Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.456
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 40: 559-587, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35113732

RESUMO

The immune system employs recognition tools to communicate with its microbial evolutionary partner. Among all the methods of microbial perception, T cells enable the widest spectrum of microbial recognition resolution, ranging from the crudest detection of whole groups of microbes to the finest detection of specific antigens. The application of this recognition capability to the crucial task of combatting infections has been the focus of classical immunology. We now appreciate that the coevolution of the immune system and the microbiota has led to development of a lush immunological decision tree downstream of microbial recognition, of which an inflammatory response is but one branch. In this review we discuss known T cell-microbe interactions in the gut and place them in the context of an algorithmic framework of recognition, context-dependent interpretation, and response circuits across multiple levels of microbial recognition resolution. The malleability of T cells in response to the microbiota presents an opportunity to edit immune response cellularity, identity, and functionality by utilizing microbiota-controlled pathways to promote human health.


Assuntos
Microbiota , Linfócitos T , Animais , Humanos
2.
Annu Rev Immunol ; 39: 759-790, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33710920

RESUMO

As the professional antigen-presenting cells of the immune system, dendritic cells (DCs) sense the microenvironment and shape the ensuing adaptive immune response. DCs can induce both immune activation and immune tolerance according to the peripheral cues. Recent work has established that DCs comprise several phenotypically and functionally heterogeneous subsets that differentially regulate T lymphocyte differentiation. This review summarizes both mouse and human DC subset phenotypes, development, diversification, and function. We focus on advances in our understanding of how different DC subsets regulate distinct CD4+ T helper (Th) cell differentiation outcomes, including Th1, Th2, Th17, T follicular helper, and T regulatory cells. We review DC subset intrinsic properties, local tissue microenvironments, and other immune cells that together determine Th cell differentiation during homeostasis and inflammation.


Assuntos
Tolerância Imunológica , Ativação Linfocitária , Animais , Células Dendríticas , Humanos , Camundongos , Linfócitos T Reguladores , Células Th17
3.
Cell ; 185(19): 3501-3519.e20, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36041436

RESUMO

How intestinal microbes regulate metabolic syndrome is incompletely understood. We show that intestinal microbiota protects against development of obesity, metabolic syndrome, and pre-diabetic phenotypes by inducing commensal-specific Th17 cells. High-fat, high-sugar diet promoted metabolic disease by depleting Th17-inducing microbes, and recovery of commensal Th17 cells restored protection. Microbiota-induced Th17 cells afforded protection by regulating lipid absorption across intestinal epithelium in an IL-17-dependent manner. Diet-induced loss of protective Th17 cells was mediated by the presence of sugar. Eliminating sugar from high-fat diets protected mice from obesity and metabolic syndrome in a manner dependent on commensal-specific Th17 cells. Sugar and ILC3 promoted outgrowth of Faecalibaculum rodentium that displaced Th17-inducing microbiota. These results define dietary and microbiota factors posing risk for metabolic syndrome. They also define a microbiota-dependent mechanism for immuno-pathogenicity of dietary sugar and highlight an elaborate interaction between diet, microbiota, and intestinal immunity in regulation of metabolic disorders.


Assuntos
Síndrome Metabólica , Microbiota , Animais , Dieta Hiperlipídica , Açúcares da Dieta , Interleucina-17 , Mucosa Intestinal , Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Obesidade , Células Th17
4.
Cell ; 184(26): 6281-6298.e23, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34875227

RESUMO

While intestinal Th17 cells are critical for maintaining tissue homeostasis, recent studies have implicated their roles in the development of extra-intestinal autoimmune diseases including multiple sclerosis. However, the mechanisms by which tissue Th17 cells mediate these dichotomous functions remain unknown. Here, we characterized the heterogeneity, plasticity, and migratory phenotypes of tissue Th17 cells in vivo by combined fate mapping with profiling of the transcriptomes and TCR clonotypes of over 84,000 Th17 cells at homeostasis and during CNS autoimmune inflammation. Inter- and intra-organ single-cell analyses revealed a homeostatic, stem-like TCF1+ IL-17+ SLAMF6+ population that traffics to the intestine where it is maintained by the microbiota, providing a ready reservoir for the IL-23-driven generation of encephalitogenic GM-CSF+ IFN-γ+ CXCR6+ T cells. Our study defines a direct in vivo relationship between IL-17+ non-pathogenic and GM-CSF+ and IFN-γ+ pathogenic Th17 populations and provides a mechanism by which homeostatic intestinal Th17 cells direct extra-intestinal autoimmune disease.


Assuntos
Autoimunidade , Intestinos/imunologia , Células-Tronco/metabolismo , Células Th17/imunologia , Animais , Movimento Celular , Células Clonais , Encefalomielite Autoimune Experimental/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Homeostase , Humanos , Interferon gama/metabolismo , Interleucina-17/metabolismo , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , RNA/metabolismo , RNA-Seq , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores CXCR6/metabolismo , Receptores de Interleucina/metabolismo , Reprodutibilidade dos Testes , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Análise de Célula Única , Baço/metabolismo
5.
Cell ; 181(6): 1263-1275.e16, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32437658

RESUMO

Very low-carbohydrate, high-fat ketogenic diets (KDs) induce a pronounced shift in metabolic fuel utilization that elevates circulating ketone bodies; however, the consequences of these compounds for host-microbiome interactions remain unknown. Here, we show that KDs alter the human and mouse gut microbiota in a manner distinct from high-fat diets (HFDs). Metagenomic and metabolomic analyses of stool samples from an 8-week inpatient study revealed marked shifts in gut microbial community structure and function during the KD. Gradient diet experiments in mice confirmed the unique impact of KDs relative to HFDs with a reproducible depletion of bifidobacteria. In vitro and in vivo experiments showed that ketone bodies selectively inhibited bifidobacterial growth. Finally, mono-colonizations and human microbiome transplantations into germ-free mice revealed that the KD-associated gut microbiota reduces the levels of intestinal pro-inflammatory Th17 cells. Together, these results highlight the importance of trans-kingdom chemical dialogs for mediating the host response to dietary interventions.


Assuntos
Microbioma Gastrointestinal/imunologia , Microbioma Gastrointestinal/fisiologia , Intestinos/imunologia , Intestinos/microbiologia , Células Th17/imunologia , Células Th17/fisiologia , Adolescente , Adulto , Animais , Dieta Hiperlipídica/métodos , Dieta Cetogênica/métodos , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/imunologia , Microbiota/fisiologia , Pessoa de Meia-Idade , Células Th17/microbiologia , Adulto Jovem
6.
Immunity ; 56(5): 1115-1131.e9, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36917985

RESUMO

Intestinal IL-17-producing T helper (Th17) cells are dependent on adherent microbes in the gut for their development. However, how microbial adherence to intestinal epithelial cells (IECs) promotes Th17 cell differentiation remains enigmatic. Here, we found that Th17 cell-inducing gut bacteria generated an unfolded protein response (UPR) in IECs. Furthermore, subtilase cytotoxin expression or genetic removal of X-box binding protein 1 (Xbp1) in IECs caused a UPR and increased Th17 cells, even in antibiotic-treated or germ-free conditions. Mechanistically, UPR activation in IECs enhanced their production of both reactive oxygen species (ROS) and purine metabolites. Treating mice with N-acetyl-cysteine or allopurinol to reduce ROS production and xanthine, respectively, decreased Th17 cells that were associated with an elevated UPR. Th17-related genes also correlated with ER stress and the UPR in humans with inflammatory bowel disease. Overall, we identify a mechanism of intestinal Th17 cell differentiation that emerges from an IEC-associated UPR.


Assuntos
Estresse do Retículo Endoplasmático , Mucosa Intestinal , Células Th17 , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Células Th17/citologia , Células Th17/metabolismo , Diferenciação Celular , Humanos , Animais , Camundongos , Camundongos Transgênicos , Antibacterianos/farmacologia
7.
Immunity ; 56(12): 2719-2735.e7, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38039966

RESUMO

Commensal microbes induce cytokine-producing effector tissue-resident CD4+ T cells, but the function of these T cells in mucosal homeostasis is not well understood. Here, we report that commensal-specific intestinal Th17 cells possess an anti-inflammatory phenotype marked by expression of interleukin (IL)-10 and co-inhibitory receptors. The anti-inflammatory phenotype of gut-resident commensal-specific Th17 cells was driven by the transcription factor c-MAF. IL-10-producing commensal-specific Th17 cells were heterogeneous and derived from a TCF1+ gut-resident progenitor Th17 cell population. Th17 cells acquired IL-10 expression and anti-inflammatory phenotype in the small-intestinal lamina propria. IL-10 production by CD4+ T cells and IL-10 signaling in intestinal macrophages drove IL-10 expression by commensal-specific Th17 cells. Intestinal commensal-specific Th17 cells possessed immunoregulatory functions and curbed effector T cell activity in vitro and in vivo in an IL-10-dependent and c-MAF-dependent manner. Our results suggest that tissue-resident commensal-specific Th17 cells perform regulatory functions in mucosal homeostasis.


Assuntos
Microbioma Gastrointestinal , Células Th17 , Interleucina-10/metabolismo , Mucosa Intestinal/metabolismo , Anti-Inflamatórios
8.
Immunity ; 54(2): 308-323.e6, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33421362

RESUMO

Th17 cells are known to exert pathogenic and non-pathogenic functions. Although the cytokine transforming growth factor ß1 (TGF-ß1) is instrumental for Th17 cell differentiation, it is dispensable for generation of pathogenic Th17 cells. Here, we examined the T cell-intrinsic role of Activin-A, a TGF-ß superfamily member closely related to TGF-ß1, in pathogenic Th17 cell differentiation. Activin-A expression was increased in individuals with relapsing-remitting multiple sclerosis and in mice with experimental autoimmune encephalomyelitis. Stimulation with interleukin-6 and Activin-A induced a molecular program that mirrored that of pathogenic Th17 cells and was inhibited by blocking Activin-A signaling. Genetic disruption of Activin-A and its receptor ALK4 in T cells impaired pathogenic Th17 cell differentiation in vitro and in vivo. Mechanistically, extracellular-signal-regulated kinase (ERK) phosphorylation, which was essential for pathogenic Th17 cell differentiation, was suppressed by TGF-ß1-ALK5 but not Activin-A-ALK4 signaling. Thus, Activin-A drives pathogenic Th17 cell differentiation, implicating the Activin-A-ALK4-ERK axis as a therapeutic target for Th17 cell-related diseases.


Assuntos
Ativinas/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Inflamação Neurogênica/imunologia , Células Th17/imunologia , Fator de Crescimento Transformador beta/metabolismo , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Ativinas/genética , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular , Transdução de Sinais
9.
Immunity ; 54(3): 526-541.e7, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33515487

RESUMO

Chronic viral infections increase severity of Mycobacterium tuberculosis (Mtb) coinfection. Here, we examined how chronic viral infections alter the pulmonary microenvironment to foster coinfection and worsen disease severity. We developed a coordinated system of chronic virus and Mtb infection that induced central clinical manifestations of coinfection, including increased Mtb burden, extra-pulmonary dissemination, and heightened mortality. These disease states were not due to chronic virus-induced immunosuppression or exhaustion; rather, increased amounts of the cytokine TNFα initially arrested pulmonary Mtb growth, impeding dendritic cell mediated antigen transportation to the lymph node and subverting immune-surveillance, allowing bacterial sanctuary. The cryptic Mtb replication delayed CD4 T cell priming, redirecting T helper (Th) 1 toward Th17 differentiation and increasing pulmonary neutrophilia, which diminished long-term survival. Temporally restoring CD4 T cell induction overcame these diverse disease sequelae to enhance Mtb control. Thus, Mtb co-opts TNFα from the chronic inflammatory environment to subvert immune-surveillance, avert early immune function, and foster long-term coinfection.


Assuntos
Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/fisiologia , Mycobacterium tuberculosis/fisiologia , Neutrófilos/imunologia , Células Th1/imunologia , Células Th17/imunologia , Tuberculose/imunologia , Imunidade Adaptativa , Animais , Doença Crônica , Coinfecção , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fagocitose , Índice de Gravidade de Doença , Fatores de Tempo
10.
Immunity ; 53(3): 614-626.e4, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32827457

RESUMO

RORγt is the lineage-specific transcription factor for T helper 17 (Th17) cells whose upregulation in developing Th17 cells is critically regulated by interleukin-6 (IL-6) and TGF-ß, the molecular mechanisms of which remain largely unknown. Here we identified conserved non-coding sequences (CNSs) 6 and 9 at the Rorc gene, essential for its expression during Th17 cell differentiation but not required for RORγt expression in innate lymphocytes and γδ T cells. Mechanistically, the IL-6-signal transducer and activator of transcription 3 (STAT3) axis appeared to be largely dependent on CNS9 and only partially on CNS6 in controlling RORγt expression and epigenetic activation of the Rorc locus. TGF-ß alone was sufficient to induce RORγt expression in a CNS6- but not CNS9-dependent manner through CNS6 binding by SMAD proteins. Our study reveals an important synergistic mechanism downstream of IL-6 and TGF-ß in regulation of RORγt expression and Th17 cell commitment via distinct cis-regulatory elements.


Assuntos
Interleucina-6/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/biossíntese , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Células Th17/citologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Regulação da Expressão Gênica/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Fator de Transcrição STAT3/metabolismo , Células Th17/imunologia
11.
Immunity ; 52(2): 328-341.e5, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32049050

RESUMO

Fever, an evolutionarily conserved physiological response to infection, is also commonly associated with many autoimmune diseases, but its role in T cell differentiation and autoimmunity remains largely unclear. T helper 17 (Th17) cells are critical in host defense and autoinflammatory diseases, with distinct phenotypes and pathogenicity. Here, we show that febrile temperature selectively regulated Th17 cell differentiation in vitro in enhancing interleukin-17 (IL-17), IL-17F, and IL-22 expression. Th17 cells generated under febrile temperature (38.5°C-39.5°C), compared with those under 37°C, showed enhanced pathogenic gene expression with increased pro-inflammatory activities in vivo. Mechanistically, febrile temperature promoted SUMOylation of SMAD4 transcription factor to facilitate its nuclear localization; SMAD4 deficiency selectively abrogated the effects of febrile temperature on Th17 cell differentiation both in vitro and ameliorated an autoimmune disease model. Our results thus demonstrate a critical role of fever in shaping adaptive immune responses with implications in autoimmune diseases.


Assuntos
Temperatura Corporal/imunologia , Febre/imunologia , Células Th17/imunologia , Imunidade Adaptativa , Animais , Diferenciação Celular/imunologia , Núcleo Celular/metabolismo , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Febre/genética , Regulação da Expressão Gênica , Resposta ao Choque Térmico/imunologia , Camundongos , Proteína Smad4/deficiência , Proteína Smad4/metabolismo , Sumoilação , Células Th17/metabolismo
12.
Immunity ; 52(2): 342-356.e6, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32023490

RESUMO

Interleukin-17A (IL-17A) is a major mediator of tissue inflammation in many autoimmune diseases. Anti-IL-17A is an effective treatment for psoriasis and is showing promise in clinical trials in multiple sclerosis. In this study, we find that IL-17A-defective mice or mice treated with anti-IL-17A at induction of experimental autoimmune encephalomyelitis (EAE) are resistant to disease and have defective priming of IL-17-secreting γδ T (γδT17) cells and Th17 cells. However, T cells from Il17a-/- mice induce EAE in wild-type mice following in vitro culture with autoantigen, IL-1ß, and IL-23. Furthermore, treatment with IL-1ß or IL-17A at induction of EAE restores disease in Il17a-/- mice. Importantly, mobilization of IL-1ß-producing neutrophils and inflammatory monocytes and activation of γδT17 cells is reduced in Il17a-/- mice. Our findings demonstrate that a key function of IL-17A in central nervous system (CNS) autoimmunity is to recruit IL-1ß-secreting myeloid cells that prime pathogenic γδT17 and Th17 cells.


Assuntos
Autoimunidade/imunologia , Interleucina-17/imunologia , Interleucina-1beta/metabolismo , Linfócitos Intraepiteliais/imunologia , Células Mieloides/imunologia , Células Th17/imunologia , Animais , Autoantígenos/imunologia , Autoimunidade/genética , Sistema Nervoso Central/imunologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Interleucina-17/antagonistas & inibidores , Interleucina-17/deficiência , Interleucina-17/metabolismo , Interleucina-1beta/imunologia , Interleucina-23/imunologia , Interleucina-23/metabolismo , Linfócitos Intraepiteliais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Monócitos/metabolismo , Células Mieloides/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Células Th17/metabolismo
13.
Immunity ; 48(3): 556-569.e7, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29562202

RESUMO

The death receptor Fas removes activated lymphocytes through apoptosis. Previous transcriptional profiling predicted that Fas positively regulates interleukin-17 (IL-17)-producing T helper 17 (Th17) cells. Here, we demonstrate that Fas promoted the generation and stability of Th17 cells and prevented their differentiation into Th1 cells. Mice with T-cell- and Th17-cell-specific deletion of Fas were protected from induced autoimmunity, and Th17 cell differentiation and stability were impaired. Fas-deficient Th17 cells instead developed a Th1-cell-like transcriptional profile, which a new algorithm predicted to depend on STAT1. Experimentally, Fas indeed bound and sequestered STAT1, and Fas deficiency enhanced IL-6-induced STAT1 activation and nuclear translocation, whereas deficiency of STAT1 reversed the transcriptional changes induced by Fas deficiency. Thus, our computational and experimental approach identified Fas as a regulator of the Th17-to-Th1 cell balance by controlling the availability of opposing STAT1 and STAT3 to have a direct impact on autoimmunity.


Assuntos
Diferenciação Celular/imunologia , Fator de Transcrição STAT1/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Receptor fas/metabolismo , Animais , Apoptose/imunologia , Biomarcadores , Caspases/metabolismo , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Ativação Linfocitária , Camundongos , Fenótipo , Fosforilação , Ligação Proteica , Transporte Proteico , Fator de Transcrição STAT3/metabolismo , Células Th17/citologia , Transcriptoma , Receptor fas/genética
14.
Immunol Rev ; 318(1): 61-69, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482912

RESUMO

Immune checkpoint inhibitors (ICIs) have become a mainstay of cancer therapy, with over 80 FDA-approved indications. Used in a variety of settings and in combination with each other and with traditional chemotherapies, the hyperactive immune response induced by ICIs can often lead to immune-related adverse events in bystander normal tissues such as the kidneys, lungs, and the heart. In the kidneys, this immune-related adverse event manifests as acute interstitial nephritis (ICI-AIN). In the era of widespread ICI use, it becomes vital to understand the clinical manifestations of ICI-AIN and the importance of prompt diagnosis and management of these complications. In this review, we delve into the clinical phenotypes of ICI-AIN and how they differ from traditional drug-induced AIN. We also detail what is known about the mechanistic underpinnings of ICI-AIN and the important diagnostic and therapeutic implications behind harnessing those mechanisms to further our understanding of these events and to formulate effective treatment plans to manage ICI-AIN.


Assuntos
Inibidores de Checkpoint Imunológico , Nefrite Intersticial , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Nefrite Intersticial/induzido quimicamente , Nefrite Intersticial/diagnóstico , Nefrite Intersticial/terapia , Rim , Resultado do Tratamento
15.
Immunity ; 46(1): 133-147, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28087239

RESUMO

Immuno-surveillance networks operating at barrier sites are tuned by local tissue cues to ensure effective immunity. Site-specific commensal bacteria provide key signals ensuring host defense in the skin and gut. However, how the oral microbiome and tissue-specific signals balance immunity and regulation at the gingiva, a key oral barrier, remains minimally explored. In contrast to the skin and gut, we demonstrate that gingiva-resident T helper 17 (Th17) cells developed via a commensal colonization-independent mechanism. Accumulation of Th17 cells at the gingiva was driven in response to the physiological barrier damage that occurs during mastication. Physiological mechanical damage, via induction of interleukin 6 (IL-6) from epithelial cells, tailored effector T cell function, promoting increases in gingival Th17 cell numbers. These data highlight that diverse tissue-specific mechanisms govern education of Th17 cell responses and demonstrate that mechanical damage helps define the immune tone of this important oral barrier.


Assuntos
Gengiva/imunologia , Imunidade nas Mucosas/imunologia , Vigilância Imunológica/imunologia , Mucosa Bucal/imunologia , Células Th17/imunologia , Animais , Citometria de Fluxo , Gengiva/microbiologia , Humanos , Mastigação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota , Mucosa Bucal/microbiologia , Reação em Cadeia da Polimerase em Tempo Real
16.
Proc Natl Acad Sci U S A ; 120(1): e2209944120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574650

RESUMO

After natalizumab (NAT) cessation, some multiple sclerosis (MS) patients experience a severe disease rebound. The rebound pathophysiology is still unclear; however, it has been linked to interleukin-17-producing T-helper (Th17) cells. We demonstrate that during NAT treatment, MCAM+CCR6+Th17 cells gradually acquire a pathogenic profile, including proinflammatory cytokine production, pathogenic transcriptional signatures, brain endothelial barrier impairment, and oligodendrocyte damage via induction of apoptotic pathways. This is accompanied by an increase in Th17 cell frequencies in the cerebrospinal fluid of NAT-treated patients. Notably, Th17 cells derived from NAT-treated patients, who later developed a disease rebound upon treatment cessation, displayed a distinct transcriptional pathogenicity profile associated with altered migratory properties. Accordingly, increased brain infiltration of patient Th17 cells was illustrated in a humanized mouse model and brain histology from a rebound patient. Therefore, peripheral blood-accumulated MCAM+CCR6+Th17 cells might be involved in rebound pathophysiology, and monitoring of changes in Th17 cell pathogenicity in patients before/during NAT treatment cessation might enable rebound risk assessment in the future.


Assuntos
Esclerose Múltipla , Células Th17 , Animais , Camundongos , Natalizumab/farmacologia , Natalizumab/uso terapêutico , Virulência , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/líquido cefalorraquidiano , Encéfalo
17.
Immunol Rev ; 311(1): 205-223, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35979731

RESUMO

Inflammation during prenatal development can be detrimental to neurodevelopmental processes, increasing the risk of neuropsychiatric disorders. Prenatal exposure to maternal viral infection during pregnancy is a leading environmental risk factor for manifestation of these disorders. Preclinical animal models of maternal immune activation (MIA), established to investigate this link, have revealed common immune and microbial signaling pathways that link mother and fetus and set the tone for prenatal neurodevelopment. In particular, maternal intestinal T helper 17 cells, educated by endogenous microbes, appear to be key drivers of effector IL-17A signals capable of reaching the fetal brain and causing neuropathologies. Fetal microglial cells are particularly sensitive to maternally derived inflammatory and microbial signals, and they shift their functional phenotype in response to MIA. Resulting cortical malformations and miswired interneuron circuits cause aberrant offspring behaviors that recapitulate core symptoms of human neurodevelopmental disorders. Still, the popular use of "sterile" immunostimulants to initiate MIA has limited translation to the clinic, as these stimulants fail to capture biologically relevant innate and adaptive inflammatory sequelae induced by live pathogen infection. Thus, there is a need for more translatable MIA models, with a focus on relevant pathogens like seasonal influenza viruses.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Vírus , Adjuvantes Imunológicos , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Feminino , Humanos , Interleucina-17 , Microglia , Gravidez
18.
Eur J Immunol ; : e2451212, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996350

RESUMO

The PD-1-PD-L1 immune checkpoint helps to maintain self-tolerance and prevent the development of autoimmune diseases. Immune checkpoint inhibitors are successful immunotherapeutics for several cancers, but responding patients can develop immune-mediated adverse events. It is well established that PD-1 regulates CD4 and CD8 T-cell responses, but its role in controlling the activation of pathogenic γδ T cells is less clear. Here we examined the role of PD-1 in regulating γδ T cells in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. We found that PD-1 was highly expressed on CD27- Vγ4 γδ T cells in the lymph node (LN) and CNS of mice with EAE. Treatment of mice with anti-PD-1 significantly augmented IL-17A-producing CD27- Vγ4 γδ T cells in the LN and CNS and enhanced the severity of EAE. The exacerbating effect of anti-PD-1 on EAE was lost in Tcrd-/- mice. Conversely, ligation of PD-1 suppressed Il17a and Rorc gene expression and IL-17A production by purified Vγ4 γδ T cells stimulated via the TCR, but not with IL-1ß and IL-23. Our study demonstrates that PD-1 regulates TCR-activated CD27- Vγ4 γδ T cells, but that cytokine-activated IL-17A producing γδ T cells escape the regulatory effects of the PD-1-PD-L1 pathway.

19.
Trends Immunol ; 43(7): 580-594, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35659433

RESUMO

Since the discovery of HIV-1, progress has been made in deciphering the viral replication cycle and mechanisms of host-pathogen interactions that has facilitated the implementation of effective antiretroviral therapies (ARTs). Major barriers to HIV-1 remission/cure include the persistence of viral reservoirs (VRs) in long-lived CD4+ T cells, residual viral transcription, and lack of mucosal immunity restoration during ART, which together fuel systemic inflammation. Recently, T helper (Th)17-polarized cells were identified as major contributors to the pool of transcriptionally/translationally competent VRs. In this review, we discuss the functional features of Th17 cells that were elucidated by fundamental immunology studies in the context of autoimmunity. We also highlight recent discoveries supporting the possibility of extrapolating this knowledge toward the identification of new putative Th17-targeted HIV-1 remission/cure strategies.


Assuntos
Infecções por HIV , HIV-1 , Linfócitos T CD4-Positivos , Humanos , Células Th17 , Latência Viral
20.
FASEB J ; 38(7): e23607, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581245

RESUMO

Pathogenic Th17 cells play a crucial role in autoimmune diseases like uveitis and its animal model, experimental autoimmune uveitis (EAU). Dimethyl itaconate (DMI) possesses potent anti-inflammatory effects. However, there is still a lack of knowledge about the role of DMI in regulating pathogenic Th17 cells and EAU. Here, we reported that intraperitoneal administration of DMI significantly inhibited the severity of EAU via selectively suppressing Th17 cell responses. In vitro antigen stimulation studies revealed that DMI dramatically decreased the frequencies and function of antigen-specific Th17, but not Th1, cells. Moreover, DMI hampered the differentiation of naive CD4+ T cells toward pathogenic Th17 cells. DMI-treated DCs produced less IL-1ß, IL-6, and IL-23, and displayed an impaired ability to stimulate antigen-specific Th17 activation. Mechanistically, DMI activated the NRF2/HO-1 pathway and suppressed STAT3 signaling, which subsequently restrains p-STAT3 nuclear translocation, leading to decreased pathogenic Th17 cell responses. Thus, we have identified an important role for DMI in regulating pathogenic Th17 cells, supporting DMI as a promising therapy in Th17 cell-driven autoimmune diseases including uveitis.


Assuntos
Doenças Autoimunes , Succinatos , Uveíte , Animais , Camundongos , Células Th17 , Fator 2 Relacionado a NF-E2/metabolismo , Inflamação/metabolismo , Doenças Autoimunes/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Células Th1
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa