Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Brain ; 147(4): 1321-1330, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38412555

RESUMO

The pathophysiological underpinnings of critically disrupted brain connectomes resulting in coma are poorly understood. Inflammation is potentially an important but still undervalued factor. Here, we present a first-in-human prospective study using the 18-kDa translocator protein (TSPO) radioligand 18F-DPA714 for PET imaging to allow in vivo neuroimmune activation quantification in patients with coma (n = 17) following either anoxia or traumatic brain injuries in comparison with age- and sex-matched controls. Our findings yielded novel evidence of an early inflammatory component predominantly located within key cortical and subcortical brain structures that are putatively implicated in consciousness emergence and maintenance after severe brain injury (i.e. mesocircuit and frontoparietal networks). We observed that traumatic and anoxic patients with coma have distinct neuroimmune activation profiles, both in terms of intensity and spatial distribution. Finally, we demonstrated that both the total amount and specific distribution of PET-measurable neuroinflammation within the brain mesocircuit were associated with the patient's recovery potential. We suggest that our results can be developed for use both as a new neuroprognostication tool and as a promising biometric to guide future clinical trials targeting glial activity very early after severe brain injury.


Assuntos
Lesões Encefálicas , Coma Pós-Traumatismo da Cabeça , Humanos , Coma/complicações , Coma Pós-Traumatismo da Cabeça/complicações , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Encéfalo/metabolismo , Lesões Encefálicas/complicações , Hipóxia/complicações , Receptores de GABA/metabolismo
2.
Eur J Nucl Med Mol Imaging ; 51(8): 2371-2381, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38396261

RESUMO

PURPOSE: According to the World Health Organization classification for tumors of the central nervous system, mutation status of the isocitrate dehydrogenase (IDH) genes has become a major diagnostic discriminator for gliomas. Therefore, imaging-based prediction of IDH mutation status is of high interest for individual patient management. We compared and evaluated the diagnostic value of radiomics derived from dual positron emission tomography (PET) and magnetic resonance imaging (MRI) data to predict the IDH mutation status non-invasively. METHODS: Eighty-seven glioma patients at initial diagnosis who underwent PET targeting the translocator protein (TSPO) using [18F]GE-180, dynamic amino acid PET using [18F]FET, and T1-/T2-weighted MRI scans were examined. In addition to calculating tumor-to-background ratio (TBR) images for all modalities, parametric images quantifying dynamic [18F]FET PET information were generated. Radiomic features were extracted from TBR and parametric images. The area under the receiver operating characteristic curve (AUC) was employed to assess the performance of logistic regression (LR) classifiers. To report robust estimates, nested cross-validation with five folds and 50 repeats was applied. RESULTS: TBRGE-180 features extracted from TSPO-positive volumes had the highest predictive power among TBR images (AUC 0.88, with age as co-factor 0.94). Dynamic [18F]FET PET reached a similarly high performance (0.94, with age 0.96). The highest LR coefficients in multimodal analyses included TBRGE-180 features, parameters from kinetic and early static [18F]FET PET images, age, and the features from TBRT2 images such as the kurtosis (0.97). CONCLUSION: The findings suggest that incorporating TBRGE-180 features along with kinetic information from dynamic [18F]FET PET, kurtosis from TBRT2, and age can yield very high predictability of IDH mutation status, thus potentially improving early patient management.


Assuntos
Glioma , Isocitrato Desidrogenase , Imageamento por Ressonância Magnética , Mutação , Tomografia por Emissão de Pósitrons , Receptores de GABA , Humanos , Feminino , Receptores de GABA/genética , Receptores de GABA/metabolismo , Masculino , Pessoa de Meia-Idade , Isocitrato Desidrogenase/genética , Tomografia por Emissão de Pósitrons/métodos , Glioma/diagnóstico por imagem , Glioma/genética , Adulto , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Idoso , Tirosina/análogos & derivados , Processamento de Imagem Assistida por Computador , Radiômica
3.
Alzheimers Dement ; 20(4): 2397-2407, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38298155

RESUMO

INTRODUCTION: Evidence suggests microglial activation precedes regional tau and neurodegeneration in Alzheimer's disease (AD). We characterized microglia with translocator protein (TSPO) positron emission tomography (PET) within an AD progression model where global amyloid beta (Aß) precedes local tau and neurodegeneration, resulting in cognitive impairment. METHODS: Florbetaben, PBR28, and MK-6240 PET, T1 magnetic resonance imaging, and cognitive measures were performed in 19 cognitively unimpaired older adults and 22 patients with mild cognitive impairment or mild AD to examine associations among microglia activation, Aß, tau, and cognition, adjusting for neurodegeneration. Mediation analyses evaluated the possible role of microglial activation along the AD progression model. RESULTS: Higher PBR28 uptake was associated with higher Aß, higher tau, and lower MMSE score, independent of neurodegeneration. PBR28 mediated associations between tau in early and middle Braak stages, between tau and neurodegeneration, and between neurodegeneration and cognition. DISCUSSION: Microglia are associated with AD pathology and cognition and may mediate relationships between subsequent steps in AD progression.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Microglia/metabolismo , Proteínas tau/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Disfunção Cognitiva/metabolismo , Progressão da Doença , Receptores de GABA/metabolismo
4.
Neuroimage ; 273: 120068, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37003447

RESUMO

Quantitative susceptibility mapping (QSM) has been used to study susceptibility changes that may occur based on tissue composition and mineral deposition. Iron is a primary contributor to changes in magnetic susceptibility and of particular interest in applications of QSM to neurodegeneration and aging. Iron can contribute to neurodegeneration through inflammatory processes and via interaction with aggregation of disease-related proteins. To better understand the local susceptibility changes observed on QSM, its signal has been studied in association with other imaging metrics such as positron emission tomography (PET). The associations of QSM and PET may provide insight into the pathophysiology of disease processes, such as the role of iron in aging and neurodegeneration, and help to determine the diagnostic utility of QSM as an indirect indicator of disease processes typically evaluated with PET. In this review we discuss the proposed mechanisms and summarize prior studies of the associations of QSM and amyloid PET, tau PET, TSPO PET, FDG-PET, 15O-PET, and F-DOPA PET in evaluation of neurologic diseases with a focus on aging and neurodegeneration.


Assuntos
Envelhecimento , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Ferro/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Receptores de GABA/metabolismo
5.
Mov Disord ; 38(5): 743-754, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36853618

RESUMO

OBJECTIVE: To assess the presence of brain and systemic inflammation in subjects newly diagnosed with Parkinson's disease (PD). BACKGROUND: Evidence for a pathophysiologic role of inflammation in PD is growing. However, several key gaps remain as to the role of inflammation in PD, including the extent of immune activation at early stages, potential effects of PD treatments on inflammation and whether pro-inflammatory signals are associated with clinical features and/or predict more rapid progression. METHODS: We enrolled subjects with de novo PD (n = 58) and age-matched controls (n = 62). Subjects underwent clinical assessments, including the Movement Disorder Society-United Parkinson's Disease rating scale (MDS-UPDRS). Comprehensive cognitive assessment meeting MDS Level II criteria for mild cognitive impairment testing was performed. Blood was obtained for flow cytometry and cytokine/chemokine analyses. Subjects underwent imaging with 18 F-DPA-714, a translocator protein 18kd ligand, and lumbar puncture if eligible and consented. RESULTS: Baseline demographics and medical history were comparable between groups. PD subjects showed significant differences in University of Pennsylvania Smell Identification Test, Schwab and England Activities of Daily Living, Scales for Outcomes in PD autonomic dysfunction, and MDS-UPDRS scores. Cognitive testing demonstrated significant differences in cognitive composite, executive function, and visuospatial domain scores at baseline. Positron emission tomography imaging showed increased 18 F-DPA-714 signal in PD subjects. 18 F-DPA-714 signal correlated with several cognitive measures and some chemokines. CONCLUSIONS: 18 F-DPA-714 imaging demonstrated increased central inflammation in de novo PD subjects compared to controls. Longitudinal follow-up will be important to determine whether the presence of inflammation predicts cognitive decline. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Humanos , Atividades Cotidianas , Encéfalo/metabolismo , Função Executiva , Progressão da Doença
6.
Brain Behav Immun ; 113: 415-431, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37543251

RESUMO

INTRODUCTION: The 18-kDa translocator protein (TSPO) is increasingly recognized as a molecular target for PET imaging of inflammatory responses in various central nervous system (CNS) disorders. However, the reported sensitivity and specificity of TSPO PET to identify brain inflammatory processes appears to vary greatly across disorders, disease stages, and applied quantification methods. To advance TSPO PET as a potential biomarker to evaluate brain inflammation and anti-inflammatory therapies, a better understanding of its applicability across disorders is needed. We conducted a transdiagnostic systematic review and meta-analysis of all in vivo human TSPO PET imaging case-control studies in the CNS. Specifically, we investigated the direction, strength, and heterogeneity associated with the TSPO PET signal across disorders in pre-specified brain regions, and explored the demographic and methodological sources of heterogeneity. METHODS: We searched for English peer-reviewed articles that reported in vivo human case-control TSPO PET differences. We extracted the demographic details, TSPO PET outcomes, and technical variables of the PET procedure. A random-effects meta-analysis was applied to estimate case-control standardized mean differences (SMD) of the TSPO PET signal in the lobar/whole-brain cortical grey matter (cGM), thalamus, and cortico-limbic circuitry between different illness categories. Heterogeneity was evaluated with the I2 statistic and explored using subgroup and meta-regression analyses for radioligand generation, PET quantification method, age, sex, and publication year. Significance was set at the False Discovery Rate (FDR)-corrected P < 0.05. RESULTS: 156 individual case-control studies were included in the systematic review, incorporating data for 2381 healthy controls and 2626 patients. 139 studies documented meta-analysable data and were grouped into 11 illness categories. Across all the illness categories, we observed a significantly higher TSPO PET signal in cases compared to controls for the cGM (n = 121 studies, SMD = 0.358, PFDR < 0.001, I2 = 68%), with a significant difference between the illness categories (P = 0.004). cGM increases were only significant for Alzheimer's disease (SMD = 0.693, PFDR < 0.001, I2 = 64%) and other neurodegenerative disorders (SMD = 0.929, PFDR < 0.001, I2 = 73%). Cortico-limbic increases (n = 97 studies, SMD = 0.541, P < 0.001, I2 = 67%) were most prominent for Alzheimer's disease, mild cognitive impairment, other neurodegenerative disorders, mood disorders and multiple sclerosis. Thalamic involvement (n = 79 studies, SMD = 0.393, P < 0.001, I2 = 71%) was observed for Alzheimer's disease, other neurodegenerative disorders, multiple sclerosis, and chronic pain and functional disorders (all PFDR < 0.05). Main outcomes for systemic immunological disorders, viral infections, substance use disorders, schizophrenia and traumatic brain injury were not significant. We identified multiple sources of between-study variance to the TSPO PET signal including a strong transdiagnostic effect of the quantification method (explaining 25% of between-study variance; VT-based SMD = 0.000 versus reference tissue-based studies SMD = 0.630; F = 20.49, df = 1;103, P < 0.001), patient age (9% of variance), and radioligand generation (5% of variance). CONCLUSION: This study is the first overarching transdiagnostic meta-analysis of case-control TSPO PET findings in humans across several brain regions. We observed robust increases in the TSPO signal for specific types of disorders, which were widespread or focal depending on illness category. We also found a large and transdiagnostic horizontal (positive) shift of the effect estimates of reference tissue-based compared to VT-based studies. Our results can support future studies to optimize experimental design and power calculations, by taking into account the type of disorder, brain region-of-interest, radioligand, and quantification method.

7.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37373253

RESUMO

Neuroinflammation is one disease hallmark on the road to neurodegeneration in primary tauopathies. Thus, immunomodulation might be a suitable treatment strategy to delay or even prevent the occurrence of symptoms and thus relieve the burden for patients and caregivers. In recent years, the peroxisome proliferator-activated receptor γ (PPARγ) has received increasing attention as it is immediately involved in the regulation of the immune system and can be targeted by the anti-diabetic drug pioglitazone. Previous studies have shown significant immunomodulation in amyloid-ß (Aß) mouse models by pioglitazone. In this study, we performed long-term treatment over six months in P301S mice as a tauopathy model with either pioglitazone or placebo. We performed serial 18 kDa translocator protein positron-emission-tomography (TSPO-PET) imaging and terminal immunohistochemistry to assess microglial activation during treatment. Tau pathology was quantified via immunohistochemistry at the end of the study. Long-term pioglitazone treatment had no significant effect on TSPO-PET, immunohistochemistry read-outs of microglial activation, or tau pathology levels in P301S mice. Thus, we conclude that pioglitazone modifies the time course of Aß-dependent microglial activation, but does not significantly modulate microglial activation in response to tau pathology.


Assuntos
Doença de Alzheimer , Tauopatias , Camundongos , Animais , Pioglitazona/farmacologia , Microglia/metabolismo , Tauopatias/metabolismo , Peptídeos beta-Amiloides/metabolismo , PPAR gama/metabolismo , Camundongos Transgênicos , Proteínas tau/metabolismo , Modelos Animais de Doenças , Doença de Alzheimer/metabolismo
8.
Eur J Nucl Med Mol Imaging ; 49(9): 3162-3172, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35165788

RESUMO

PURPOSE: Chronic traumatic encephalopathy refers to a neurodegenerative disease resulting from repetitive head injury of participants in contact sports. Similar to other neurodegenerative diseases, neuroinflammation is thought to play a role in the onset and progression of the disease. Limited knowledge is available regarding the neuroinflammatory consequences of repetitive head injury in currently active contact sports athletes. PET imaging of the 18-kDa translocator protein (TSPO) allows quantification of microglial activation in vivo, a marker of neuroinflammation. METHODS: Eleven rank A kickboxers and 11 age-matched controls underwent TSPO PET using [11C]-PK11195, anatomical MRI, diffusion tensor imaging, and neuropsychological testing. Relevant imaging parameters were derived and correlated with the outcomes of the neuropsychological testing. RESULTS: On a group level, no statistically significant differences were detected in non-displaceable binding potential (BPND) using PET. Individually, 3 kickboxers showed increased BPNDs in widespread regions of the brain without a correlation with other modalities. Increased FA was observed in the superior corona radiata bilaterally. DTI parameters in other regions did not differ between groups. CONCLUSION: Despite negative results on a group level, individual results suggest that neuroinflammation may be present as a consequence of repetitive head injury in active kickboxers. Future studies using a longitudinal design may determine whether the observed TSPO upregulation is related to the future development of neuropsychiatric symptoms.


Assuntos
Traumatismos em Atletas , Traumatismos Craniocerebrais , Doenças Neurodegenerativas , Doenças Neuroinflamatórias , Traumatismos em Atletas/diagnóstico por imagem , Encéfalo/metabolismo , Traumatismos Craniocerebrais/diagnóstico por imagem , Traumatismos Craniocerebrais/metabolismo , Imagem de Tensor de Difusão , Humanos , Artes Marciais/lesões , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neuroinflamatórias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/metabolismo
9.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293329

RESUMO

Diffuse intrinsic pontine gliomas (DIPG), the first cause of cerebral pediatric cancer death, will greatly benefit from specific and non-invasive biomarkers for patient follow-up and monitoring of drug efficacy. Since biopsies are challenging for brain tumors, molecular imaging may be a technique of choice to target and follow tumor evolution. So far, MR remains the imaging technique of reference for DIPG, although it often fails to define the extent of tumors, an essential parameter for therapeutic efficacy assessment. Thanks to its high sensitivity, positron emission tomography (PET) offers a unique way to target specific biomarkers in vivo. We demonstrated in a patient-derived orthotopic xenograft (PDOX) model in the rat that the translocator protein of 18 kDa (TSPO) may be a promising biomarker for monitoring DIPG tumors. We studied the distribution of 18F-DPA-714, a TSPO radioligand, in rats inoculated with HSJD-DIPG-007 cells. The primary DIPG human cell line HSJD-DIPG-007 highly represents this pediatric tumor, displaying the most prevalent DIPG mutations, H3F3A (K27M) and ACVR1 (R206H). Kinetic modeling and parametric imaging using the brain 18F-DPA-714 PET data enabled specific delineation of the DIPG tumor area, which is crucial for radiotherapy dose management.


Assuntos
Astrocitoma , Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Criança , Animais , Humanos , Ratos , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/metabolismo , Linhagem Celular Tumoral , Neoplasias do Tronco Encefálico/diagnóstico por imagem , Neoplasias do Tronco Encefálico/genética , Tomografia por Emissão de Pósitrons/métodos , Proteínas de Transporte , Modelos Animais de Doenças , Biomarcadores , Receptores de GABA/genética , Receptores de GABA/metabolismo , Receptores de GABA-A
10.
Clin Exp Immunol ; 206(3): 301-313, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34510431

RESUMO

Neuropathology studies of amyotrophic lateral sclerosis (ALS) and animal models of ALS reveal a strong association between aberrant protein accumulation and motor neurone damage, as well as activated microglia and astrocytes. While the role of neuroinflammation in the pathology of ALS is unclear, imaging studies of the central nervous system (CNS) support the idea that innate immune activation occurs early in disease in both humans and rodent models of ALS. In addition, emerging studies also reveal changes in monocytes, macrophages and lymphocytes in peripheral blood as well as at the neuromuscular junction. To more clearly understand the association of neuroinflammation (innate and adaptive) with disease progression, the use of biomarkers and imaging modalities allow monitoring of immune parameters in the disease process. Such approaches are important for patient stratification, selection and inclusion in clinical trials, as well as to provide readouts of response to therapy. Here, we discuss the different imaging modalities, e.g. magnetic resonance imaging, magnetic resonance spectroscopy and positron emission tomography as well as other approaches, including biomarkers of inflammation in ALS, that aid the understanding of the underlying immune mechanisms associated with motor neurone degeneration in ALS.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/patologia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Esclerose Lateral Amiotrófica/imunologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Progressão da Doença , Humanos , Inflamação/patologia , Doenças Neuroinflamatórias/diagnóstico por imagem , Doenças Neuroinflamatórias/patologia
11.
Eur J Nucl Med Mol Imaging ; 48(1): 40-52, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32378022

RESUMO

PURPOSE: To evaluate the feasibility and sensitivity of multimodality PET/CT and MRI imaging for non-invasive characterization of brain microglial/macrophage activation occurring during the acute phase in a mouse model of relapsing remitting multiple sclerosis (RR-MS) using [18F]DPA-714, a selective radioligand for the 18-kDa translocator protein (TSPO), superparamagnetic iron oxide particles (SPIO), and ex vivo immunohistochemistry. METHODS: Experimental autoimmune encephalomyelitis (EAE) was induced in female SJL/J mice by immunization with PLP139-151. Seven symptomatic EAE mice and five controls underwent both PET/CT and MRI studies between 11 and 14 days post-immunization. SPIO was injected i.v. in the same animals immediately after [18F]DPA-714 and MRI acquisition was performed after 24 h. Regional brain volumes were defined according to a mouse brain atlas on co-registered PET and SPIO-MRI images. [18F]DPA-714 standardized uptake value (SUV) ratios (SUVR), with unaffected neocortex as reference, and SPIO fractional volumes (SPIO-Vol) were generated. Both SUVR and SPIO-Vol values were correlated with the clinical score (CS) and among them. Five EAE and four control mice underwent immunohistochemical analysis with the aim of identifying activated microglia/macrophage and TSPO expressions. RESULTS: SUVR and SPIO-Vol values were significantly increased in EAE compared with controls in the hippocampus (p < 0.01; p < 0.02, respectively), thalamus (p < 0.02; p < 0.05, respectively), and cerebellum and brainstem (p < 0.02), while only SPIO-Vol was significantly increased in the caudate/putamen (p < 0.05). Both SUVR and SPIO-Vol values were positively significantly correlated with CS and among them in the same regions. TSPO/Iba1 and F4/80/Prussian blue staining immunohistochemistry suggests that increased activated microglia/macrophages underlay TSPO expression and SPIO uptake in symptomatic EAE mice. CONCLUSIONS: These preliminary results suggest that both activated microglia and infiltrated macrophages are present in vulnerable brain regions during the acute phase of PLP-EAE and contribute to disease severity. Both [18F]DPA-714-PET and SPIO-MRI appear suitable modalities for preclinical study of neuroinflammation in MS mice models.


Assuntos
Encefalomielite Autoimune Experimental , Animais , Encefalomielite Autoimune Experimental/diagnóstico por imagem , Feminino , Ativação de Macrófagos , Macrófagos , Imageamento por Ressonância Magnética , Camundongos , Microglia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Pirazóis , Pirimidinas
12.
J Neuroinflammation ; 15(1): 33, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402285

RESUMO

BACKGROUND: Positron emission tomography (PET) using translocator protein (TSPO) ligands has been used to detect neuroinflammatory processes in neurological disorders, including multiple sclerosis (MS). The aim of this study was to evaluate neuroinflammation in a mouse MS model (EAE) using TSPO-PET with 18F-VC701, in combination with magnetic resonance imaging (MRI). METHODS: MOG35-55/CFA and pertussis toxin protocol was used to induce EAE in C57BL/6 mice. Disease progression was monitored daily, whereas MRI evaluation was performed at 1, 2, and 4 weeks post-induction. Microglia activation was assessed in vivo by 18F-VC701 PET at the time of maximum disease score and validated by radioligand ex vivo distribution and immunohistochemistry at 2 and 4 weeks post-immunization. RESULTS: In vivo and ex vivo analyses show that 18F-VC701 significantly accumulates within the central nervous system (CNS), particularly in the cortex, striatum, hippocampus, cerebellum, and cervical spinal cord of EAE compared to control mice, at 2 weeks post-immunization. MRI confirmed the presence of focal brain lesions at 2 weeks post-immunization in both T1-weighted and T2 images. Of note, MRI abnormalities attenuated in later post-immunization phase. Neuropathological analysis confirmed the presence of microglial activation in EAE mice, consistent with the in vivo increase of 18F-VC701 uptake. CONCLUSION: Increase of 18F-VC701 uptake in EAE mice is strongly associated with the presence of microglia activation in the acute phase of the disease. The combined use of TSPO-PET and MRI provided complementary evidence on the ongoing disease process, thus representing an attractive new tool to investigate neuronal damage and neuroinflammation at preclinical levels.


Assuntos
Radioisótopos de Flúor/metabolismo , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Quinolinas/metabolismo , Sequência de Aminoácidos , Animais , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/diagnóstico por imagem , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL
13.
Epilepsia ; 59(6): 1234-1244, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29672844

RESUMO

OBJECTIVE: Mesiotemporal lobe epilepsy is the most common type of drug-resistant partial epilepsy, with a specific history that often begins with status epilepticus due to various neurological insults followed by a silent period. During this period, before the first seizure occurs, a specific lesion develops, described as unilateral hippocampal sclerosis (HS). It is still challenging to determine which drugs, administered at which time point, will be most effective during the formation of this epileptic process. Neuroinflammation plays an important role in pathophysiological mechanisms in epilepsy, and therefore brain inflammation biomarkers such as translocator protein 18 kDa (TSPO) can be potent epilepsy biomarkers. TSPO is associated with reactive astrocytes and microglia. A unilateral intrahippocampal kainate injection mouse model can reproduce the defining features of human temporal lobe epilepsy with unilateral HS and the pattern of chronic pharmacoresistant temporal seizures. We hypothesized that longitudinal imaging using TSPO positron emission tomography (PET) with 18 F-DPA-714 could identify optimal treatment windows in a mouse model during the formation of HS. METHODS: The model was induced into the right dorsal hippocampus of male C57/Bl6 mice. Micro-PET/computed tomographic scanning was performed before model induction and along the development of the HS at 7 days, 14 days, 1 month, and 6 months. In vitro autoradiography and immunohistofluorescence were performed on additional mice at each time point. RESULTS: TSPO PET uptake reached peak at 7 days and mostly related to microglial activation, whereas after 14 days, reactive astrocytes were shown to be the main cells expressing TSPO, reflected by a continuing increased PET uptake. SIGNIFICANCE: TSPO-targeted PET is a highly potent longitudinal biomarker of epilepsy and could be of interest to determine the therapeutic windows in epilepsy and to monitor response to treatment.


Assuntos
Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Neuroglia/patologia , Tomografia por Emissão de Pósitrons/métodos , Animais , Autorradiografia , Antígeno CD11b/metabolismo , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/induzido quimicamente , Agonistas de Aminoácidos Excitatórios/toxicidade , Fluordesoxiglucose F18/farmacocinética , Proteína Glial Fibrilar Ácida/metabolismo , Técnicas In Vitro , Ácido Caínico/toxicidade , Estudos Longitudinais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Pirazóis/farmacocinética , Pirimidinas/farmacocinética , Receptores de GABA/metabolismo , Estatísticas não Paramétricas , Fatores de Tempo , Tomógrafos Computadorizados
14.
Eur J Nucl Med Mol Imaging ; 44(13): 2230-2238, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28821920

RESUMO

OBJECTIVE: The 18-kDa mitochondrial translocator protein (TSPO) was reported to be upregulated in gliomas. 18F-GE-180 is a novel 3rd generation TSPO receptor ligand with improved target-to-background contrast compared to previous tracers. In this pilot study, we compared PET imaging with 18F-GE-180 and MRI of patients with untreated and recurrent pretreated glioblastoma. METHODS: Eleven patients with histologically confirmed IDH wildtype gliomas (10 glioblastomas, 1 anaplastic astrocytoma) underwent 18F-GE-180 PET at initial diagnosis or recurrence. The PET parameters mean background uptake (SUVBG), maximal tumour-to-background ratio (TBRmax) and PET volume using different thresholds (SUVBG × 1.6, 1.8 and 2.0) were evaluated in the 60-80 min p.i. summation images. The different PET volumes were compared to the contrast-enhancing tumour volume on MRI. RESULTS: All gliomas were positive on 18F-GE-180 PET and were depicted with extraordinarily high tumour-to-background contrast (median SUVBG 0.47 (0.37-0.93), TBRmax 6.61 (3.88-9.07)). 18F-GE-180 uptake could be found even in areas without contrast enhancement on MRI, leading to significantly larger PET volumes than MRI-based volumes (median 90.5, 74.5, and 63.8 mL vs. 31.0 mL; p = 0.003, 0.004, 0.013). In percentage difference, the PET volumes were on average 179%, 135%, and 90% larger than the respective MRI volumes. The median spatial volumetric correlation (Sørensen-Dice coefficient) of PET volumes and MRI volumes prior to radiotherapy was 0.48, 0.54, and 0.58. CONCLUSION: 18F-GE-180 PET provides a remarkably high tumour-to-background contrast in untreated and pretreated glioblastoma and shows tracer uptake even beyond contrast enhancement on MRI. To what extent 18F-GE-180 uptake reflects the tumour extent of human gliomas and inflammatory cells remains to be evaluated in future prospective studies with guided stereotactic biopsies and correlation of histopathological results.


Assuntos
Carbazóis , Glioblastoma/diagnóstico por imagem , Glioblastoma/metabolismo , Tomografia por Emissão de Pósitrons , Receptores de GABA/metabolismo , Feminino , Humanos , Ligantes , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Recidiva
15.
Int J Mol Sci ; 18(5)2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28475165

RESUMO

Neurodegeneration elicits neuroinflammatory responses to kill pathogens, clear debris and support tissue repair. Neuroinflammation is a dynamic biological response characterized by the recruitment of innate and adaptive immune system cells in the site of tissue damage. Resident microglia and infiltrating immune cells partake in the restoration of central nervous system homeostasis. Nevertheless, their activation may shift to chronic and aggressive responses, which jeopardize neuron survival and may contribute to the disease process itself. Positron Emission Tomography (PET) molecular imaging represents a unique tool contributing to in vivo investigating of neuroinflammatory processes in patients. In the present review, we first provide an overview on the molecular basis of neuroinflammation in neurodegenerative diseases with emphasis on microglia activation, astrocytosis and the molecular targets for PET imaging. Then, we review the state-of-the-art of in vivo PET imaging for neuroinflammation in dementia conditions associated with different proteinopathies, such as Alzheimer's disease, frontotemporal lobar degeneration and Parkinsonian spectrum.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Humanos , Inflamação/diagnóstico por imagem , Microglia/metabolismo , Microglia/patologia , Receptores de GABA/metabolismo
16.
Glia ; 63(7): 1126-37, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25690758

RESUMO

Neuroinflammation and the accompanying activation of glial cells is an important feature of many neurodegenerative conditions. It is known that factors such as peripheral infections and stress can influence immune processes in the brain. However, the effect of these stressors on astrocyte activation in vivo remains elusive. In this study, transgenic Gfap-luc mice expressing the luciferase gene under the transcriptional control of the glial fibrillary acidic protein promoter were used to quantify the kinetics of in vivo astrocyte activation following immune challenges relevant to clinical inflammation. It was found that astrocytes respond rapidly to peripheral immune activation elicited by either bacterial lipopolysaccharide (LPS) or the viral mimetic polyinosinic:polycytidylic acid (poly(I:C)). By measuring bioluminescence and 18-kDa translocator protein radioligand binding in the same animal it was observed that LPS induces both astrocyte as well as microglial activation at 6 h post-administration. Furthermore, the astrocyte response decreased upon repeated systemic LPS injections, indicating development of tolerance to the LPS challenge. Finally, restraining Gfap-luc mice for 1 h daily on 5 consecutive days did not affect brain bioluminescence, thereby indicating that sub-chronic stress does not influence astrocyte activation under unchallenged conditions. However, stressed animals showed a reduced response to a subsequent systemic LPS injection, suggesting that the immune system is compromised in these animals. Here, we demonstrate that Gfap-luc mice can be used to study astrocyte activation in response to stimuli relevant for clinical inflammation and that this approach may provide a more complete characterization of existing and novel models of neuroinflammation


Assuntos
Astrócitos/fisiologia , Encéfalo/imunologia , Inflamação/fisiopatologia , Neuroimunomodulação/fisiologia , Estresse Psicológico/imunologia , Animais , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida , Lipopolissacarídeos , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes , Masculino , Camundongos Transgênicos , Microglia/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Poli I-C , Distribuição Aleatória , Restrição Física
17.
Biochimie ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38734123

RESUMO

Translocator protein (TSPO) is involved in several cellular mechanisms such as steroidogenesis, immunomodulation, cell proliferation and differentiation. Overexpressed in several neurodegenerative diseases and brain cancer, TSPO radioligands have been developed over the last 20 years in positron emission tomography (PET) imaging. Recently, TSPO radioligands have extended beyond their initial application due to their specific binding to activated macrophages, making them a compelling biomarker for deciphering the intricacies of the tumor microenvironment (TME). In this review, we synthesized recent progress from the evaluation of TSPO-specific PET tracers in various peripheral tumor models and highlighted the hurdles and limitations associated with heterogeneous uptake in healthy tissue and tumor regions to achieve the clinical development of such a radiotracer.

18.
J Alzheimers Dis ; 99(1): 307-319, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38669537

RESUMO

Background: Alzheimer's disease (AD) pathology is considered to begin in the brainstem, and cerebral microglia are known to play a critical role in AD pathogenesis, yet little is known about brainstem microglia in AD. Translocator protein (TSPO) PET, sensitive to activated microglia, shows high signal in dorsal brainstem in humans, but the precise location and clinical correlates of this signal are unknown. Objective: To define age and AD associations of brainstem TSPO PET signal in humans. Methods: We applied new probabilistic maps of brainstem nuclei to quantify PET-measured TSPO expression over the whole brain including brainstem in 71 subjects (43 controls scanned using 11C-PK11195; 20 controls and 8 AD subjects scanned using 11C-PBR28). We focused on inferior colliculi (IC) because of visually-obvious high signal in this region, and potential relevance to auditory dysfunction in AD. We also assessed bilateral cortex. Results: TSPO expression was normally high in IC and other brainstem regions. IC TSPO was decreased with aging (p = 0.001) and in AD subjects versus controls (p = 0.004). In cortex, TSPO expression was increased with aging (p = 0.030) and AD (p = 0.033). Conclusions: Decreased IC TSPO expression with aging and AD-an opposite pattern than in cortex-highlights underappreciated regional heterogeneity in microglia phenotype, and implicates IC in a biological explanation for strong links between hearing loss and AD. Unlike in cerebrum, where TSPO expression is considered pathological, activated microglia in IC and other brainstem nuclei may play a beneficial, homeostatic role. Additional study of brainstem microglia in aging and AD is needed.


Assuntos
Envelhecimento , Doença de Alzheimer , Tronco Encefálico , Microglia , Tomografia por Emissão de Pósitrons , Receptores de GABA , Humanos , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Microglia/metabolismo , Microglia/patologia , Masculino , Idoso , Feminino , Envelhecimento/patologia , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Receptores de GABA/metabolismo , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Isoquinolinas , Adulto
19.
Biomedicines ; 12(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38255293

RESUMO

BACKGROUND: The translocator protein (TSPO) has been proven to have great potential as a target for the positron emission tomography (PET) imaging of glioblastoma. However, there is an ongoing debate about the potential various sources of the TSPO PET signal. This work investigates the impact of the inoculation-driven immune response on the PET signal in experimental orthotopic glioblastoma. METHODS: Serial [18F]GE-180 and O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) PET scans were performed at day 7/8 and day 14/15 after the inoculation of GL261 mouse glioblastoma cells (n = 24) or saline (sham, n = 6) into the right striatum of immunocompetent C57BL/6 mice. An additional n = 25 sham mice underwent [18F]GE-180 PET and/or autoradiography (ARG) at days 7, 14, 21, 28, 35, 50 and 90 in order to monitor potential reactive processes that were solely related to the inoculation procedure. In vivo imaging results were directly compared to tissue-based analyses including ARG and immunohistochemistry. RESULTS: We found that the inoculation process represents an immunogenic event, which significantly contributes to TSPO radioligand uptake. [18F]GE-180 uptake in GL261-bearing mice surpassed [18F]FET uptake both in the extent and the intensity, e.g., mean target-to-background ratio (TBRmean) in PET at day 7/8: 1.22 for [18F]GE-180 vs. 1.04 for [18F]FET, p < 0.001. Sham mice showed increased [18F]GE-180 uptake at the inoculation channel, which, however, continuously decreased over time (e.g., TBRmean in PET: 1.20 at day 7 vs. 1.09 at day 35, p = 0.04). At the inoculation channel, the percentage of TSPO/IBA1 co-staining decreased, whereas TSPO/GFAP (glial fibrillary acidic protein) co-staining increased over time (p < 0.001). CONCLUSION: We identify the inoculation-driven immune response to be a relevant contributor to the PET signal and add a new aspect to consider for planning PET imaging studies in orthotopic glioblastoma models.

20.
Mol Imaging Biol ; 26(2): 240-252, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38151582

RESUMO

PURPOSE: The degree and dynamic progression of neuroinflammation after traumatic spinal cord injuries (SCI) are crucial determinants of the severity of injury and potential for recovery. We used Positron Emission Tomography (PET) to monitor neuroinflammation longitudinally, correlating it with Chemical Exchange Saturation Transfer (CEST) Magnetic Resonance Imaging (MRI) and behavior in contusion-injured rats. These studies help validate CEST metrics and confirm how imaging may be used to evaluate the efficacy of therapies and understand their mechanisms of action. PROCEDURES: 12 SCI and 4 sham surgery rats were subjected to CEST MRI and PET-Translocator Protein (TSPO) scans for 8 weeks following injury. Z-spectra from the SCI were analyzed using a 5-Lorentzian pool model for fitting. Weekly motor and somatosensory behavior were correlated with imaging metrics, which were validated through post-mortem histological and immuo-staining using ionized calcium-binding adaptor protein-1 (iba-1, microglia) and glial fibrillary acidic protein (GFAP, astrocytes). RESULTS: PET-TSPO showed widespread inflammation and post-mortem histology confirmed the presence of activated microglia. Changes in CEST and nuclear Overhauser Effect (NOE) peaks at 3.5 ppm and -1.6 ppm respectively were largest within the first week after injury and more pronounced in rostral versus caudal segments. These temporal indices of neuroinflammation corresponded to the recovery of locomotor behaviors and somatic sensation in rats with moderate contusion injury. The results confirm that CEST MRI metrics are sensitive indices of states of neuroinflammation within injured spinal cords. CONCLUSIONS: The detection of dynamic spatiotemporal features of neuroinflammation progression underscores the importance of considering their timings and locations for neuroprotective and anti-inflammatory therapies. The availability of noninvasive MRI indices of neuroinflammation may facilitate clinical trials aimed at treatments that promote recovery after SCI.


Assuntos
Contusões , Traumatismos da Medula Espinal , Ratos , Animais , Doenças Neuroinflamatórias , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Medula Espinal/patologia , Inflamação/metabolismo , Proteínas de Transporte/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa