RESUMO
The mechanisms of cellular energy sensing and AMPK-mediated mTORC1 inhibition are not fully delineated. Here, we discover that RIPK1 promotes mTORC1 inhibition during energetic stress. RIPK1 is involved in mediating the interaction between AMPK and TSC2 and facilitate TSC2 phosphorylation at Ser1387. RIPK1 loss results in a high basal mTORC1 activity that drives defective lysosomes in cells and mice, leading to accumulation of RIPK3 and CASP8 and sensitization to cell death. RIPK1-deficient cells are unable to cope with energetic stress and are vulnerable to low glucose levels and metformin. Inhibition of mTORC1 rescues the lysosomal defects and vulnerability to energetic stress and prolongs the survival of RIPK1-deficient neonatal mice. Thus, RIPK1 plays an important role in the cellular response to low energy levels and mediates AMPK-mTORC1 signaling. These findings shed light on the regulation of mTORC1 during energetic stress and unveil a point of crosstalk between pro-survival and pro-death pathways.
Assuntos
Proteína 5 Relacionada à Autofagia/genética , Proteína de Domínio de Morte Associada a Fas/genética , Intestino Grosso/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Animais Recém-Nascidos , Proteína 5 Relacionada à Autofagia/deficiência , Caspase 8/genética , Caspase 8/metabolismo , Morte Celular/genética , Proteína de Domínio de Morte Associada a Fas/deficiência , Regulação da Expressão Gênica , Glucose/antagonistas & inibidores , Glucose/farmacologia , Células HEK293 , Células HT29 , Humanos , Intestino Grosso/efeitos dos fármacos , Intestino Grosso/patologia , Células Jurkat , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metformina/antagonistas & inibidores , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Transdução de Sinais , Sirolimo/farmacologia , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismoRESUMO
Despite being the frontline therapy for type 2 diabetes, the mechanisms of action of the biguanide drug metformin are still being discovered. In particular, the detailed molecular interplays between the AMPK and the mTORC1 pathway in the hepatic benefits of metformin are still ill defined. Metformin-dependent activation of AMPK classically inhibits mTORC1 via TSC/RHEB, but several lines of evidence suggest additional mechanisms at play in metformin inhibition of mTORC1. Here we investigated the role of direct AMPK-mediated serine phosphorylation of RAPTOR in a new RaptorAA mouse model, in which AMPK phospho-serine sites Ser722 and Ser792 of RAPTOR were mutated to alanine. Metformin treatment of primary hepatocytes and intact murine liver requires AMPK regulation of both RAPTOR and TSC2 to fully inhibit mTORC1, and this regulation is critical for both the translational and transcriptional response to metformin. Transcriptionally, AMPK and mTORC1 were both important for regulation of anabolic metabolism and inflammatory programs triggered by metformin treatment. The hepatic transcriptional response in mice on high-fat diet treated with metformin was largely ablated by AMPK deficiency under the conditions examined, indicating the essential role of this kinase and its targets in metformin action in vivo.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Metformina/farmacologia , Proteína Regulatória Associada a mTOR/genética , Transdução de Sinais/efeitos dos fármacos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Genótipo , Hipoglicemiantes/farmacologia , Inflamação , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metabolismo/efeitos dos fármacos , Metformina/uso terapêutico , Camundongos , Fosforilação/efeitos dos fármacos , Proteína Regulatória Associada a mTOR/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismoRESUMO
Resistance to cancer immunotherapy continues to impair common clinical benefit. Here, we use whole-genome CRISPR-Cas9 knockout data to uncover an important role for Tuberous Sclerosis Complex 2 (TSC2) in determining tumor susceptibility to cytotoxic T lymphocyte (CTL) killing in human melanoma cells. TSC2-depleted tumor cells had disrupted mTOR regulation following CTL attack, which was associated with enhanced cell death. Wild-type tumor cells adapted to CTL attack by shifting their mTOR signaling balance toward increased mTORC2 activity, circumventing apoptosis, and necroptosis. TSC2 ablation strongly augmented tumor cell sensitivity to CTL attack in vitro and in vivo, suggesting one of its functions is to critically protect tumor cells. Mechanistically, TSC2 inactivation caused elevation of TRAIL receptor expression, cooperating with mTORC1-S6 signaling to induce tumor cell death. Clinically, we found a negative correlation between TSC2 expression and TRAIL signaling in TCGA patient cohorts. Moreover, a lower TSC2 immune response signature was observed in melanomas from patients responding to immune checkpoint blockade. Our study uncovers a pivotal role for TSC2 in the cancer immune response by governing crosstalk between TSC2-mTOR and TRAIL signaling, aiding future therapeutic exploration of this pathway in immuno-oncology.
Assuntos
Esclerose Tuberosa , Proteínas Supressoras de Tumor , Humanos , Morte Celular , Serina-Treonina Quinases TOR/metabolismo , Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismoRESUMO
Embryonic diapause is a special reproductive phenomenon in mammals that helps embryos to survive various harsh stresses. However, the mechanisms of embryonic diapause induced by the maternal environment is still unclear. Here, we uncovered that nutrient deficiency in uterine fluid was essential for the induction of mouse embryonic diapause, shown by a decreased concentration of arginine, leucine, isoleucine, lysine, glucose and lactate in the uterine fluid of mice suffering from maternal starvation or ovariectomy. Moreover, mouse blastocysts cultured in a medium with reduced levels of these six components could mimic diapaused blastocysts. Our mechanistic study indicated that amino acid starvation-dependent Gator1 activation and carbohydrate starvation-dependent Tsc2 activation inhibited mTORC1, leading to induction of embryonic diapause. Our study elucidates the essential environmental factors in diapause induction.
Assuntos
Diapausa , Nutrientes , Animais , Feminino , Camundongos , Blastocisto/metabolismo , Diapausa/fisiologia , Desenvolvimento Embrionário/fisiologiaRESUMO
Tuberous sclerosis complex (TSC) is a neurogenetic disorder due to loss-of-function TSC1 or TSC2 variants, characterized by tumors affecting multiple organs, including skin, brain, heart, lung, and kidney. Mosaicism for TSC1 or TSC2 variants occurs in 10%-15% of individuals diagnosed with TSC. Here, we report comprehensive characterization of TSC mosaicism by using massively parallel sequencing (MPS) of 330 TSC samples from a variety of tissues and fluids from a cohort of 95 individuals with mosaic TSC. TSC1 variants in individuals with mosaic TSC are much less common (9%) than in germline TSC overall (26%) (p < 0.0001). The mosaic variant allele frequency (VAF) is significantly higher in TSC1 than in TSC2, in both blood and saliva (median VAF: TSC1, 4.91%; TSC2, 1.93%; p = 0.036) and facial angiofibromas (median VAF: TSC1, 7.7%; TSC2 3.7%; p = 0.004), while the number of TSC clinical features in individuals with TSC1 and TSC2 mosaicism was similar. The distribution of mosaic variants across TSC1 and TSC2 is similar to that for pathogenic germline variants in general TSC. The systemic mosaic variant was not present in blood in 14 of 76 (18%) individuals with TSC, highlighting the value of analysis of multiple samples from each individual. A detailed comparison revealed that nearly all TSC clinical features are less common in individuals with mosaic versus germline TSC. A large number of previously unreported TSC1 and TSC2 variants, including intronic and large rearrangements (n = 11), were also identified.
Assuntos
Esclerose Tuberosa , Proteínas Supressoras de Tumor , Humanos , Proteínas Supressoras de Tumor/genética , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia , Proteína 2 do Complexo Esclerose Tuberosa/genética , Mutação , Proteína 1 do Complexo Esclerose Tuberosa/genética , FenótipoRESUMO
A mosaic state arises when pathogenic variants are acquired in certain cell lineages during postzygotic development, and mosaic individuals may present with a generalized or localized phenotype. Here, we review the current state of knowledge regarding mosaicism for eight common tumor suppressor genes-NF1, NF2, TSC1, TSC2, PTEN, VHL, RB1, and TP53-and their related genetic syndromes/entities. We compare and discuss approaches for comprehensive diagnostic genetic testing, the spectrum of variant allele frequency, and disease severity. We also review affected individuals who have no mutation identified after conventional genetic analysis, as well as genotype-phenotype correlations and transmission risk for each tumor suppressor gene in full heterozygous and mosaic patients. This review provides new insight into similarities as well as marked differences regarding the appreciation of mosaicism in these tumor suppressor syndromes.
Assuntos
Genes Supressores de Tumor , Mosaicismo , Humanos , Mutação , Fenótipo , PrevalênciaRESUMO
We recently demonstrated that acute oral ketone monoester intake induces a stimulation of postprandial myofibrillar protein synthesis rates comparable to that elicited following the ingestion of 10 g whey protein or their coingestion. The present investigation aimed to determine the acute effects of ingesting a ketone monoester, whey protein, or their coingestion on mechanistic target of rapamycin (mTOR)-related protein-protein colocalization and intracellular trafficking in human skeletal muscle. In a randomized, double-blind, parallel group design, 36 healthy recreationally active young males (age: 24.2 ± 4.1 yr) ingested either: 1) 0.36 g·kg-1 bodyweight of the ketone monoester (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (KET), 2) 10 g whey protein (PRO), or 3) the combination of both (KET + PRO). Muscle biopsies were obtained in the overnight postabsorptive state (basal conditions), and at 120 and 300 min in the postprandial period for immunofluorescence assessment of protein translocation and colocalization of mTOR-related signaling molecules. All treatments resulted in a significant (Interaction: P < 0.0001) decrease in tuberous sclerosis complex 2 (TSC2)-Ras homolog enriched in brain (Rheb) colocalization at 120 min versus basal; however, the decrease was sustained at 300 min versus basal (P < 0.0001) only in KET + PRO. PRO and KET + PRO increased (Interaction: P < 0.0001) mTOR-Rheb colocalization at 120 min versus basal; however, KET + PRO resulted in a sustained increase in mTOR-Rheb colocalization at 300 min that was greater than KET and PRO. Treatment intake increased mTOR-wheat germ agglutinin (WGA) colocalization at 120 and 300 min (Time: P = 0.0031), suggesting translocation toward the fiber periphery. These findings demonstrate that ketone monoester intake can influence the spatial mechanisms involved in the regulation of mTORC1 in human skeletal muscle.NEW & NOTEWORTHY We explored the effects of a ketone monoester (KET), whey protein (PRO), or their coingestion (KET + PRO) on mTOR-related protein-protein colocalization and intracellular trafficking in human muscle. All treatments decreased TSC2-Rheb colocalization at 120 minutes; however, KET + PRO sustained the decrease at 300 min. Only PRO and KET + PRO increased mTOR-Rheb colocalization; however, the increase at 300 min was greater in KET + PRO. Treatment intake increased mTOR-WGA colocalization, suggesting translocation to the fiber periphery. Ketone bodies influence the spatial regulation of mTOR.
Assuntos
Músculo Esquelético , Transporte Proteico , Serina-Treonina Quinases TOR , Proteínas do Soro do Leite , Humanos , Proteínas do Soro do Leite/metabolismo , Proteínas do Soro do Leite/farmacologia , Proteínas do Soro do Leite/administração & dosagem , Masculino , Serina-Treonina Quinases TOR/metabolismo , Adulto Jovem , Adulto , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Método Duplo-Cego , Ácido 3-Hidroxibutírico/farmacologia , Ácido 3-Hidroxibutírico/metabolismo , Período Pós-Prandial , Cetonas/metabolismo , Proteínas Musculares/metabolismoRESUMO
AIMS: Haemangioblastomas arise in the central nervous system. Rarely, haemangioblastomas may develop in extra-neural sites, such as the kidneys. A few reported cases of renal cell carcinomas (RCCs) with haemangioblastoma-like features have exhibited both clear cell renal cell carcinoma (CCRCC)- and haemangioblastoma-like components. The clinicopathological and molecular characteristics of RCCs with haemangioblastoma-like features were analysed, focusing on VHL alterations, in comparison with CCRCCs partially resembling haemangioblastoma. METHODS AND RESULTS: Four RCCs with haemangioblastoma-like features and five CCRCCs partially resembling haemangioblastoma were included. The RCCs with haemangioblastoma-like features were indolent and lacked adverse prognostic factors. All RCCs with haemangioblastoma-like features had a well-circumscribed appearance and a thick fibromuscular capsule, with fibromuscular bundles extending into the tumour to varying degrees in the three tumours. Each RCC with haemangioblastoma-like features exhibited CCRCC-like areas with indistinct tubular structures and foci of haemangioblastoma-like areas, in which vessels and short spindle cells overwhelmed tumour cells. Whereas haemangioblastoma-like areas in the CCRCCs partially resembling haemangioblastoma exhibited sparse vessels and spindle cells and distinct clear cells. The RCCs with haemangioblastoma-like features exhibited a unique immunohistochemical profile, with positive staining for inhibin-α, S100, carbonic-anhydrase-9, keratin7, and high molecular weight keratin and negative staining for (alpha-methylacyl-CoA racemase) AMACR. RCC with haemangioblastoma-like features did not display any VHL alterations, including VHL mutation, 3p LOH, and methylation of the VHL promoter region, and the two tumours harboured a likely oncogenic missense variant of MTOR (c.7280T>G). CONCLUSION: The histopathological, immunohistochemical, and molecular findings suggest that RCC with haemangioblastoma-like features is a distinct entity from CCRCC.
Assuntos
Carcinoma de Células Renais , Hemangioblastoma , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Rim/patologia , MutaçãoRESUMO
BACKGROUND: Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that is associated with neurological symptoms, including autism spectrum disorder. Tuberous sclerosis complex is caused by pathogenic germline mutations of either the TSC1 or TSC2 gene, but somatic mutations were identified in both genes, and the combined effects of TSC1 and TSC2 mutations have been unknown. METHODS: The present study investigated social behaviors by the social interaction test and three-chambered sociability tests, effects of rapamycin treatment, and gene expression profiles with a gene expression microarray in Tsc1 and Tsc2 double heterozygous mutant (TscD+/-) mice. RESULTS: TscD+/- mice exhibited impairments in social behaviors, and the severity of impairments was similar to Tsc2+/- mice rather than Tsc1+/- mice. Impairments in social behaviors were rescued by rapamycin treatment in all mutant mice. Gene expression profiles in the brain were greatly altered in TscD+/- mice more than in Tsc1+/- and Tsc2+/- mice. The gene expression changes compared with wild type (WT) mice were similar between TscD+/- and Tsc2+/- mice, and the overlapping genes whose expression was altered in mutant mice compared with WT mice were enriched in the neoplasm- and inflammation-related canonical pathways. The "signal transducer and activator of transcription 3, interferon regulatory factor 1, interferon regulatory factor 4, interleukin-2R α chain, and interferon-γ" signaling pathway, which is initiated from signal transducer and activator of transcription 4 and PDZ and LIM domain protein 2, was associated with impairments in social behaviors in all mutant mice. LIMITATIONS: It is unclear whether the signaling pathway also plays a critical role in autism spectrum disorders not caused by Tsc1 and Tsc2 mutations. CONCLUSIONS: These findings suggest that TSC1 and TSC2 double mutations cause autistic behaviors similarly to TSC2 mutations, although significant changes in gene expression were attributable to the double mutations. These findings contribute to the knowledge of genotype-phenotype correlations in TSC and suggest that mutations in both the TSC1 and TSC2 genes act in concert to cause neurological symptoms, including autism spectrum disorder.
Assuntos
Transtorno do Espectro Autista , Esclerose Tuberosa , Camundongos , Animais , Esclerose Tuberosa/complicações , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/genética , Mutação , SirolimoRESUMO
Tuberous sclerosis complex (TSC) and autosomal dominant polycystic kidney disease (ADPKD) are genetically distinct disorders typically associated with pathogenic variants in TSC1 and TSC2 for the former and PKD1 and PKD2 for the latter. TSC2 and PKD1 lie adjacent to each other, and large deletions comprising both genes lead to TSC2/PKD1 contiguous gene deletion syndrome (CGS). In this study, we describe a young female patient exhibiting symptoms of TSC2/PKD1 CGS in which genetic analysis disclosed two noncontiguous partial gene deletions in TSC2 and PKD1 that putatively are responsible for the manifestations of the syndrome. Further analysis revealed that both deletions appear to be de novo on the maternal chromosome, presumably with a germline origin. Despite extensive analysis, no maternal chromosomal rearrangement triggering these pathogenic variants was detected. This case elucidates a unique pathogenesis for TSC2/PKD1 CGS, diverging from the common contiguous deletions typically observed, marking the first reported instance of TSC2/PKD1 CGS caused by independent, functionally significant partial gene deletions.
RESUMO
PURPOSE: Gliosarcoma is a rare histopathological variant of glioblastoma, but it is unclear whether distinct clinical or molecular features distinguish it from other glioblastomas. The purpose of this study was to characterize common genomic alterations of gliosarcoma, compare them to that of glioblastoma, and correlate them with prognosis. METHODS: This was a single-institution, retrospective cohort study of patients seen between 11/1/2017 to 1/28/2024. Clinical and genomic data were obtained from the medical record. Results were validated using data from AACR Project GENIE (v15.1-public). RESULTS: We identified 87 gliosarcoma patients in the institutional cohort. Compared to a contemporary cohort of 492 glioblastoma, there was no difference in overall survival, though progression free survival was inferior for patients with gliosarcoma (p = 0.01). Several of the most-commonly altered genes in gliosarcoma were more frequently altered than in glioblastoma (NF1, PTEN, TP53), while others were less frequently altered than in glioblastoma (EGFR). CDKN2A/CDKN2B/MTAP alterations were associated with inferior survival on univariate Cox (HR = 5.4, p = 0.023). When pooled with 93 patients from the GENIE cohort, CDKN2A/B (HR = 1.75, p = 0.039), RB1 (HR = 0.51, p = 0.016), LRP1B (p = 0.050, HR = 2.0), and TSC2 (HR = 0.31, p = 0.048) alterations or loss were significantly associated with survival. These effects remained when controlled for age, sex, and cohort of origin with multivariate Cox. CONCLUSION: Gliosarcoma has a similar overall survival but worse response to treatment and different mutational profile than glioblastoma. CDKN2A/B loss and LRP1B alterations were associated with inferior prognosis, while RB1 or TSC2 alterations were associated with improved outcomes. These findings may have implications for clinical management and therapeutic selection in this patient population.
RESUMO
OBJECTIVE: Typically diagnosed in early childhood or adolescence, TSC is a chronic, multisystemic disorder with age-dependent manifestations posing a challenge for transition and for specific surveillance throughout the lifetime. Data on the clinical features and severity of TSC in adults and on the prognosis of epilepsy are scarce. We analyzed the clinical and genetic features of a cohort of adult patients with TSC, to identify the prognostic predictors of seizure remission after a long follow-up. METHOD: We conducted a retrospective analysis of patients diagnosed with TSC according to the updated international diagnostic criteria. Pearson's chi-square or Fisher's exact test and Mann Whitney U test were used to compare variables among the Remission (R) and Non-Remission (NR) group. Univariate and multivariate logistic regression analyses were performed. RESULTS: We selected 43 patients with TSC and neurological involvement in terms of epilepsy and/or brain lesions, attending the Epilepsy Center of our Institute: of them, 16 (37.2%) were transitioning from the pediatric care and 6 (13.9%) were referred by other specialists. Multiorgan involvement includes cutaneous (86.0%), nephrological (70.7%), hepatic (40.0%), ocular (34.3%), pneumological (28.6%) and cardiac (26.3%) manifestations. Thirty-nine patients (90.7 %) had epilepsy. The mean age at seizure onset was 4 ± 7.3 years: most patients (29, 76.3 %) presented with focal seizures or spasms by age 3 years; only 2 (5.3 %) had seizure onset in adulthood. Twenty-seven patients (69.2 %) experienced multiple seizure types overtime, 23 (59.0 %) had intellectual disability (ID). At last assessment, 14 (35.9 %) were seizure free (R group) and 25 (64.1 %) had drug-resistant seizures (NR group). At logistic regression univariate analysis, ID (OR 7.9, 95 % CI 1.8--34.7), multiple seizure types lifelong (OR 13.2, 95 % CI 2.6- 67.2), spasms/tonic seizures at presentation (OR 6.5, 95 % CI 1.2--35.2), a higher seizure frequency at onset (OR 5.4, 95 % CI 1.2--24.3), abnormal neurological examination (OR 9.8, 95 % CI 1.1--90.6) and pathogenic variants in TSC2 (OR 5.4, 95 % CI 1.2--24.5) were significantly associated with non-remission. In the multivariate analysis, both ID and multiple seizure types lifelong were confirmed as independent predictors of poor seizure outcome. CONCLUSIONS: In our cohort of adult patients with TSC, epilepsy remains one of the main neurological challenges with only 5.3% of cases manifesting in adulthood. Approximately 64% of these patients failed to achieve seizure remission. ID and multiple seizure types were the main predictors of poor outcome. Nephrological manifestations require continuous specific follow-up in adults.
Assuntos
Epilepsia , Esclerose Tuberosa , Criança , Adulto , Adolescente , Humanos , Pré-Escolar , Anticonvulsivantes/uso terapêutico , Esclerose Tuberosa/complicações , Esclerose Tuberosa/genética , Esclerose Tuberosa/tratamento farmacológico , Estudos Retrospectivos , Epilepsia/etiologia , Epilepsia/complicações , Convulsões/tratamento farmacológico , Prognóstico , EspasmoRESUMO
BACKGROUND AND OBJECTIVE: Lymphangioleiomyomatosis (LAM) is a rare neoplastic disease associated with the functional tumour suppressor genes TSC1 and TSC2 and causes structural destruction in the lungs, which could potentially increase the risk of lung cancer. However, this relationship remains unclear because of the rarity of the disease. METHODS: We investigated the relative risk of developing lung cancer among patients diagnosed with LAM between 2001 and 2022 at a single high-volume centre in Japan, using data from the Japanese Cancer Registry as the reference population. Next-generation sequencing (NGS) was performed in cases where tumour samples were available. RESULTS: Among 642 patients diagnosed with LAM (sporadic LAM, n = 557; tuberous sclerosis complex-LAM, n = 80; unclassified, n = 5), 13 (2.2%) were diagnosed with lung cancer during a median follow-up period of 5.13 years. All patients were female, 61.5% were never smokers, and the median age at lung cancer diagnosis was 53 years. Eight patients developed lung cancer after LAM diagnosis. The estimated incidence of lung cancer was 301.4 cases per 100,000 person-years, and the standardized incidence ratio was 13.6 (95% confidence interval, 6.2-21.0; p = 0.0008). Actionable genetic alterations were identified in 38.5% of the patients (EGFR: 3, ALK: 1 and ERBB2: 1). No findings suggested loss of TSC gene function in the two patients analysed by NGS. CONCLUSION: Our study revealed that patients diagnosed with LAM had a significantly increased risk of lung cancer. Further research is warranted to clarify the carcinogenesis of lung cancer in patients with LAM.
Assuntos
Neoplasias Pulmonares , Linfangioleiomiomatose , Humanos , Linfangioleiomiomatose/genética , Linfangioleiomiomatose/epidemiologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/epidemiologia , Feminino , Japão/epidemiologia , Pessoa de Meia-Idade , Fatores de Risco , Adulto , Incidência , Idoso , Estudos de Coortes , Masculino , Sistema de Registros , População do Leste AsiáticoRESUMO
Invariant natural killer T (iNKT) cells play important roles in regulating immune responses. Based on cytokine profiling and key transcriptional factors, iNKT cells are classified into iNKT1, iNKT2, and iNKT17 subsets. However, whether the development and functions of these subsets are controlled by distinct mechanisms remains unclear. Here, we show that forkhead box protein O1 (Foxo1) promotes differentiation of iNKT1 and iNKT2 cells but not iNKT17 cells because of its distinct contributions to IL7R expression in these subsets. Nuclear Foxo1 is essential for Il7r expression in iNKT1 and iNKT2 cells at early stages of differentiation but is dispensable in iNKT17 cells. RORγt, instead of Foxo1, promotes IL7R expression in iNKT17 cells. Additionally, Foxo1 is required for the effector function of iNKT1 and iNKT2 cells but not iNKT17 cells. Cytoplasmic Foxo1 promotes activation of mTORC1 in iNKT1 and iNKT2 cells through inhibiting TSC1-TSC2 interaction, whereas it is dispensable for mTORC1 activation in iNKT17 cells. iNKT17 cells display distinct metabolic gene expression patterns from iNKT1 and iNKT2 cells that match their different functional requirements on Foxo1. Together, our results demonstrate that iNKT cell subsets differ in their developmental and functional requirements on Foxo1.
Assuntos
Proteína Forkhead Box O1/metabolismo , Células T Matadoras Naturais/metabolismo , Animais , Diferenciação Celular/fisiologia , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismoRESUMO
Germline DNA testing using the next-gene-ration sequencing (NGS) technology has become the analytical standard for the diagnostics of hereditary diseases, including cancer. Its increasing use places high demands on correct sample identification, independent confirmation of prioritized variants, and their functional and clinical interpretation. To streamline these processes, we introduced parallel DNA and RNA capture-based NGS using identical capture panel CZECANCA, which is routinely used for DNA analysis of hereditary cancer predisposition. Here, we present the analytical workflow for RNA sample processing and its analytical and diagnostic performance. Parallel DNA/RNA analysis allowed credible sample identification by calculating the kinship coefficient. The RNA capture-based approach enriched transcriptional targets for the majority of clinically relevant cancer predisposition genes to a degree that allowed analysis of the effect of identified DNA variants on mRNA processing. By comparing the panel and whole-exome RNA enrichment, we demonstrated that the tissue-specific gene expression pattern is independent of the capture panel. Moreover, technical replicates confirmed high reproducibility of the tested RNA analysis. We concluded that parallel DNA/RNA NGS using the identical gene panel is a robust and cost-effective diagnostic strategy. In our setting, it allows routine analysis of 48 DNA/RNA pairs using NextSeq 500/550 Mid Output Kit v2.5 (150 cycles) in a single run with sufficient coverage to analyse 226 cancer predisposition and candidate ge-nes. This approach can replace laborious Sanger confirmatory sequencing, increase testing turnaround, reduce analysis costs, and improve interpretation of the impact of variants by analysing their effect on mRNA processing.
Assuntos
Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/genética , Neoplasias/diagnóstico , RNA/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , DNA/genéticaRESUMO
In 2020, acquired cystic disease-associated renal cell carcinomas (ACD-RCCs) were reported to harbor KMT2C and TSC2 variants: however, their carcinogenic implication has not yet been reported. This study aimed to explore the variant features of KMT2C and TSC2 in ACD-RCC and their implication in ACD-RCC tumorigenesis. Eleven ACD-RCCs, 10 ACD-RCC-like cysts, and 18 background kidneys were retrieved. The background kidneys consisted of atrophic thyroid follicle-like tubules. They included four with clustered cysts, two with eosinophilic changes, and one each with clear cell changes and sieve-like changes in the renal tubules. First, DNA-targeted sequencing of KMT2C and TSC2 whole exons was performed on eight ACD-RCC samples. Subsequently, a custom DNA panel was designed to include the recurrent KMT2C and TSC2 variants based on the sequencing results. Second, DNA-targeted sequencing was performed on the remaining samples using a custom panel targeting the recurrent variants. Additionally, immunohistochemistry was performed for KMTC, H3K4me1, H3K4me3, TSC2, and GPNMB on the ACD-RCCs. Six of the 11 ACD-RCC cases harbored KMT2C and TSC2 variants, including nine likely pathogenic variants. In contrast to ACD-RCC, 1 of the 9 ACD-RCC-like cysts harbored both variants. Immunohistochemical analysis did not support the loss of function in ACD-RCCs harboring KMT2C and TSC2 variants. KMT2C and TSC2 variant frequencies were higher in ACD-RCC than in other renal cell carcinomas. However, KMT2C and TSC2 are unlikely to be the primary drivers of ACD-RCC development.
RESUMO
Colorectal cancer (CRC) is the second leading cause of cancer deaths globally. While ethnic differences in driver gene mutations have been documented, the South American population remains understudied at the genomic level, despite facing a rising burden of CRC. We analyzed tumors of 40 Chilean CRC patients (Chp) using next-generation sequencing and compared them to data from mainly Caucasian cohorts (TCGA and MSK-IMPACT). We identified 388 mutations in 96 out of 135 genes, with TP53 (45%), KRAS (30%), PIK3CA (22.5%), ATM (20%), and POLE (20%) being the most frequently mutated. TSC2 mutations were associated with right colon cancer (44.44% in RCRC vs. 6.45% in LCRC, p-value = 0.016), and overall frequency was higher compared to TCGA (p-value = 1.847 × 10-5) and MSK-IMPACT cohorts (p-value = 3.062 × 10-2). Limited sample size restricts definitive conclusions, but our data suggest potential differences in driver mutations for Chilean patients, being that the RTK-RAS oncogenic pathway is less affected and the PI3K pathway is more altered in Chp compared to TCGA (45% vs. 25.56%, respectively). The prevalence of actionable pathways and driver mutations can guide therapeutic choices, but can also impact treatment effectiveness. Thus, these findings warrant further investigation in larger Chilean cohorts to confirm these initial observations. Understanding population-specific driver mutations can guide the development of precision medicine programs for CRC patients.
Assuntos
Neoplasias do Colo , Mutação , Proteína 2 do Complexo Esclerose Tuberosa , Humanos , Chile/epidemiologia , Proteína 2 do Complexo Esclerose Tuberosa/genética , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias do Colo/genética , Neoplasias do Colo/epidemiologia , Neoplasias do Colo/patologia , Idoso , Adulto , Sequenciamento de Nucleotídeos em Larga Escala , Idoso de 80 Anos ou mais , Transdução de Sinais/genéticaRESUMO
Patients with tuberous sclerosis complex present with cognitive, behavioral, and psychiatric impairments, such as intellectual disabilities, autism spectrum disorders, and drug-resistant epilepsy. It has been shown that these disorders are associated with the presence of cortical tubers. Tuberous sclerosis complex results from inactivating mutations in the TSC1 or TSC2 genes, resulting in hyperactivation of the mTOR signaling pathway, which regulates cell growth, proliferation, survival, and autophagy. TSC1 and TSC2 are classified as tumor suppressor genes and function according to Knudson's two-hit hypothesis, which requires both alleles to be damaged for tumor formation. However, a second-hit mutation is a rare event in cortical tubers. This suggests that the molecular mechanism of cortical tuber formation may be more complicated and requires further research. This review highlights the issues of molecular genetics and genotype-phenotype correlations, considers histopathological characteristics and the mechanism of morphogenesis of cortical tubers, and also presents data on the relationship between these formations and the development of neurological manifestations, as well as treatment options.
RESUMO
BACKGROUND: The PI3K/AKT/mTOR signaling pathway is essential for initiation and progression of prostate cancer. However, there has been no a comprehensive comparison for the role of these signaling nodes in prostate tumor initiation and progression. METHODS: With genetically engineered animal models, we compared the impact of prostate-specific deletions of Pten, Tsc1, and Tsc2 and activation of Akt1 on tumor initiation and progression. Also, we assessed the expression and genetic alterations of PTEN, AKT1, TSC1, and TSC2 in human primary prostate cancers. RESULTS: For the genetically engineered mice, prostate conditional knockout (cKO) of Pten, Tsc1, and Tsc2 led to initiation and progression of mouse prostatic neoplasia hyperplasia (mPIN). Akt1 transgenic mice developed more aggressive mPINs than mice with Tsc1 or Tsc2 single-cKO, but the effect was more moderate than that for Pten single-cKO or Tsc1/Tsc2 double-cKO mice. Functional analyses showed that Pten single-cKO, AKT1 activation, and Tsc1/Tsc2 double-cKO induced cell proliferation more than Tsc1 or Tsc2 single-cKO, but only Pten single-cKO and AKT1 activation reduced epithelial adhesion. All cKO or AKT1 activation enhanced the phosphorylation of p-S6 (S235/236) but only Pten single-cKO and Tsc1/Tsc2 double-cKO enhanced the phosphorylation of p-AKT (S473) and p-4EBP1 (T37/46/70). In human prostate cancers, PTEN, but not AKT1, TSC1, or TSC2 had frequent genetic alterations. However, as key signaling nodes, AKT1, TSC1, and TSC2 may be responsible for PTEN loss-mediated tumor initiation and progression. CONCLUSION: Our results for genetically engineered mouse models suggest a differential role of the PI3K/AKT/mTOR signaling nodes in prostate cancer initiation and progression, but the underlying molecular mechanisms remain unaddressed.
Assuntos
Fosfatidilinositol 3-Quinases , Neoplasias da Próstata , Masculino , Humanos , Camundongos , Animais , Mutação , Transdução de Sinais , Neoplasias da Próstata/genética , Modelos Animais , Serina-Treonina Quinases TORRESUMO
Eif2ak4, a susceptibility gene for type 2 diabetes, encodes GCN2, a molecule activated by amino acid deficiency. Mutations or deletions in GCN2 in pancreatic ß-cells increase mTORC1 activity by decreasing Sestrin2 expression in a TSC2-independent manner. In this study, we searched for molecules downstream of GCN2 that suppress mTORC1 activity in a TSC2-dependent manner. To do so, we used a pull-down assay to identify molecules that competitively inhibit the binding of the T1462 phosphorylation site of TSC2 to 14-3-3. l-asparaginase was identified. Although l-asparaginase is frequently used as an anticancer drug for acute lymphoblastic leukemia, little is known about endogenous l-asparaginase. l-Asparaginase, which is expressed downstream of GCN2, was found to bind 14-3-3 and thereby to inhibit its binding to the T1462 phosphorylation site of TSC2 and contribute to TSC2 activation and mTORC1 inactivation upon TSC2 dephosphorylation. Further investigation of the regulation of mTORC1 activity in pancreatic ß-cells by l-asparaginase should help to elucidate the mechanism of diabetes and insulin secretion failure during anticancer drug use.