Assuntos
Barreira Hematoencefálica , Esclerose Múltipla , Canais de Cátion TRPV , Humanos , Barreira Hematoencefálica/metabolismo , Sistema Nervoso Central/metabolismo , Inflamação/metabolismo , Esclerose Múltipla/patologia , Canais de Cátion TRPV/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa