Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Genes Dev ; 34(3-4): 179-193, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31879358

RESUMO

The GATA-type zinc finger transcription factor TRPS1 has been implicated in breast cancer. However, its precise role remains unclear, as both amplifications and inactivating mutations in TRPS1 have been reported. Here, we used in vitro and in vivo loss-of-function approaches to dissect the role of TRPS1 in mammary gland development and invasive lobular breast carcinoma, which is hallmarked by functional loss of E-cadherin. We show that TRPS1 is essential in mammary epithelial cells, since TRPS1-mediated suppression of interferon signaling promotes in vitro proliferation and lactogenic differentiation. Similarly, TRPS1 expression is indispensable for proliferation of mammary organoids and in vivo survival of luminal epithelial cells during mammary gland development. However, the consequences of TRPS1 loss are dependent on E-cadherin status, as combined inactivation of E-cadherin and TRPS1 causes persistent proliferation of mammary organoids and accelerated mammary tumor formation in mice. Together, our results demonstrate that TRPS1 can function as a context-dependent tumor suppressor in breast cancer, while being essential for growth and differentiation of normal mammary epithelial cells.


Assuntos
Neoplasias da Mama/fisiopatologia , Carcinogênese/genética , Diferenciação Celular/genética , Células Epiteliais/citologia , Proteínas Repressoras/metabolismo , Animais , Neoplasias da Mama/genética , Caderinas/genética , Sobrevivência Celular/genética , Cromatina/genética , Cromatina/metabolismo , Modelos Animais de Doenças , Feminino , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Camundongos , Ligação Proteica/genética , Proteínas Repressoras/genética , Transdução de Sinais/genética
2.
Hum Mol Genet ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899779

RESUMO

Trichorhinophalangeal syndrome (TRPS) is a genetic disorder caused by point mutations or deletions in the gene-encoding transcription factor TRPS1. TRPS patients display a range of skeletal dysplasias, including reduced jaw size, short stature, and a cone-shaped digit epiphysis. Certain TRPS patients experience early onset coxarthrosis that leads to a devastating drop in their daily activities. The etiologies of congenital skeletal abnormalities of TRPS were revealed through the analysis of Trps1 mutant mouse strains. However, early postnatal lethality in Trps1 knockout mice has hampered the study of postnatal TRPS pathology. Here, through epigenomic analysis we identified two previously uncharacterized candidate gene regulatory regions in the first intron of Trps1. We deleted these regions, either individually or simultaneously, and examined their effects on skeletal morphogenesis. Animals that were deleted individually for either region displayed only modest phenotypes. In contrast, the Trps1Δint/Δint mouse strain with simultaneous deletion of both genomic regions exhibit postnatal growth retardation. This strain displayed delayed secondary ossification center formation in the long bones and misshaped hip joint development that resulted in acetabular dysplasia. Reducing one allele of the Trps1 gene in Trps1Δint mice resulted in medial patellar dislocation that has been observed in some patients with TRPS. Our novel Trps1 hypomorphic strain recapitulates many postnatal pathologies observed in human TRPS patients, thus positioning this strain as a useful animal model to study postnatal TRPS pathogenesis. Our observations also suggest that Trps1 gene expression is regulated through several regulatory elements, thus guaranteeing robust expression maintenance in skeletal cells.

3.
Breast Cancer Res ; 26(1): 74, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702730

RESUMO

The transcription factor TRPS1 is a context-dependent oncogene in breast cancer. In the mammary gland, TRPS1 activity is restricted to the luminal population and is critical during puberty and pregnancy. Its function in the resting state remains however unclear. To evaluate whether it could be a target for cancer therapy, we investigated TRPS1 function in the healthy adult mammary gland using a conditional ubiquitous depletion mouse model where long-term depletion does not affect fitness. Using transcriptomic approaches, flow cytometry and functional assays, we show that TRPS1 activity is essential to maintain a functional luminal progenitor compartment. This requires the repression of both YAP/TAZ and SRF/MRTF activities. TRPS1 represses SRF/MRTF activity indirectly by modulating RhoA activity. Our work uncovers a hitherto undisclosed function of TRPS1 in luminal progenitors intrinsically linked to mechanotransduction in the mammary gland. It may also provide new insights into the oncogenic functions of TRPS1 as luminal progenitors are likely the cells of origin of many breast cancers.


Assuntos
Glândulas Mamárias Animais , Proteínas Repressoras , Fator de Resposta Sérica , Células-Tronco , Fatores de Transcrição , Animais , Feminino , Camundongos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Células-Tronco/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Fator de Resposta Sérica/metabolismo , Fator de Resposta Sérica/genética , Humanos , Transativadores/metabolismo , Transativadores/genética
4.
Rev Physiol Biochem Pharmacol ; 182: 111-137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-32809072

RESUMO

Calcium (Ca2+)-permeable channels are key players in different processes leading to blood vessel formation via sprouting angiogenesis, including endothelial cell (EC) proliferation and migration, as well as in controlling vascular features which are typical of the tumor vasculature.In this review we present an up-to-date and critical view on the role of Ca2+-permeable channels in tumor vascularization, emphasizing on the dual communication between growth factors (mainly VEGF) and Ca2+ signals. Due to the complexity of the tumor microenvironment (TME) as a source of multiple stimuli acting on the endothelium, we aim to discuss the close interaction between chemical and physical challenges (hypoxia, oxidative stress, mechanical stress) and endothelial Ca2+-permeable channels, focusing on transient receptor potential (TRP), store-operated Ca2+ channels (SOCs), and mechanosensitive Piezo channels. This approach will depict their crucial contribution in regulating key properties of tumor blood vessels, such as recruitment of endothelial progenitors cells (EPCs) in the early steps of tumor vascularization, abnormal EC migration and proliferation, and increased vascular permeability. Graphical abstract depicting the functional role of Ca2+-permeable TRP, SOCs and Piezo channels in the biological processes regulating tumor angiogenesis in presence of both chemical (oxidative stress and oxygen levels) and mechanical stimuli (ECM stiffness). SOCs store-operated Ca2+ channels, TRPA transient receptor potential ankyrin, TRPV transient receptor potential vanilloid, TRPC transient receptor potential canonical, TRPM transient receptor potential melastatin, TRPM transient receptor potential vanilloid, O2 oxygen, ECM extracellular matrix.


Assuntos
Neoplasias , Canais de Cátion TRPM , Canais de Potencial de Receptor Transitório , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinais (Psicologia) , Humanos , Oxigênio/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Microambiente Tumoral
5.
J Exp Zool B Mol Dev Evol ; 342(2): 85-100, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38369890

RESUMO

TRPS1 serves as the causative gene for tricho-rhino phalangeal syndrome, known for its craniofacial and skeletal abnormalities. The Trps1 gene encodes a protein that represses Wnt signaling through strong interactions with Wnt signaling inhibitors. The identification of genomic cis-acting regulatory sequences governing Trps1 expression is crucial for understanding its role in embryogenesis. Nevertheless, to date, no investigations have been conducted concerning these aspects of Trps1. To identify deeply conserved noncoding elements (CNEs) within the Trps1 locus, we employed a comparative genomics approach, utilizing slowly evolving fish such as coelacanth and spotted gar. These analyses resulted in the identification of eight CNEs in the intronic region of the Trps1 gene. Functional characterization of these CNEs in zebrafish revealed their regulatory potential in various tissues, including pectoral fins, heart, and pharyngeal arches. RNA in-situ hybridization experiments revealed concordance between the reporter expression pattern induced by the identified set of CNEs and the spatial expression pattern of the trps1 gene in zebrafish. Comparative in vivo data from zebrafish and mice for CNE7/hs919 revealed conserved functions of these enhancers. Each of these eight CNEs was further investigated in cell line-based reporter assays, revealing their repressive potential. Taken together, in vivo and in vitro assays suggest a context-dependent dual functionality for the identified set of Trps1-associated CNE enhancers. This functionally characterized set of CNE-enhancers will contribute to a more comprehensive understanding of the developmental roles of Trps1 and can aid in the identification of noncoding DNA variants associated with human diseases.


Assuntos
Dedos/anormalidades , Doenças do Cabelo , Síndrome de Langer-Giedion , Nariz/anormalidades , Sequências Reguladoras de Ácido Nucleico , Peixe-Zebra , Animais , Camundongos , Humanos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Genoma , Sequência de Bases , Expressão Gênica , Mamíferos/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
6.
Histopathology ; 84(5): 822-836, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38173281

RESUMO

AIMS: Trichorhinophalangeal syndrome-1 (TRPS1) has been proposed as a novel breast marker with equally high expression in breast cancer (BC) subtypes, making it a useful diagnostic tool. Here, its expression was evaluated alongside other commonly used markers [GATA3, GCDFP15, mammaglobin (MGB) and SOX10] in a large cohort of BCs (n = 1852) and their corresponding nodal metastases. Its usefulness as a diagnostic tool and its correlation with clinicopathological features were assessed. METHODS AND RESULTS: TRPS1 was expressed at 75.8% overall in the BC cohort, with at least 58% expression among BC subtypes. It was less sensitive than GATA3 for luminal and HER2-overexpressing (HER2-OE) cancers (luminal A: 82 versus 97%; luminal B: 80 versus 95%; HER2-OE: 62 versus 76%), but it was the most sensitive for TNBC (60 versus ≤ 41%). It showed a stable expression in nodal metastases (primary tumour 76 versus nodal metastasis 78%), unlike a reduced nodal expression for GATA3 (86 versus 77%). TRPS1 outperformed GATA3 in detecting non-luminal cancers when paired with other breast markers. TRPS1 and GCDFP15 was the most sensitive combination in TNBC detection, with a 76% detection rate. For TRPS1-negative and GCDFP15-negative TNBCs, SOX10 was more sensitive than GATA3 (29 versus 24%). CONCLUSIONS: TRPS1 is a highly sensitive marker for all breast cancer subtypes, outperforming GATA3 in non-luminal cancers and displaying the highest sensitivity for TNBC detection when combined with GCDFP15. It is a valuable addition to the breast marker panel for accurate identification of BC.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/patologia , Neoplasias de Mama Triplo Negativas/patologia , Biomarcadores Tumorais/metabolismo , Proteínas de Transporte , Mamoglobina A/metabolismo , Mama/patologia , Fator de Transcrição GATA3/metabolismo , Proteínas Repressoras/metabolismo
7.
Histopathology ; 84(3): 550-555, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37983855

RESUMO

AIMS: Breast mucinous cystadenocarcinoma (BMCA) is a rare tumour recently recognised as a distinct entity by the World Health Organisation Tumour Classification Series. BMCA is a triple-negative tumour that lacks specific immunohistochemical markers; therefore, distinguishing it from mimickers such as ovarian and pancreatic cystadenocarcinomas requires careful clinicopathological correlation. Due to its rarity, little is known about the molecular alterations that underlie BMCA. METHODS AND RESULTS: In this study, we used immunohistochemical staining methods to investigate TRPS1 (trichorhinophalangeal syndrome type 1) expression in BMCA and compare it to expression in ovarian and pancreatic mucinous cystadenocarcinomas. We also collected tumour samples from three BMCA patients for molecular analysis by MALDI-TOF mass spectrometry, real-time polymerase chain reaction, whole exome sequencing and fluorescence in-situ hybridisation. TRPS1 immunoreactivity was found only in BMCA tumour cells and not in the ovarian and pancreatic counterparts. One of the three BMCA tumours also showed a PIK3CA hot-spot mutation, which was confirmed by whole genome next-generation sequencing (NGS). No KRAS, NRAS, BRAF or AKT mutations were found. CONCLUSIONS: To our knowledge, this is the first demonstration of TRPS1 expression in BMCA patients and the first identification of a PIK3CA hotspot mutation in these tumours. These findings provide insights into the molecular mechanisms underlying BMCA tumorigenesis and suggest a potential drug target for this rare and poorly understood cancer.


Assuntos
Cistadenocarcinoma Mucinoso , Neoplasias Pancreáticas , Humanos , Mutação , Reação em Cadeia da Polimerase em Tempo Real , Classe I de Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Repressoras/genética
8.
Mol Ther ; 31(9): 2612-2632, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37452493

RESUMO

Rhabdomyosarcoma is the most common pediatric soft tissue tumor, comprising two major subtypes: the PAX3/7-FOXO1 fusion-negative embryonal and the PAX3/7-FOXO1 fusion-positive alveolar subtype. Here, we demonstrate that the expression levels of the transcriptional repressor TRPS1 are specifically enhanced in the embryonal subtype, resulting in impaired terminal myogenic differentiation and tumor growth. During normal myogenesis, expression levels of TRPS1 have to decrease to allow myogenic progression, as demonstrated by overexpression of TRPS1 in myoblasts impairing myotube formation. Consequentially, myogenic differentiation in embryonal rhabdomyosarcoma in vitro as well as in vivo can be achieved by reducing TRPS1 levels. Furthermore, we show that TRPS1 levels in RD cells, the bona fide model cell line for embryonal rhabdomyosarcoma, are regulated by miR-1 and that TRPS1 and MYOD1 share common genomic binding sites. The myogenin (MYOG) promoter is one of the critical targets of TRPS1 and MYOD1; we demonstrate that TRPS1 restricts MYOG expression and thereby inhibits terminal myogenic differentiation. Therefore, reduction of TRPS1 levels in embryonal rhabdomyosarcoma might be a therapeutic approach to drive embryonal rhabdomyosarcoma cells into myogenic differentiation, thereby generating postmitotic myotubes.


Assuntos
MicroRNAs , Rabdomiossarcoma Embrionário , Humanos , Criança , Rabdomiossarcoma Embrionário/genética , Rabdomiossarcoma Embrionário/metabolismo , Rabdomiossarcoma Embrionário/patologia , Miogenina/genética , Miogenina/metabolismo , Diferenciação Celular/genética , MicroRNAs/genética , Desenvolvimento Muscular/genética , Linhagem Celular Tumoral , Proteínas Repressoras
9.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612853

RESUMO

While the involvement of thermosensitive transient receptor potential channels (TRPs) in dry eye disease (DED) has been known for years, their expression in the meibomian gland (MG) has never been investigated. This study aims to show their expression and involvement in the lipogenesis of the MG, providing a possible new drug target in the treatment of DED. Our RT-PCR, Western blot and immunofluorescence analysis showed the expression of TRPV1, TRPV3, TRPV4 and TRPM8 in the MG at the gene and the protein level. RT-PCR also showed gene expression of TRPV2 but not TRPA1. Calcium imaging and planar patch-clamping performed on an immortalized human meibomian gland epithelial cell line (hMGECs) demonstrated increasing whole-cell currents after the application of capsaicin (TRPV1) or icilin (TRPM8). Decreasing whole-cell currents could be registered after the application of AMG9810 (TRPV1) or AMTB (TRPM8). Oil red O staining on hMGECs showed an increase in lipid expression after TRPV1 activation and a decrease after TRPM8 activation. We conclude that thermo-TRPs are expressed at the gene and the protein level in MGs. Moreover, TRPV1 and TRPM8's functional expression and their contribution to their lipid expression could be demonstrated. Therefore, TRPs are potential drug targets and their clinical relevance in the therapy of meibomian gland dysfunction requires further investigation.


Assuntos
Disfunção da Glândula Tarsal , Glândulas Tarsais , Humanos , Lipogênese/genética , Western Blotting , Capsaicina/farmacologia
10.
Molecules ; 29(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38398508

RESUMO

Tryptophan synthase (TRPS) is a complex enzyme responsible for tryptophan biosynthesis. It occurs in bacteria, plants, and fungi as an αßßα heterotetramer. Although encoded by independent genes in bacteria and plants, in fungi, TRPS is generated by a single gene that concurrently expresses the α and ß entities, which are linked by an elongated peculiar segment. We conducted 1 µs all-atom molecular dynamics simulations on Hemileia vastatrix TRPS to address two questions: (i) the role of the linker segment and (ii) the comparative mode of action. Since there is not an experimental structure, we started our simulations with homology modeling. Based on the results, it seems that TRPS makes use of an already-existing tunnel that can spontaneously move the indole moiety from the α catalytic pocket to the ß one. Such behavior was completely disrupted in the simulation without the linker. In light of these results and the αß dimer's low stability, the full-working TRPS single genes might be the result of a particular evolution. Considering the significant losses that Hemileia vastatrix causes to coffee plantations, our next course of action will be to use the TRPS to look for substances that can block tryptophan production and therefore control the disease.


Assuntos
Basidiomycota , Simulação de Dinâmica Molecular , Triptofano Sintase , Triptofano Sintase/química , Triptofano Sintase/genética , Triptofano Sintase/metabolismo , Triptofano , Fungos/metabolismo
11.
Mod Pathol ; 36(5): 100125, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36870308

RESUMO

Triple-negative apocrine carcinomas (TNACs) are rare breast tumors with limited studies evaluating their molecular characteristics and clinical behavior. We performed a histologic, immunohistochemical, genetic, and clinicopathologic assessment of 42 invasive TNACs (1 with a focal spindle cell component) from 41 patients, 2 pure apocrine ductal carcinomas in situ (A-DCIS), and 1 A-DCIS associated with spindle cell metaplastic carcinoma (SCMBC). All TNACs had characteristic apocrine morphology and expressed androgen receptor (42/42), gross cystic disease fluid protein 15 (24/24), and CK5/6 (16/16). GATA3 was positive in most cases (16/18, 89%), and SOX10 was negative (0/22). TRPS1 was weakly expressed in a minority of tumors (3/14, 21%). Most TNACs had low Ki67 proliferation (≤10% in 67%, 26/39), with a median index of 10%. Levels of tumor infiltrating lymphocytes were low (≤10% in 93%, 39/42, and 15% in 7%, 3/42). Eighteen percent of TNACs presented with axillary nodal metastasis (7/38). No patients treated with neoadjuvant chemotherapy achieved pathologic complete response (0%, 0/10). Nearly all patients with TNAC (97%, n = 32) were without evidence of disease at the time of study (mean follow-up of 62 months). Seventeen invasive TNACs and 10 A-DCIS (7 with paired invasive TNAC) were profiled by targeted capture-based next-generation DNA sequencing. Pathogenic mutations in phosphatidylinositol 3-kinase pathway genes PIK3CA (53%) and/or PIK3R1 (53%) were identified in all TNACs (100%), including 4 (24%) with comutated PTEN. Ras-MAPK pathway genes, including NF1 (24%), and TP53 were mutated in 6 tumors each (35%). All A-DCIS shared mutations, such as phosphatidylinositol 3-kinase aberrations and copy number alterations with paired invasive TNACs or SCMBC, and a subset of invasive carcinomas showed additional mutations in tumor suppressors (NF1, TP53, ARID2, and CDKN2A). Divergent genetic profiles between A-DCIS and invasive carcinoma were identified in 1 case. In summary, our findings support TNAC as a morphologically, immunohistochemically, and genetically homogeneous subgroup of triple-negative breast carcinomas and suggest overall favorable clinical behavior.


Assuntos
Neoplasias da Mama , Carcinoma in Situ , Carcinoma Intraductal não Infiltrante , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Carcinoma Intraductal não Infiltrante/patologia , Neoplasias da Mama/patologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Fatores de Transcrição , Fosfatidilinositol 3-Quinases , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proteínas Repressoras
12.
Histopathology ; 83(1): 104-108, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36971374

RESUMO

AIMS: Extramammary Paget disease (EMPD) is an epithelial neoplasm that can occur at many sites, including the vulva and scrotum. EMPD is characterised by the presence of neoplastic cells, in single cells and clusters, that infiltrate all layers of non-neoplastic squamous epithelium. The differential diagnosis for EMPD includes melanoma in situ and secondary involvement of tumours from other sites, such as urothelial or cervical; pagetoid spread of tumor cells can also been seen at other sites, such as anorectal mucosa. The most frequently utilised biomarkers for confirming the diagnosis of EMPD include CK7 and GATA3; however, these biomarkers lack specificity. The purpose of this study was to evaluate TRPS1, a newly described breast biomarker, in pagetoid neoplasms of the vulva, scrotum and anorectum. METHODS AND RESULTS: Fifteen cases of primary EMPD of the vulva (two with associated invasive carcinoma) and four primary EMPD of the scrotum showed strong nuclear immunoreactivity for TRPS1. In contrast, five cases of vulvar melanoma in situ, one case of urothelial carcinoma with secondary pagetoid spread into the vulva and two anorectal adenocarcinomas with pagetoid spread into anal skin (one with associated invasive carcinoma) were negative for TRPS1. Additionally, weak nuclear TRPS1 staining was observed in non-neoplastic tissues (e.g. keratinocytes), but always with less intensity when compared to tumour cells. CONCLUSIONS: These results demonstrate that TRPS1 is a sensitive and specific biomarker for EMPD, and may be especially useful for excluding secondary involvement of the vulva by urothelial and anorectal carcinomas.


Assuntos
Carcinoma de Células de Transição , Melanoma , Doença de Paget Extramamária , Neoplasias da Bexiga Urinária , Masculino , Feminino , Humanos , Doença de Paget Extramamária/diagnóstico , Doença de Paget Extramamária/patologia , Biomarcadores Tumorais/metabolismo , Proteínas Repressoras , Melanoma Maligno Cutâneo
13.
J Cutan Pathol ; 50(5): 434-440, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36808637

RESUMO

BACKGROUND: Trichorhinophalangeal syndrome type 1 (TPRS1) expression has been found to be highly sensitive and specific for breast carcinomas. The frequency of TRPS1 expression in cutaneous neoplasms such as mammary Paget disease (MPD) and extramammary PD (EMPD) is currently unknown. We assessed the utility of TRPS1 immunohistochemistry (IHC) in the evaluation of MPD, EMPD, and their histopathologic mimics, squamous cell carcinoma in situ (SCCIS) and melanoma in situ (MIS). METHODS: Twenty-four MPDs, 19 EMPDs, 13 SCCISs, and 9 MISs were subjected to immunohistochemical analysis using anti-TRPS1 antibody. The intensity (none, 0; weak, 1+ ; moderate, 2+ ; strong, 3+ ) and proportion (<1%, absent; 1%-25%, focal; 26%-75%, patchy; >75%, diffuse) of TRPS1 expression were recorded. Relevant clinical data were documented. RESULTS: TPRS1 expression was present in 100% (24/24) of MPDs, with 88% (21/24) of MPDs exhibiting strong, diffuse immunoreactivity. Sixty-eight percent (13/19) of EMPDs showed TRPS1 expression. Intriguingly, EMPDs lacking TRPS1 expression were consistently of perianal origin. TRPS1 expression was seen in 92% (12/13) of SCCISs but was absent in all MISs. CONCLUSIONS: TRPS1 may be useful to distinguish MPDs/EMPDs from MISs, but its utility is limited in distinguishing them from other pagetoid intraepidermal neoplasms such as SCCISs.


Assuntos
Doença de Paget Extramamária , Doença de Paget Mamária , Proteínas Repressoras , Feminino , Humanos , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Imuno-Histoquímica , Doença de Paget Extramamária/diagnóstico , Doença de Paget Extramamária/metabolismo , Doença de Paget Extramamária/patologia , Doença de Paget Mamária/diagnóstico , Doença de Paget Mamária/metabolismo , Doença de Paget Mamária/patologia , Proteínas Repressoras/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
14.
J Cutan Pathol ; 50(11): 1006-1013, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37649299

RESUMO

BACKGROUND: Transcriptional repressor GATA binding 1 (TRPS1) is a transcription factor recently shown to play a role in the development of breast and liver cancer. Here, we evaluate TRPS1 immunoexpression in normal skin tissues and various cutaneous tumors. METHODS: TRPS1 immunohistochemistry was performed in 109 cases of primary cutaneous tumors and 19 cases of metastatic carcinomas. TRPS1 expression was also evaluated in the normal skin tissues. RESULTS: The normal epidermis was TRPS1-. In contrast, the eccrine apparatus, epithelial compartment of the hair follicles, hair papilla, sebaceous glands, and anogenital mammary-like glands were TRPS1+. In primary cutaneous tumors, TRPS1 positivity varied in poroma (2/3), nodular hidradenoma (4/5), spiradenoma (4/4), cutaneous mixed tumor (5/5), trichilemmal cyst (7/8), proliferating trichilemmal tumor (1/3), pilomatricoma (9/9), sebaceoma (2/5), extramammary Paget disease (13/13), sebaceous carcinoma (2/2), actinic keratosis (3/10), Bowen disease (7/12), and squamous cell carcinoma (1/5) cases. All cases of seborrheic keratosis, basal cell carcinoma, Merkel cell carcinoma, and malignant melanoma were TRPS1-. All metastatic breast carcinoma cases (8/8) were highly positive for TRPS1, while all but one of the other metastatic tumor cases were TRPS1-. CONCLUSIONS: TRPS1 immunoexpression was observed in several skin appendages and cutaneous tumors.

15.
Cryobiology ; 113: 104569, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37597598

RESUMO

The aim of this study was to explore the effects of spray cryotherapy (SCT) on cough receptors and airway microenvironment in a canine model of chronic bronchitis. We examined the expression of transient receptor potential vanilloid 1/4 (TRPV1/4) and the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) at the gene and protein levels before and after SCT. In addition, we explored whether TRPV1/4 could regulate inflammatory factors via mediator adenosine triphosphate (ATP). The levels of ATP and cytokines in alveolar lavage fluid and cell supernatant were measured using ELISA. SCT effectively downregulated the expression of TRPV1/4 and SP/CGRP in canine airway tissues with chronic bronchitis and reduced the levels of inflammatory mediators and cytokines that affect cough receptor sensitivity, achieving cough relief. TRPV1/4 - ATP - inflammatory cytokines axis has been demonstrated at the cellular level, which in turn modulate the milieu of the airways and promote the formation of a cough feedback loop. Our study has fully revealed the specific mechanism of SCT in treating cough in a canine model of chronic bronchitis, providing a solid theoretical basis for future clinical treatment.


Assuntos
Bronquite Crônica , Animais , Cães , Bronquite Crônica/terapia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/uso terapêutico , Criopreservação/métodos , Tosse/tratamento farmacológico , Tosse/genética , Substância P/genética , Substância P/metabolismo , Substância P/uso terapêutico , Citocinas/genética , Citocinas/uso terapêutico , Crioterapia , Trifosfato de Adenosina
16.
Breast Cancer Res ; 24(1): 70, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284362

RESUMO

BACKGROUND: Metastatic breast carcinoma is commonly considered during differential diagnosis when metastatic disease is detected in females. In addition to the tumor morphology and documented clinical history, sensitive and specific immunohistochemical (IHC) markers such as GCDFP-15, mammaglobin, and GATA3 are helpful for determining breast origin. However, these markers are reported to show lower sensitivity in certain subtypes, such as triple-negative breast cancer (TNBC). MATERIALS AND METHODS: Using bioinformatics analyses, we identified a potential diagnostic panel to determine breast origin: matrix Gla protein (MGP), transcriptional repressor GATA binding 1 (TRPS1), and GATA-binding protein 3 (GATA3). We compared MGP, TRPS1, and GATA3 expression in different subtypes of breast carcinoma of (n = 1201) using IHC. As a newly identified marker, MGP expression was also evaluated in solid tumors (n = 2384) and normal tissues (n = 1351) from different organs. RESULTS: MGP and TRPS1 had comparable positive expression in HER2-positive (91.2% vs. 92.0%, p = 0.79) and TNBC subtypes (87.3% vs. 91.2%, p = 0.18). GATA3 expression was lower than MGP (p < 0.001) or TRPS1 (p < 0.001), especially in HER2-positive (77.0%, p < 0.001) and TNBC (43.3%, p < 0.001) subtypes. TRPS1 had the highest positivity rate (97.9%) in metaplastic TNBCs, followed by MGP (88.6%), while only 47.1% of metaplastic TNBCs were positive for GATA3. When using MGP, GATA3, and TRPS1 as a novel IHC panel, 93.0% of breast carcinomas were positive for at least two markers, and only 9 cases were negative for all three markers. MGP was detected in 36 cases (3.0%) that were negative for both GATA3 and TRPS1. MGP showed mild-to-moderate positive expression in normal hepatocytes, renal tubules, as well as 31.1% (99/318) of hepatocellular carcinomas. Rare cases (0.6-5%) had focal MGP expression in renal, ovarian, lung, urothelial, and cholangiocarcinomas. CONCLUSIONS: Our findings suggest that MGP is a newly identified sensitive IHC marker to support breast origin. MGP, TRPS1, and GATA3 could be applied as a reliable diagnostic panel to determine breast origin in clinical practice.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Biomarcadores Tumorais/metabolismo , Fator de Transcrição GATA3/genética , Mamoglobina A/análise , Mamoglobina A/metabolismo , Proteínas de Ligação ao Cálcio , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína de Matriz Gla
17.
Cytogenet Genome Res ; 162(1-2): 46-54, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35290978

RESUMO

Langer-Giedion syndrome (LGS) is caused by a contiguous deletion at 8q23q24, characterized by exostoses, facial, ectodermal, and skeletal anomalies, and, occasionally, intellectual disability. LGS patients have been diagnosed clinically or by routine cytogenetic techniques, hampering the definition of an accurate genotype-phenotype correlation for the syndrome. We report two unrelated patients with 8q23q24 deletions, characterized by cytogenomic techniques, with one of them, to our knowledge, carrying the smallest deletion reported in classic LGS cases. We assessed the pathogenicity of the deletion of genes within the 8q23q24 region and reviewed other molecularly confirmed cases from the literature. Our findings suggest a 3.2-Mb critical region for a typical presentation of the syndrome, emphasizing the contribution of the TRPS1, RAD21, and EXT1 genes' haploinsufficiency, and facial dysmorphisms as well as bone anomalies as the most frequent features among patients with LGS. We also suggest a possible role for the CSMD3 gene, whose deletion seems to contribute to central nervous system anomalies. Since studies performing such correlation for LGS patients are limited, our data contribute to improving the ge-notype-phenotype characterization for LGS patients.


Assuntos
Síndrome de Langer-Giedion , Deleção Cromossômica , Cromossomos Humanos Par 8 , Hibridização Genômica Comparativa , Estudos de Associação Genética , Haploinsuficiência , Humanos , Síndrome de Langer-Giedion/diagnóstico , Síndrome de Langer-Giedion/genética , Fenótipo , Proteínas Repressoras/genética
18.
Semin Diagn Pathol ; 39(5): 313-321, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35461734

RESUMO

Due to the high prevalence of breast cancer in the female, a metastasis from primary breast cancer is usually considered in the differential diagnosis of metastatic carcinoma in the female patient, even for those without a history of breast cancer, as some breast cancers are first diagnosed as metastases. Immunohistochemical analysis for breast cancer markers is the most common way to determine breast cancer origin besides clinical history and histology. In this review, we (1) summarize the commonly used and the newly identified breast cancer markers, including GCDFP-15, mammaglobin, GATA3, SOX10, and TRPS1; (2) point out the strengths and weaknesses of using these markers for breast cancers with luminal/epithelial or basal/myoepithelial differentiation; and (3) recommend diagnostic panels to differentiate breast carcinoma from carcinoma with similar morphology of other origins.


Assuntos
Neoplasias da Mama , Carcinoma , Biomarcadores Tumorais/análise , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Carcinoma/diagnóstico , Feminino , Humanos , Imuno-Histoquímica , Mamoglobina A/análise , Proteínas Repressoras
19.
Pediatr Dermatol ; 39(3): 481-482, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35181938

RESUMO

Aplasia cutis congenita (ACC) was diagnosed in a newborn with dysmorphic facial features, oligodactyly of the bilateral feet, and hip instability. The neonate's clinical abnormalities in addition to genetic testing confirmed a diagnosis of trichorhinophalangeal syndrome (TRPS) type II. The possibility of concurrent Adams-Oliver syndrome (AOS) is raised.


Assuntos
Displasia Ectodérmica , Síndrome de Langer-Giedion , Deformidades Congênitas dos Membros , Dermatoses do Couro Cabeludo , Displasia Ectodérmica/complicações , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Humanos , Recém-Nascido , Síndrome de Langer-Giedion/complicações , Síndrome de Langer-Giedion/diagnóstico , Síndrome de Langer-Giedion/genética , Deformidades Congênitas dos Membros/diagnóstico , Couro Cabeludo , Dermatoses do Couro Cabeludo/diagnóstico
20.
Int J Mol Sci ; 23(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35887116

RESUMO

Transient receptor potential (TRP) ion channels are cationic permeable proteins located on the plasma membrane. TRPs are cellular sensors for perceiving diverse physical and/or chemical stimuli; thus, serving various critical physiological functions, including chemo-sensation, hearing, homeostasis, mechano-sensation, pain, taste, thermoregulation, vision, and even carcinogenesis. Dysregulated TRPs are found to be linked to many human hereditary diseases. Recent studies indicate that TRP ion channels are not only involved in sensory functions but are also implicated in regulating the biological characteristics of stem cells. In the present review, we summarize the expressions and functions of TRP ion channels in stem cells, including cancer stem cells. It offers an overview of the current understanding of TRP ion channels in stem cells.


Assuntos
Canais de Potencial de Receptor Transitório , Membrana Celular/metabolismo , Humanos , Dor , Sensação/fisiologia , Células-Tronco/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa