RESUMO
Thalassodendron ciliatum (Forssk.) Den Hartog is a seagrass belonging to the plant family Cymodoceaceae with ubiquitous phytoconstituents and important pharmacological potential, including antioxidant, antiviral, and cytotoxic activities. In this work, a new ergosterol derivative named thalassosterol (1) was isolated from the methanolic extract of T. ciliatum growing in the Red Sea, along with two known first-reported sterols, namely ergosterol (2) and stigmasterol (3), using different chromatographic techniques. The structure of the new compound was established based on 1D and 2D NMR spectroscopy and high-resolution mass spectrometry (HR-MS) and by comparison with the literature data. The new ergosterol derivative showed significant in vitro antiproliferative potential against the human cervical cancer cell line (HeLa) and human breast cancer (MCF-7) cell lines, with IC50 values of 8.12 and 14.24 µM, respectively. In addition, docking studies on the new sterol 1 explained the possible binding interactions with an aromatase enzyme; this inhibition is beneficial in both cervical and breast cancer therapy. A metabolic analysis of the crude extract of T. ciliatum using liquid chromatography combined with high-resolution electrospray ionization mass spectrometry (LC-ESI-HR-MS) revealed the presence of an array of phenolic compounds, sterols and ceramides, as well as di- and triglycerides.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Inibidores da Aromatase/farmacologia , Ergosterol/farmacologia , Magnoliopsida , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/química , Inibidores da Aromatase/química , Ergosterol/química , Humanos , Oceano Índico , Células MCF-7/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Extratos Vegetais/química , Relação Estrutura-AtividadeRESUMO
The water-soluble acidic polysaccharide from Thalassodendron ciliatum (Forss.) den Hartog was successfully extracted, fractionated and purified. The phytochemical profile of the two water-soluble fractions (F1 and F2), were detected using different analytic techniques. GC-MS analysis revealed the presence of 22 saccharide. Acidic polysaccharide, galacturonic and glucuronic acid were the most abundant. Moreover, paper chromatography and electrophoresis also performed as a preliminary chemical characterization of the polymer. The hepatoprotective activity of the fractions against thioacetamide (TAA) induced liver failure; antioxidant potential and preliminary immunomodulatory activity were assigned in-vivo. The results revealed a potent competence to improve the liver function profile (ALT, AST, total bilirubin, total glyceride, etc.) and a remarkable improvement in liver architecture in comparison to the challenged intoxicated groups. Moreover, they showed high anti-oxidative properties and a promising immunomodulatory influence via Il6. These findings provide new insight into the possible role of polysaccharide purified two fractions in the treatment of acute liver injury.