Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Genet Genomics ; 50(11): 895-908, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37709194

RESUMO

Exploitation of new gene resources and genetic networks contributing to the control of crop yield-related traits, such as plant height, grain size, and shape, may enable us to breed modern high-yielding wheat varieties through molecular methods. In this study, via ethylmethanesulfonate mutagenesis, we identify a wheat mutant plant, mu-597, that shows semi-dwarf plant architecture and round grain shape. Through bulked segregant RNA-seq and map-based cloning, the causal gene for the semi-dwarf phenotype of mu-597 is located. We find that a single-base mutation in the coding region of TaACTIN7-D (TaACT7-D), leading to a Gly-to-Ser (G65S) amino acid mutation at the 65th residue of the deduced TaACT7-D protein, can explain the semi-dwarfism and round grain shape of mu-597. Further evidence shows that the G65S mutation in TaACT7-D hinders the polymerization of actin from monomeric (G-actin) to filamentous (F-actin) status while attenuates wheat responses to multiple phytohormones, including brassinosteroids, auxin, and gibberellin. Together, these findings not only define a new semi-dwarfing gene resource that can be potentially used to design plant height and grain shape of bread wheat but also establish a direct link between actin structure modulation and phytohormone signal transduction.


Assuntos
Pão , Triticum , Mapeamento Cromossômico/métodos , Triticum/genética , Actinas/genética , Actinas/metabolismo , Melhoramento Vegetal , Fenótipo , Grão Comestível/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa