Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Integr Neurosci ; 22(1): 13, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36722244

RESUMO

BACKGROUND: A close relationship exists between major depressive disorder (MDD) and diabetes mellitus. The metabolomic difference and similarity between patients with and without diabetes mellitus have not been well studied in the context of MDD. We aimed to examine these differences and common serum metabolomics patterns, pathways and biomarkers that can comprehensively reflect the pathogenetic difference and similarity between these MDD groups. METHODS: We performed a metabolomics analysis of serum samples of healthy controls (n = 6), patients with MDD and type 2 diabetes mellitus (n = 13), and patients with MDD without type 2 diabetes mellitus (n = 27). Metabolomics analysis was conducted using capillary electrophoresis Fourier transform mass spectrometry and a candidate compound was assigned to the 496 (290 cation, 206 anion) peaks. Moreover, we evaluated the sensitivity and specificity of the candidate biomarkers for distinguishing between MDD patients with or without type 2 diabetes mellitus. RESULTS: Principal component analysis revealed no clear distinction among the three groups, while naive partial least squares discriminant analysis yielded three relatively good and distinct populations based on the first principal component. Energy conversion by the tricarboxylic acid cycle represented the highest percentage among the top 30 positive factors of the first principal component, and glutamate metabolism and urea cycle represented the highest percentage among the top 30 negative factors of the first principal component. Synthesis and degradation of ketone bodies had high impact in MDD with type 2 diabetes mellitus group and taurine and hypotaurine metabolism had high impact in MDD without type 2 diabetes mellitus group for the pathway. CONCLUSIONS: Patterns of serum metabolites may be different among MDD with type 2 diabetes mellitus, MDD without type 2 diabetes mellitus, and healthy controls groups. Specifically, comorbid type 2 diabetes mellitus could affect metabolomics pathway and alter the distribution of serum metabolites in patients with MDD. These findings may shed light on the influence of the type 2 diabetes on the pathophysiology of MDD.


Assuntos
Transtorno Depressivo Maior , Diabetes Mellitus Tipo 2 , Humanos , Transtorno Depressivo Maior/complicações , Diabetes Mellitus Tipo 2/complicações , Corpos Cetônicos , Espectrometria de Massas
2.
J Alzheimers Dis ; 95(3): 995-1011, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638446

RESUMO

BACKGROUND: Cognitive decline is a common consequence of COVID-19, and studies suggest a link between COVID-19 and Alzheimer's disease (AD). However, the molecular mechanisms underlying this association remain unclear. OBJECTIVE: To understand the potential molecular mechanisms underlying the association between COVID-19 and AD development, and identify the potential genetic targets for pharmaceutical approaches to reduce the risk or delay the development of COVID-19-related neurological pathologies. METHODS: We analyzed transcriptome datasets of 638 brain samples using a novel Robust Rank Aggregation method, followed by functional enrichment, protein-protein, hub genes, gene-miRNA, and gene-transcription factor (TF) interaction analyses to identify molecular markers altered in AD and COVID-19 infected brains. RESULTS: Our analyses of frontal cortex from COVID-19 and AD patients identified commonly altered genes, miRNAs and TFs. Functional enrichment and hub gene analysis of these molecular changes revealed commonly altered pathways, including downregulation of the cyclic adenosine monophosphate (cAMP) signaling and taurine and hypotaurine metabolism, alongside upregulation of neuroinflammatory pathways. Furthermore, gene-miRNA and gene-TF network analyses provided potential up- and downstream regulators of identified pathways. CONCLUSION: We found that downregulation of cAMP signaling pathway, taurine metabolisms, and upregulation of neuroinflammatory related pathways are commonly altered in AD and COVID-19 pathogenesis, and may make COVID-19 patients more susceptible to cognitive decline and AD. We also identified genetic targets, regulating these pathways that can be targeted pharmaceutically to reduce the risk or delay the development of COVID-19-related neurological pathologies and AD.


Assuntos
Doença de Alzheimer , COVID-19 , MicroRNAs , Humanos , Doença de Alzheimer/patologia , Perfilação da Expressão Gênica , COVID-19/genética , MicroRNAs/genética , Fatores de Transcrição/genética , Desenvolvimento de Medicamentos , Taurina
3.
J Orthop Surg Res ; 18(1): 409, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277810

RESUMO

BACKGROUND: Glucocorticoid-induced osteoporosis (GIOP) is a disease in which long-term use of glucocorticoid causes bone loss, deterioration of bone microstructure and fracture. Currently, clinical drugs targeting this disease have certain side effects. There is still a need to find effective drugs with fewer side effects. The theory of traditional Chinese medicine suggests that YGJ has therapeutic effect on GIOP, but it has not been explained. Therefore, this study aims to explore the protective effect of YGJ on GIOP mouse models and elucidate the underlying mechanism through LC-MS-based metabolomics analysis. METHODS: The general condition of 8 week age male C57BL/6J mice was recorded after 8 weeks of treatment with dexamethasone (DEX) and YGJ. Bone-related parameters and bone morphology were determined by Micro-CT. HE staining was used to observe the pathological changes of bone tissue. Serum levels of bone metabolism markers were detected by ELISA. Liver metabolomics analysis was conducted to search for the significant markers of anti-GIOP of YGJ and the metabolic pathway affecting it. RESULTS: After treatment, YGJ significantly reversed the weight loss caused by DEX; increase the number of bone trabecular in ROI region, significantly improve the bone-related parameters of GIOP mice, and increase the levels of alkaline phosphatase and osteocalcin. In the study of metabolic mechanism, YGJ reversed 24 potential markers in GIOP mice. These included cortisol, 3-hydroxybutyric acid, taurine, esculin and uric acid, which are closely associated with osteoporosis. Topological analysis results showed that YGJ had the most significant effect on taurine and hypotaurine metabolism, with - log10 (P) > 2.0 and Impact > 0.4. CONCLUSIONS: Yi-Guan-Jian decoction can increase bone density and improve bone microstructure by regulating the levels of alkaline phosphatase and osteocalcin and reverse bone loss in GIOP mouse model. The underlying metabolic mechanism may be related to taurine and hypotaurine metabolic pathway.


Assuntos
Glucocorticoides , Osteoporose , Camundongos , Masculino , Animais , Glucocorticoides/efeitos adversos , Fosfatase Alcalina/metabolismo , Osteocalcina , Camundongos Endogâmicos C57BL , Osteoporose/induzido quimicamente , Osteoporose/diagnóstico por imagem , Osteoporose/tratamento farmacológico , Metabolômica/métodos , Taurina/efeitos adversos , Modelos Animais de Doenças
4.
World J Gastroenterol ; 28(34): 5007-5022, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36160643

RESUMO

BACKGROUND: Slow transit constipation (STC) is a common intestinal disease with increasing incidence. STC results from various factors, such as the enteric nervous system and metabolic changes. As a classical formula of traditional Chinese medicine, Ji-Chuan decoction (JCD) has been extensively and effectively used in STC treatment, yet its pharmacological mechanism remains unclear. AIM: To explore the integrated regulatory pattern of JCD against STC through hyphenated techniques from metabolism, network pharmacology and molecular methods. METHODS: STC model mice were generated by intragastric administration of compound diphenoxylate (10 mg/kg/d) for 14 d. The STC mice in the low dose of JCD (3.04 g/kg), middle dose of JCD (6.08 g/kg) and high dose of JCD (12.16 g/kg) groups were orally administered JCD solution once a day for 2 wk. The acetylcholine (ACH) level was examined by enzyme-linked immunosorbent assay. The pathological features of colon tissue were observed by hematoxylin and eosin staining. The differentially expressed metabolites and metabolic pathways were tested by nontargeted metabolomics. The main targets and core ingredients of JCD were identified by network pharmacology, and the expression of AKT was confirmed by immunohistochemistry. Finally, the pathways involved in JCD treatment were predicted using a combination of differentially expressed metabolites and targets, and intestinal glial cell apoptosis was demonstrated by immunofluorescence. RESULTS: JCD significantly promoted intestinal motility, increased the levels of the excitatory neurotransmitter ACH and reduced intestinal inflammation in STC mice. Untargeted metabolomics results showed that JCD significantly restored metabolic dysfunction and significantly affected taurine and hypotaurine metabolism. Network pharmacology and molecular experiments showed that JCD regulates AKT protein expression, and the core component is quercetin. Combined analysis demonstrated that apoptosis may be an important mechanism by which JCD relieves constipation. Further experiments showed that JCD reduced enteric glial cell (EGC) apoptosis. CONCLUSION: This work demonstrated that reducing EGC apoptosis may be the critical mechanism by which JCD treats STC. These findings call for further molecular research to facilitate the clinical application of JCD.


Assuntos
Acetilcolina , Difenoxilato , Animais , Apoptose , Constipação Intestinal , Trânsito Gastrointestinal , Camundongos , Neuroglia/metabolismo , Proteínas Proto-Oncogênicas c-akt , Quercetina , Taurina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa