Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Cell ; 184(12): 3242-3255.e10, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33979655

RESUMO

Knowing where we are, where we have been, and where we are going is critical to many behaviors, including navigation and memory. One potential neuronal mechanism underlying this ability is phase precession, in which spatially tuned neurons represent sequences of positions by activating at progressively earlier phases of local network theta oscillations. Based on studies in rodents, researchers have hypothesized that phase precession may be a general neural pattern for representing sequential events for learning and memory. By recording human single-neuron activity during spatial navigation, we show that spatially tuned neurons in the human hippocampus and entorhinal cortex exhibit phase precession. Furthermore, beyond the neural representation of locations, we show evidence for phase precession related to specific goal states. Our findings thus extend theta phase precession to humans and suggest that this phenomenon has a broad functional role for the neural representation of both spatial and non-spatial information.


Assuntos
Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Potenciais de Ação/fisiologia , Adulto , Animais , Objetivos , Humanos , Masculino , Neurônios/fisiologia , Roedores , Análise e Desempenho de Tarefas , Ritmo Teta/fisiologia
2.
Cell ; 175(5): 1213-1227.e18, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30318147

RESUMO

Neurons use two main schemes to encode information: rate coding (frequency of firing) and temporal coding (timing or pattern of firing). While the importance of rate coding is well established, it remains controversial whether temporal codes alone are sufficient for controlling behavior. Moreover, the molecular mechanisms underlying the generation of specific temporal codes are enigmatic. Here, we show in Drosophila clock neurons that distinct temporal spike patterns, dissociated from changes in firing rate, encode time-dependent arousal and regulate sleep. From a large-scale genetic screen, we identify the molecular pathways mediating the circadian-dependent changes in ionic flux and spike morphology that rhythmically modulate spike timing. Remarkably, the daytime spiking pattern alone is sufficient to drive plasticity in downstream arousal neurons, leading to increased firing of these cells. These findings demonstrate a causal role for temporal coding in behavior and define a form of synaptic plasticity triggered solely by temporal spike patterns.


Assuntos
Plasticidade Neuronal , Sono/fisiologia , Potenciais de Ação , Animais , Relógios Circadianos/fisiologia , Drosophila , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Modelos Neurológicos , Neurônios/metabolismo , Optogenética , Canais de Potássio/genética , Canais de Potássio/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Transmissão Sináptica
3.
J Neurosci ; 43(1): 93-112, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36379706

RESUMO

Animal communication sounds exhibit complex temporal structure because of the amplitude fluctuations that comprise the sound envelope. In human speech, envelope modulations drive synchronized activity in auditory cortex (AC), which correlates strongly with comprehension (Giraud and Poeppel, 2012; Peelle and Davis, 2012; Haegens and Zion Golumbic, 2018). Studies of envelope coding in single neurons, performed in nonhuman animals, have focused on periodic amplitude modulation (AM) stimuli and use response metrics that are not easy to juxtapose with data from humans. In this study, we sought to bridge these fields. Specifically, we looked directly at the temporal relationship between stimulus envelope and spiking, and we assessed whether the apparent diversity across neurons' AM responses contributes to the population representation of speech-like sound envelopes. We gathered responses from single neurons to vocoded speech stimuli and compared them to sinusoidal AM responses in auditory cortex (AC) of alert, freely moving Mongolian gerbils of both sexes. While AC neurons displayed heterogeneous tuning to AM rate, their temporal dynamics were stereotyped. Preferred response phases accumulated near the onsets of sinusoidal AM periods for slower rates (<8 Hz), and an over-representation of amplitude edges was apparent in population responses to both sinusoidal AM and vocoded speech envelopes. Crucially, this encoding bias imparted a decoding benefit: a classifier could discriminate vocoded speech stimuli using summed population activity, while higher frequency modulations required a more sophisticated decoder that tracked spiking responses from individual cells. Together, our results imply that the envelope structure relevant to parsing an acoustic stream could be read-out from a distributed, redundant population code.SIGNIFICANCE STATEMENT Animal communication sounds have rich temporal structure and are often produced in extended sequences, including the syllabic structure of human speech. Although the auditory cortex (AC) is known to play a crucial role in representing speech syllables, the contribution of individual neurons remains uncertain. Here, we characterized the representations of both simple, amplitude-modulated sounds and complex, speech-like stimuli within a broad population of cortical neurons, and we found an overrepresentation of amplitude edges. Thus, a phasic, redundant code in auditory cortex can provide a mechanistic explanation for segmenting acoustic streams like human speech.


Assuntos
Córtex Auditivo , Percepção da Fala , Masculino , Animais , Feminino , Humanos , Percepção Auditiva/fisiologia , Fala , Estimulação Acústica , Som , Percepção da Fala/fisiologia , Córtex Auditivo/fisiologia
4.
Hippocampus ; 34(11): 598-607, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39206817

RESUMO

The retrosplenial cortex (RSC) is a key component of the brain's memory systems, with anatomical connections to the hippocampus, anterior thalamus, and entorhinal cortex. This circuit has been implicated in episodic memory and many of these structures have been shown to encode temporal information, which is critical for episodic memory. For example, hippocampal time cells reliably fire during specific segments of time during a delay period. Although RSC lesions are known to disrupt temporal memory, time cells have not been observed there. In this study, we reanalyzed archival RSC neuronal firing data during the intertrial delay period from two previous experiments involving different behavioral tasks, a blocked alternation task and a cued T-maze task. For the blocked alternation task, rats were required to approach the east or west arm of a plus maze for reward during different blocks of trials. Because the reward locations were not cued, the rat had to remember the goal location for each trial. In the cued T-maze task, the reward location was explicitly cued with a light and the rats simply had to approach the light for reward, so there was no requirement to hold a memory during the intertrial delay. Time cells were prevalent in the blocked alternation task, and most time cells clearly differentiated the east and west trials. We also found that RSC neurons could exhibit off-response time fields, periods of reliably inhibited firing. Time cells were also observed in the cued T-maze, but they were less prevalent and they did not differentiate left and right trials as well as in the blocked alternation task, suggesting that RSC time cells are sensitive to the memory demands of the task. These results suggest that temporal coding is a prominent feature of RSC firing patterns, consistent with an RSC role in episodic memory.


Assuntos
Sinais (Psicologia) , Aprendizagem em Labirinto , Neurônios , Animais , Neurônios/fisiologia , Aprendizagem em Labirinto/fisiologia , Ratos , Masculino , Ratos Long-Evans , Potenciais de Ação/fisiologia , Recompensa , Córtex Cerebral/fisiologia , Córtex Cerebral/citologia , Percepção do Tempo/fisiologia
5.
J Neurosci ; 42(8): 1477-1490, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34983817

RESUMO

Listeners with sensorineural hearing loss (SNHL) struggle to understand speech, especially in noise, despite audibility compensation. These real-world suprathreshold deficits are hypothesized to arise from degraded frequency tuning and reduced temporal-coding precision; however, peripheral neurophysiological studies testing these hypotheses have been largely limited to in-quiet artificial vowels. Here, we measured single auditory-nerve-fiber responses to a connected speech sentence in noise from anesthetized male chinchillas with normal hearing (NH) or noise-induced hearing loss (NIHL). Our results demonstrated that temporal precision was not degraded following acoustic trauma, and furthermore that sharpness of cochlear frequency tuning was not the major factor affecting impaired peripheral coding of connected speech in noise. Rather, the loss of cochlear tonotopy, a hallmark of NH, contributed the most to both consonant-coding and vowel-coding degradations. Because distorted tonotopy varies in degree across etiologies (e.g., noise exposure, age), these results have important implications for understanding and treating individual differences in speech perception for people suffering from SNHL.SIGNIFICANCE STATEMENT Difficulty understanding speech in noise is the primary complaint in audiology clinics and can leave people with sensorineural hearing loss (SNHL) suffering from communication difficulties that affect their professional, social, and family lives, as well as their mental health. We measured single-neuron responses from a preclinical SNHL animal model to characterize salient neural-coding deficits for naturally spoken speech in noise. We found the major mechanism affecting neural coding was not a commonly assumed factor, but rather a disruption of tonotopicity, the systematic mapping of acoustic frequency to cochlear place that is a hallmark of normal hearing. Because the degree of distorted tonotopy varies across hearing-loss etiologies, these results have important implications for precision audiology approaches to diagnosis and treatment of SNHL.


Assuntos
Perda Auditiva Provocada por Ruído , Perda Auditiva Neurossensorial , Percepção da Fala , Estimulação Acústica/métodos , Animais , Limiar Auditivo/fisiologia , Perda Auditiva Neurossensorial/etiologia , Humanos , Masculino , Ruído , Fala , Percepção da Fala/fisiologia
6.
J Neurophysiol ; 129(5): 1127-1144, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37073981

RESUMO

How do sensory systems optimize detection of behaviorally relevant stimuli when the sensory environment is constantly changing? We addressed the role of spike timing-dependent plasticity (STDP) in driving changes in synaptic strength in a sensory pathway and whether those changes in synaptic strength could alter sensory tuning. It is challenging to precisely control temporal patterns of synaptic activity in vivo and replicate those patterns in vitro in behaviorally relevant ways. This makes it difficult to make connections between STDP-induced changes in synaptic physiology and plasticity in sensory systems. Using the mormyrid species Brevimyrus niger and Brienomyrus brachyistius, which produce electric organ discharges for electrolocation and communication, we can precisely control the timing of synaptic input in vivo and replicate these same temporal patterns of synaptic input in vitro. In central electrosensory neurons in the electric communication pathway, using whole cell intracellular recordings in vitro, we paired presynaptic input with postsynaptic spiking at different delays. Using whole cell intracellular recordings in awake, behaving fish, we paired sensory stimulation with postsynaptic spiking using the same delays. We found that Hebbian STDP predictably alters sensory tuning in vitro and is mediated by NMDA receptors. However, the change in synaptic responses induced by sensory stimulation in vivo did not adhere to the direction predicted by the STDP observed in vitro. Further analysis suggests that this difference is influenced by polysynaptic activity, including inhibitory interneurons. Our findings suggest that STDP rules operating at identified synapses may not drive predictable changes in sensory responses at the circuit level.NEW & NOTEWORTHY We replicated behaviorally relevant temporal patterns of synaptic activity in vitro and used the same patterns during sensory stimulation in vivo. There was a Hebbian spike timing-dependent plasticity (STDP) pattern in vitro, but sensory responses in vivo did not shift according to STDP predictions. Analysis suggests that this disparity is influenced by differences in polysynaptic activity, including inhibitory interneurons. These results suggest that STDP rules at synapses in vitro do not necessarily apply to circuits in vivo.


Assuntos
Peixe Elétrico , Neurônios , Animais , Neurônios/fisiologia , Interneurônios , Sinapses/fisiologia , Sistema Nervoso Central , Plasticidade Neuronal/fisiologia , Potenciais de Ação/fisiologia
7.
J Neurophysiol ; 130(3): 719-735, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37609690

RESUMO

Neural responses to acoustic stimulation have long been studied throughout the auditory system to understand how sound information is coded for perception. Within the inferior colliculus (IC), a majority of the studies have focused predominantly on characterizing neural responses within the central region (ICC), as it is viewed as part of the lemniscal system mainly responsible for auditory perception. In contrast, the responses of outer cortices (ICO) have largely been unexplored, though they also function in auditory perception tasks. Therefore, we sought to expand on previous work by completing a three-dimensional (3-D) functional mapping study of the whole IC. We analyzed responses to different pure tone and broadband noise stimuli across all IC subregions and correlated those responses with over 2,000 recording locations across the IC. Our study revealed there are well-organized trends for temporal response parameters across the full IC that do not show a clear distinction at the ICC and ICO border. These gradients span from slow, imprecise responses in the caudal-medial IC to fast, precise responses in the rostral-lateral IC, regardless of subregion, including the fastest responses located in the ICO. These trends were consistent at various acoustic stimulation levels. Weaker spatial trends could be found for response duration and spontaneous activity. Apart from tonotopic organization, spatial trends were not apparent for spectral response properties. Overall, these detailed acoustic response maps across the whole IC provide new insights into the organization and function of the IC.NEW & NOTEWORTHY Study of the inferior colliculus (IC) has largely focused on the central nucleus, with little exploration of the outer cortices. Here, we systematically assessed the acoustic response properties from over 2,000 locations in different subregions of the IC. The results revealed spatial trends in temporal response patterns that span all subregions. Furthermore, two populations of temporal response types emerged for neurons in the outer cortices that may contribute to their functional roles in auditory tasks.


Assuntos
Colículos Inferiores , Tempo de Reação , Neurônios , Estimulação Acústica , Acústica
8.
J Neurophysiol ; 130(3): 751-767, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37609701

RESUMO

The trapezoid body (TB) contains axons of neurons residing in the anteroventral cochlear nucleus (AVCN) that provide excitatory and inhibitory inputs to the main monaural and binaural nuclei in the superior olivary complex (SOC). To understand the monaural and binaural response properties of neurons in the medial and lateral superior olive (MSO and LSO), it is important to characterize the temporal firing properties of these inputs. Because of its exceptional low-frequency hearing, the chinchilla (Chinchilla lanigera) is one of the widely used small animal models for studies of hearing. However, the characterization of the output of its ventral cochlear nucleus to the nuclei of the SOC is fragmentary. We obtained responses of TB axons to stimuli typically used in binaural studies and compared these responses to those of auditory nerve (AN) fibers, with a focus on temporal coding. We found enhancement of phase-locking and entrainment, i.e., the ability of a neuron to fire action potentials at a certain stimulus phase for nearly every stimulus period, in TB axons relative to AN fibers. Enhancement in phase-locking and entrainment are quantitatively more modest than in the cat but greater than in the gerbil. As in these species, these phenomena occur not only in low-frequency neurons stimulated at their characteristic frequency but also in neurons tuned to higher frequencies when stimulated with low-frequency tones, to which complex phase-locking behavior with multiple modes of firing per stimulus cycle is frequently observed.NEW & NOTEWORTHY The sensitivity of neurons to small time differences in sustained sounds to both ears is important for binaural hearing, and this sensitivity is critically dependent on phase-locking in the monaural pathways. Although studies in cat showed a marked improvement in phase-locking from the peripheral to the central auditory nervous system, the evidence in rodents is mixed. Here, we recorded from AN and TB of chinchilla and found temporal enhancement, though more limited than in cat.


Assuntos
Axônios , Complexo Olivar Superior , Animais , Chinchila , Neurônios , Gerbillinae
9.
Mol Cell Neurosci ; 120: 103732, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35489636

RESUMO

The vertebrate ear is endowed with remarkable perceptual capabilities. The faintest sounds produce vibrations of magnitudes comparable to those generated by thermal noise and can nonetheless be detected through efficient amplification of small acoustic stimuli. Two mechanisms have been proposed to underlie such sound amplification in the mammalian cochlea: somatic electromotility and active hair-bundle motility. These biomechanical mechanisms may work in concert to tune auditory sensitivity. In addition to amplitude sensitivity, the hearing system shows exceptional frequency discrimination allowing mammals to distinguish complex sounds with great accuracy. For instance, although the wide hearing range of humans encompasses frequencies from 20 Hz to 20 kHz, our frequency resolution extends to one-thirtieth of the interval between successive keys on a piano. In this article, we review the different cochlear mechanisms underlying sound encoding in the auditory system, with a particular focus on the frequency decomposition of sounds. The relation between peak frequency of activation and location along the cochlea - known as tonotopy - arises from multiple gradients in biophysical properties of the sensory epithelium. Tonotopic mapping represents a major organizational principle both in the peripheral hearing system and in higher processing levels and permits the spectral decomposition of complex tones. The ribbon synapses connecting sensory hair cells to auditory afferents and the downstream spiral ganglion neurons are also tuned to process periodic stimuli according to their preferred frequency. Though sensory hair cells and neurons necessarily filter signals beyond a few kHz, many animals can hear well beyond this range. We finally describe how the cochlear structure shapes the neural code for further processing in order to send meaningful information to the brain. Both the phase-locked response of auditory nerve fibers and tonotopy are key to decode sound frequency information and place specific constraints on the downstream neuronal network.


Assuntos
Cóclea , Audição , Estimulação Acústica , Animais , Audição/fisiologia , Mamíferos , Neurônios , Gânglio Espiral da Cóclea
10.
Proc Natl Acad Sci U S A ; 117(2): 1191-1200, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31879342

RESUMO

Intracortical microstimulation (ICMS) of the somatosensory cortex evokes vivid tactile sensations and can be used to convey sensory feedback from brain-controlled bionic hands. Changes in ICMS frequency lead to changes in the resulting sensation, but the discriminability of frequency has only been investigated over a narrow range of low frequencies. Furthermore, the sensory correlates of changes in ICMS frequency remain poorly understood. Specifically, it remains to be elucidated whether changes in frequency only modulate sensation magnitude-as do changes in amplitude-or whether they also modulate the quality of the sensation. To fill these gaps, we trained monkeys to discriminate the frequency of ICMS pulse trains over a wide range of frequencies (from 10 to 400 Hz). ICMS amplitude also varied across stimuli to dissociate sensation magnitude from ICMS frequency and ensure that animals could not make frequency judgments based on magnitude. We found that animals could consistently discriminate ICMS frequency up to ∼200 Hz but that the sensory correlates of frequency were highly electrode dependent: On some electrodes, changes in frequency were perceptually distinguishable from changes in amplitude-seemingly giving rise to a change in sensory quality; on others, they were not. We discuss the implications of our findings for neural coding and for brain-controlled bionic hands.


Assuntos
Estimulação Elétrica/métodos , Córtex Somatossensorial/fisiologia , Percepção do Tato/fisiologia , Tato/fisiologia , Animais , Escala de Avaliação Comportamental , Eletrodos Implantados , Retroalimentação Sensorial , Macaca mulatta , Masculino
11.
J Neurosci ; 41(31): 6714-6725, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34183446

RESUMO

An indispensable feature of episodic memory is our ability to temporally piece together different elements of an experience into a coherent memory. Hippocampal time cells-neurons that represent temporal information-may play a critical role in this process. Although these cells have been repeatedly found in rodents, it is still unclear to what extent similar temporal selectivity exists in the human hippocampus. Here, we show that temporal context modulates the firing activity of human hippocampal neurons during structured temporal experiences. We recorded neuronal activity in the human brain while patients of either sex learned predictable sequences of pictures. We report that human time cells fire at successive moments in this task. Furthermore, time cells also signaled inherently changing temporal contexts during empty 10 s gap periods between trials while participants waited for the task to resume. Finally, population activity allowed for decoding temporal epoch identity, both during sequence learning and during the gap periods. These findings suggest that human hippocampal neurons could play an essential role in temporally organizing distinct moments of an experience in episodic memory.SIGNIFICANCE STATEMENT Episodic memory refers to our ability to remember the what, where, and when of a past experience. Representing time is an important component of this form of memory. Here, we show that neurons in the human hippocampus represent temporal information. This temporal signature was observed both when participants were actively engaged in a memory task, as well as during 10-s-long gaps when they were asked to wait before performing the task. Furthermore, the activity of the population of hippocampal cells allowed for decoding one temporal epoch from another. These results suggest a robust representation of time in the human hippocampus.


Assuntos
Hipocampo/fisiologia , Memória Episódica , Neurônios/fisiologia , Percepção do Tempo/fisiologia , Adulto , Eletrocorticografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
12.
J Neurophysiol ; 127(1): 290-312, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34879207

RESUMO

The pitch of harmonic complex tones (HCTs) common in speech, music, and animal vocalizations plays a key role in the perceptual organization of sound. Unraveling the neural mechanisms of pitch perception requires animal models, but little is known about complex pitch perception by animals, and some species appear to use different pitch mechanisms than humans. Here, we tested rabbits' ability to discriminate the fundamental frequency (F0) of HCTs with missing fundamentals, using a behavioral paradigm inspired by foraging behavior in which rabbits learned to harness a spatial gradient in F0 to find the location of a virtual target within a room for a food reward. Rabbits were initially trained to discriminate HCTs with F0s in the range 400-800 Hz and with harmonics covering a wide frequency range (800-16,000 Hz) and then tested with stimuli differing in spectral composition to test the role of harmonic resolvability (experiment 1) or in F0 range (experiment 2) or in both F0 and spectral content (experiment 3). Together, these experiments show that rabbits can discriminate HCTs over a wide F0 range (200-1,600 Hz) encompassing the range of conspecific vocalizations and can use either the spectral pattern of harmonics resolved by the cochlea for higher F0s or temporal envelope cues resulting from interaction between unresolved harmonics for lower F0s. The qualitative similarity of these results to human performance supports the use of rabbits as an animal model for studies of pitch mechanisms, providing species differences in cochlear frequency selectivity and F0 range of vocalizations are taken into account.NEW & NOTEWORTHY Understanding the neural mechanisms of pitch perception requires experiments in animal models, but little is known about pitch perception by animals. Here we show that rabbits, a popular animal in auditory neuroscience, can discriminate complex sounds differing in pitch using either spectral cues or temporal cues. The results suggest that the role of spectral cues in pitch perception by animals may have been underestimated by predominantly testing low frequencies in the range of human voice.


Assuntos
Comportamento Animal/fisiologia , Sinais (Psicologia) , Discriminação Psicológica/fisiologia , Percepção da Altura Sonora/fisiologia , Processamento Espacial/fisiologia , Percepção do Tempo/fisiologia , Animais , Coelhos , Vocalização Animal/fisiologia
13.
J Neurosci ; 40(1): 159-170, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31694963

RESUMO

The cerebellum drives motor coordination and sequencing of actions at the millisecond timescale through adaptive control of cerebellar nuclear output. Cerebellar nuclei integrate high-frequency information from both the cerebellar cortex and the two main excitatory inputs of the cerebellum: the mossy fibers and the climbing fiber collaterals. However, how nuclear cells process rate and timing of inputs carried by these inputs is still debated. Here, we investigate the influence of the cerebellar cortical output, the Purkinje cells, on identified cerebellar nuclei neurons in vivo in male mice. Using transgenic mice expressing Channelrhodopsin2 specifically in Purkinje cells and tetrode recordings in the medial nucleus, we identified two main groups of neurons based on the waveform of their action potentials. These two groups of neurons coincide with glutamatergic and GABAergic neurons identified by optotagging after Chrimson expression in VGLUT2-cre and GAD-cre mice, respectively. The glutamatergic-like neurons fire at high rate and respond to both rate and timing of Purkinje cell population inputs, whereas GABAergic-like neurons only respond to the mean population firing rate of Purkinje cells at high frequencies. Moreover, synchronous activation of Purkinje cells can entrain the glutamatergic-like, but not the GABAergic-like, cells over a wide range of frequencies. Our results suggest that the downstream effect of synchronous and rhythmic Purkinje cell discharges depends on the type of cerebellar nuclei neurons targeted.SIGNIFICANCE STATEMENT Motor coordination and skilled movements are driven by the permanent discharge of neurons from the cerebellar nuclei that communicate cerebellar computation to other brain areas. Here, we set out to study how specific subtypes of cerebellar nuclear neurons of the medial nucleus are controlled by Purkinje cells, the sole output of the cerebellar cortex. We could isolate different subtypes of nuclear cell that differentially encode Purkinje cell inhibition. Purkinje cell stimulation entrains glutamatergic projection cells at their firing frequency, whereas GABAergic neurons are only inhibited. These differential coding strategies may favor temporal precision of cerebellar excitatory outputs associated with specific features of movement control while setting the global level of cerebellar activity through inhibition via rate coding mechanisms.


Assuntos
Núcleos Cerebelares/fisiologia , Neurônios GABAérgicos/fisiologia , Ácido Glutâmico/fisiologia , Células de Purkinje/fisiologia , Potenciais de Ação , Vias Aferentes/fisiologia , Anestesia , Animais , Núcleos Cerebelares/citologia , Channelrhodopsins/fisiologia , Genes Reporter , Glutamato Descarboxilase/genética , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Destreza Motora , Neurônios/fisiologia , Optogenética , Fatores de Tempo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Vigília
14.
J Neurophysiol ; 125(5): 1954-1972, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33852808

RESUMO

Temporal coding precision of bushy cells in the ventral cochlear nucleus (VCN), critical for sound localization and communication, depends on the generation of rapid and temporally precise action potentials (APs). Voltage-gated potassium (Kv) channels are critically involved in this. The bushy cells in rat VCN express Kv1.1, 1.2, 1.3, 1.6, 3.1, 4.2, and 4.3 subunits. The Kv1.1 subunit contributes to the generation of a temporally precise single AP. However, the understanding of the functions of other Kv subunits expressed in the bushy cells is limited. Here, we investigated the functional diversity of Kv subunits concerning their contributions to temporal coding. We characterized the electrophysiological properties of the Kv channels with different subunits using whole cell patch-clamp recording and pharmacological methods. The neuronal firing pattern changed from single to multiple APs only when the Kv1.1 subunit was blocked. The Kv subunits, including the Kv1.1, 1.2, 1.6, or 3.1, were involved in enhancing temporal coding by lowering membrane excitability, shortening AP latencies, reducing jitter, and regulating AP kinetics. Meanwhile, all the Kv subunits contributed to rapid repolarization and sharpening peaks by narrowing half-width and accelerating fall rate, and the Kv1.1 subunit also affected the depolarization of AP. The Kv1.1, 1.2, and 1.6 subunits endowed bushy cells with a rapid time constant and a low input resistance of membrane for enhancing spike timing precision. The present results indicate that the Kv channels differentially affect intrinsic membrane properties to optimize the generation of rapid and reliable APs for temporal coding.NEW & NOTEWORTHY This study investigates the roles of Kv channels in effecting precision using electrophysiological and pharmacological methods in bushy cells. Different Kv channels have varying electrophysiological characteristics, which contribute to the interplay between changes in the membrane properties and regulation of neuronal excitability which then improve temporal coding. We conclude that the Kv channels are specialized to promote the precise and rapid coding of acoustic input by optimizing the generation of reliable APs.


Assuntos
Potenciais de Ação/fisiologia , Núcleo Coclear/fisiologia , Neurônios/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Feminino , Canal de Potássio Kv1.1/antagonistas & inibidores , Canal de Potássio Kv1.1/fisiologia , Canal de Potássio Kv1.2/antagonistas & inibidores , Canal de Potássio Kv1.2/fisiologia , Canal de Potássio Kv1.6/antagonistas & inibidores , Canal de Potássio Kv1.6/fisiologia , Masculino , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley
15.
J Neurophysiol ; 125(2): 540-555, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33296616

RESUMO

Practice of a complex motor gesture involves motor exploration to attain a better match to target, but little is known about the neural code for such exploration. We examine spiking in a premotor area of the songbird brain critical for song modification and quantify correlations between spiking and time in the motor sequence. While isolated spikes code for time in song during performance of song to a female bird, extended strings of spiking and silence, particularly bursts, code for time in song during undirected (solo) singing, or "practice." Bursts code for particular times in song with more information than individual spikes, and this spike-spike synergy is significantly higher during undirected singing. The observed pattern information cannot be accounted for by a Poisson model with a matched time-varying rate, indicating that the precise timing of spikes in both bursts in undirected singing and isolated spikes in directed singing code for song with a temporal code. Temporal coding during practice supports the hypothesis that lateral magnocellular nucleus of the anterior nidopallium neurons actively guide song modification at local instances in time.NEW & NOTEWORTHY This paper shows that bursts of spikes in the songbird brain during practice carry information about the output motor pattern. The brain's code for song changes with social context, in performance versus practice. Synergistic combinations of spiking and silence code for time in the bird's song. This is one of the first uses of information theory to quantify neural information about a motor output. This activity may guide changes to the song.


Assuntos
Encéfalo/fisiologia , Vocalização Animal , Potenciais de Ação , Animais , Tentilhões , Aprendizagem , Masculino
16.
J Neurophysiol ; 124(6): 1706-1726, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33026929

RESUMO

In macaques, the middle lateral auditory cortex (ML) is a belt region adjacent to the primary auditory cortex (A1) and believed to be at a hierarchically higher level. Although ML single-unit responses have been studied for several auditory stimuli, the ability of ML cells to encode amplitude modulation (AM)-an ability that has been widely studied in A1-has not yet been characterized. Here, we compared the responses of A1 and ML neurons to amplitude-modulated (AM) noise in awake macaques. Although several of the basic properties of A1 and ML responses to AM noise were similar, we found several key differences. ML neurons were less likely to phase lock, did not phase lock as strongly, and were more likely to respond in a nonsynchronized fashion than A1 cells, consistent with a temporal-to-rate transformation as information ascends the auditory hierarchy. ML neurons tended to have lower temporally (phase-locking) based best modulation frequencies than A1 neurons. Neurons that decreased their firing rate in response to AM noise relative to their firing rate in response to unmodulated noise became more common at the level of ML than they were in A1. In both A1 and ML, we found a prevalent class of neurons that usually have enhanced rate responses relative to responses to the unmodulated noise at lower modulation frequencies and suppressed rate responses relative to responses to the unmodulated noise at middle modulation frequencies.NEW & NOTEWORTHY ML neurons synchronized less than A1 neurons, consistent with a hierarchical temporal-to-rate transformation. Both A1 and ML had a class of modulation transfer functions previously unreported in the cortex with a low-modulation-frequency (MF) peak, a middle-MF trough, and responses similar to unmodulated noise responses at high MFs. The results support a hierarchical shift toward a two-pool opponent code, where subtraction of neural activity between two populations of oppositely tuned neurons encodes AM.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Neurônios/fisiologia , Estimulação Acústica , Potenciais de Ação , Animais , Feminino , Macaca mulatta , Masculino
17.
Sensors (Basel) ; 20(2)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963143

RESUMO

One of the modern trends in the design of human-machine interfaces (HMI) is to involve the so called spiking neuron networks (SNNs) in signal processing. The SNNs can be trained by simple and efficient biologically inspired algorithms. In particular, we have shown that sensory neurons in the input layer of SNNs can simultaneously encode the input signal based both on the spiking frequency rate and on varying the latency in generating spikes. In the case of such mixed temporal-rate coding, the SNN should implement learning working properly for both types of coding. Based on this, we investigate how a single neuron can be trained with pure rate and temporal patterns, and then build a universal SNN that is trained using mixed coding. In particular, we study Hebbian and competitive learning in SNN in the context of temporal and rate coding problems. We show that the use of Hebbian learning through pair-based and triplet-based spike timing-dependent plasticity (STDP) rule is accomplishable for temporal coding, but not for rate coding. Synaptic competition inducing depression of poorly used synapses is required to ensure a neural selectivity in the rate coding. This kind of competition can be implemented by the so-called forgetting function that is dependent on neuron activity. We show that coherent use of the triplet-based STDP and synaptic competition with the forgetting function is sufficient for the rate coding. Next, we propose a SNN capable of classifying electromyographical (EMG) patterns using an unsupervised learning procedure. The neuron competition achieved via lateral inhibition ensures the "winner takes all" principle among classifier neurons. The SNN also provides gradual output response dependent on muscular contraction strength. Furthermore, we modify the SNN to implement a supervised learning method based on stimulation of the target classifier neuron synchronously with the network input. In a problem of discrimination of three EMG patterns, the SNN with supervised learning shows median accuracy 99.5% that is close to the result demonstrated by multi-layer perceptron learned by back propagation of an error algorithm.


Assuntos
Modelos Neurológicos , Redes Neurais de Computação , Transmissão Sináptica/fisiologia , Adolescente , Adulto , Algoritmos , Eletromiografia/classificação , Feminino , Humanos , Masculino , Plasticidade Neuronal/fisiologia , Processamento de Sinais Assistido por Computador , Aprendizado de Máquina não Supervisionado , Adulto Jovem
18.
J Neurosci ; 38(11): 2832-2843, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29440557

RESUMO

Temporal coding of auditory stimuli is critical for understanding communication signals. The bushy cell, a major output neuron of the ventral cochlear nucleus, can "phase-lock" precisely to pure tones and the envelopes of complex stimuli. Bushy cells are also putative recipients of brainstem somatosensory projections and could therefore play a role in perception of communication signals because multisensory integration is required for such complex sound processing. Here, we examine the role of multisensory integration in temporal coding in bushy cells by activating the spinal trigeminal nucleus (Sp5) while recording responses from bushy cells. In normal-hearing guinea pigs of either sex, bushy cell single unit responses to amplitude-modulated (AM) broadband noise were compared with those in the presence of preceding Sp5 electrical stimulation (i.e., bimodal stimuli). Responses to the AM stimuli were also compared with those obtained 45 min after the bimodal stimulation. Bimodal auditory-Sp5 stimulation resulted in enhanced envelope coding for low modulation frequencies, which persisted for up to 45 min. AM detection thresholds were significantly improved 45 min after bimodal auditory-Sp5 stimulation, but not during bimodal auditory-Sp5 stimulation. Anterograde labeling of Sp5 projections was found within the dendritic fields of bushy cells and their inhibitory interneurons, D-stellate cells. Therefore, enhanced AM responses and improved AM sensitivity of bushy cells were likely facilitated by Sp5 neurons through monosynaptic excitatory projections and indirect inhibitory projections. These somatosensory projections may be involved in the improved perception of communication stimuli with multisensory stimulation, consistent with psychophysical studies in humans.SIGNIFICANCE STATEMENT Multisensory integration is crucial for sensory coding because it improves sensitivity to unimodal stimuli and enhances responses to external stimuli. Although multisensory integration has typically been described in the cerebral cortex, the cochlear nucleus in the brainstem is also innervated by multiple sensory systems, including the somatosensory and auditory systems. Here, we showed that convergence of these two sensory systems in the cochlear nucleus results in improved temporal coding in bushy cells, principal output neurons that send projections to higher auditory structures. The improved temporal coding instilled by bimodal auditory-Sp5 stimulation may be important in priming the neurons for coding biologically relevant sounds such as communication signals.


Assuntos
Núcleo Coclear/fisiologia , Neurônios/fisiologia , Estimulação Acústica , Animais , Tronco Encefálico/fisiologia , Dendritos/fisiologia , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Cobaias , Interneurônios/fisiologia , Masculino , Núcleo Espinal do Trigêmeo/fisiologia
19.
J Neurosci ; 38(21): 4957-4976, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29712784

RESUMO

The vomeronasal system (VNS) is a major vertebrate chemosensory system that functions in parallel to the main olfactory system (MOS). Despite many similarities, the two systems dramatically differ in the temporal domain. While MOS responses are governed by breathing and follow a subsecond temporal scale, VNS responses are uncoupled from breathing and evolve over seconds. This suggests that the contribution of response dynamics to stimulus information will differ between these systems. While temporal dynamics in the MOS are widely investigated, similar analyses in the accessory olfactory bulb (AOB) are lacking. Here, we have addressed this issue using controlled stimulus delivery to the vomeronasal organ of male and female mice. We first analyzed the temporal properties of AOB projection neurons and demonstrated that neurons display prolonged, variable, and neuron-specific characteristics. We then analyzed various decoding schemes using AOB population responses. We showed that compared with the simplest scheme (i.e., integration of spike counts over the entire response period), the division of this period into smaller temporal bins actually yields poorer decoding accuracy. However, optimal classification accuracy can be achieved well before the end of the response period by integrating spike counts within temporally defined windows. Since VNS stimulus uptake is variable, we analyzed decoding using limited information about stimulus uptake time, and showed that with enough neurons, such time-invariant decoding is feasible. Finally, we conducted simulations that demonstrated that, unlike the main olfactory bulb, the temporal features of AOB neurons disfavor decoding with high temporal accuracy, and, rather, support decoding without precise knowledge of stimulus uptake time.SIGNIFICANCE STATEMENT A key goal in sensory system research is to identify which metrics of neuronal activity are relevant for decoding stimulus features. Here, we describe the first systematic analysis of temporal coding in the vomeronasal system (VNS), a chemosensory system devoted to socially relevant cues. Compared with the main olfactory system, timescales of VNS function are inherently slower and variable. Using various analyses of real and simulated data, we show that the consideration of response times relative to stimulus uptake can aid the decoding of stimulus information from neuronal activity. However, response properties of accessory olfactory bulb neurons favor decoding schemes that do not rely on the precise timing of stimulus uptake. Such schemes are consistent with the variable nature of VNS stimulus uptake.


Assuntos
Neurônios/fisiologia , Bulbo Olfatório/fisiologia , Órgão Vomeronasal/fisiologia , Animais , Simulação por Computador , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Odorantes , Bulbo Olfatório/citologia , Condutos Olfatórios/citologia , Condutos Olfatórios/fisiologia , Caracteres Sexuais , Especificidade da Espécie , Máquina de Vetores de Suporte , Urina/química , Órgão Vomeronasal/citologia
20.
J Neurosci ; 38(25): 5727-5738, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29793977

RESUMO

Auditory nerve fibers (ANFs) encode pure tones through two modes of coding, spike time and spike rate, depending on the tone frequency. In response to a low-frequency tone, ANF firing is phase locked to the sinusoidal waveform. Because time coding vanishes with an increase in the tone frequency, high-frequency tone coding relies on the spike rate of the ANFs. Adding a continuous broadband noise to a tone compresses the rate intensity function of ANFs and shifts its dynamic range toward higher intensities. Therefore, the ANFs with high-threshold/low-spontaneous rate (SR) are thought to contribute to behavioral tone detection in noise. However, this theory relies on the discharge rate of the ANFs. The direct comparison with the masking threshold through spike timing, irrespective of the spontaneous rate, has not so far been investigated. Taking advantage of a unique proxy to quantify the spike synchrony (i.e., the shuffle autocorrelogram), we show in female gerbils that high-SR ANFs are more adapted to encode low-frequency thresholds through temporal code, giving them a strong robustness in noise. By comparing behavioral thresholds measured using prepulse inhibition of the acoustical startle reflex with population thresholds calculated from ANFs pooled per octave band, we show that threshold-based spike timing provides a better estimate of behavioral thresholds in the low-frequency range, whereas the high-frequency behavioral thresholds rely on the spiking rate, particularly in noise. This emphasizes the complementarity of temporal and rate modes to code tone-in-noise thresholds over a large range of frequencies.SIGNIFICANCE STATEMENT There is a general agreement that high-threshold/low-spontaneous rate (SR) auditory nerve fibers (ANFs) are of prime importance for tone detection in noise. However, this theory is based on the discharge rate of the fibers. Comparing the behavioral thresholds and single ANF thresholds shows that this is only true in the high-frequency range of tone stimulations. In the low-frequency range of tones (up to 2.7 kHz in the gerbil), the most sensitive ANFs (high-SR fibers) carry neural information through a spike-timing mode, even for noise in which tones do not induce a noticeable increment in the spike rate. This emphasizes the interplay between spike-time and spike-rate modes in the auditory nerve to encode tone-in-noise threshold over a large range of tone frequencies.


Assuntos
Percepção Auditiva/fisiologia , Limiar Auditivo/fisiologia , Estimulação Acústica , Animais , Feminino , Gerbillinae , Ruído
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa