Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 103: 117681, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492541

RESUMO

This article includes a thorough examination of the inhibitory potential of quinoline-based drugs on cancer cells, as well as an explanation of their modes of action. Quinoline derivatives, due to their various chemical structures and biological activity, have emerged as interesting candidates in the search for new anticancer drugs. The review paper delves into the numerous effects of quinoline-based chemicals in cancer progression, including apoptosis induction, cell cycle modification, and interference with tumor-growth signaling pathways. Mechanistic insights on quinoline derivative interactions with biological targets enlightens their therapeutic potential. However, obstacles such as poor bioavailability, possible off-target effects, and resistance mechanisms make it difficult to get these molecules from benchside to bedside. Addressing these difficulties might be critical for realizing the full therapeutic potential of quinoline-based drugs in cancer treatment.


Assuntos
Antineoplásicos , Neoplasias , Quinolinas , Humanos , Antineoplásicos/química , Neoplasias/tratamento farmacológico , Morte Celular , Ciclo Celular , Quinolinas/química
2.
J Mol Graph Model ; 61: 141-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26245696

RESUMO

Recent developments in the target based cancer therapies have identified HSF1 as a novel non oncogenic drug target. The present study delineates the design and molecular docking evaluation of Rohinitib (RHT) - Cantharidin (CLA) based novel HSF1 inhibitors for target-based cancer therapy. Here, we exploited the pharmacophoric features of both the parent ligands for the design of novel hybrid HSF1 inhibitors. The RHT-CLA ligands were designed and characterized for ADME/Tox features, interaction with HSF1 DNA binding domain and their pharmacophoric features essential for interaction. From the results, amino acid residues Ala17, Phe61, His63, Asn65, Ser68, Arg71 and Gln72 were found crucial for HSF1 interaction with the Heat shock elements (HSE). The hybrid ligands had better affinity towards the HSF1 DNA binding domain, in comparison to RHT or CLA and interacted with most of the active site residues. Additionally, the HSF1-ligand complex had a reduced affinity towards HSE in comparison to native HSF1. Based on the results, ligand RC15 and RC17 were non carcinogenic, non mutagenic, completely biodegradable under aerobic conditions, had better affinity for HSF1 (1.132 and 1.129 folds increase respectively) and diminished the interaction of HSF1 with HSE (1.203 and 1.239 folds decrease respectively). The simulation analysis also suggested that the ligands formed a stable complex with HSF1, restraining the movement of active site residues. In conclusion, RHT-CLA hybrid ligands can be used as a potential inhibitor of HSF1 for non-oncogene target based cancer therapy.


Assuntos
Antineoplásicos/química , Benzofuranos/química , Cantaridina/química , Proteínas de Ligação a DNA/antagonistas & inibidores , Simulação de Acoplamento Molecular , Fatores de Transcrição/antagonistas & inibidores , Motivos de Aminoácidos , Domínio Catalítico , Proteínas de Ligação a DNA/química , Desenho de Fármacos , Fatores de Transcrição de Choque Térmico , Ensaios de Triagem em Larga Escala , Humanos , Ligantes , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Termodinâmica , Fatores de Transcrição/química , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa