Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Tissue Cell ; 82: 102095, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37087908

RESUMO

Growth hormone (GH) deficiency is characterized by impaired growth and development, and is currently treated by repeated administration of recombinant human GH (hGH). Encapsulated cell therapy (ECT) may offer a less demanding treatment-strategy for long-term production and release of GH into circulation. We used PiggyBac-based (PB) transposon delivery for engineering retinal pigment epithelial cells (ARPE-19), and tested a series of viral and non-viral promoters as well as codon-optimization to enhance transgene expression. Engineered cells were loaded into TheraCyte macrocapsules and secretion was followed in vitro and in vivo. The cytomegalovirus (CMV) promoter supports strong and persistent transgene expression, and we achieved clonal cell lines secreting over 6 µg hGH/106 cells/day. Codon-optimization of the hGH gene did not improve secretion. ARPE-19 cells endured encapsulation in TheraCyte devices, and resulted in steady hormone release for at least 60 days in vitro. A short-term pilot experiment in immunodeficient SCID mice demonstrated low systemic levels of hGH from a single 40 µL capsule implanted subcutaneously. No significant increase in weight increase or systemic hGH was detected after 23 days in the GH-deficient lit/SCID mouse model using 4.5 µL capsules loaded with the highest secreting clone of ARPE-19 cells. Our results demonstrate that PB-mediated engineering of ARPE-19 is an efficient way to generate hormone secreting cell lines compatible with macroencapsulation, and our CMV-driven expression cassette allows for identification of clones with high level and long-term secretory activity without addition of insulator elements. Our results pave the way for further in vivo studies of encapsulated cell therapy.


Assuntos
Infecções por Citomegalovirus , Hormônio do Crescimento Humano , Camundongos , Animais , Humanos , Hormônio do Crescimento Humano/genética , Hormônio do Crescimento Humano/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Camundongos SCID , Linhagem Celular
2.
Heliyon ; 7(11): e08316, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34820536

RESUMO

The present study is to clarify the effect of insulin-producing cells (IPCs) derived from adipose tissue mesenchymal stem cells (AT-MSCs) on diabetic-induced impairments as the abnormalities of testicular tissues, oxidative stress of testes, and defects of spermatogenesis. Diabetes was stimulated by streptozotocin (STZ) injection in male adult Sprague Dawley (SD) rats. Diabetes was confirmed by taking two highly consecutive fasting blood sugar readings; more than 300 mg/dl; within one week. Five million of IPCs derived from AT-MSCs; encased in TheraCyte capsule; were then directly transplanted (one implant for each rat) subcutaneously in diabetic rats. Implants were maintained for 3 months and the fasting blood sugar of the transplanted rats was observed every month. At the end of the experiment; serum testosterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) were also estimated. The sperm parameters (count, motility, and abnormality) were recorded. In testicular tissue; GPX4, Bcl2, and Bax levels were evaluated, while oxidative stress and antioxidant enzymes activities were measured in the testes homogenate. Also, histopathological alterations were examined in the testes cross-section. In the results, it was found that IPCs treatment enhanced the serum testosterone, FSH, and LH levels. Diabetic-induced impairments in the sperm parameters were noticeably improved post-IPCs transplantation in the diabetic rats. Moreover, the treatment improved the diabetic-associated testicular oxidative stress. Also, it was recognized that the Bax expression decreased, while, GPX4 and Bcl2 expression increased in the treated rats. Meanwhile, the abnormalities showed in the histopathological studies of the hyperglycemic rat's testes were attenuated post-treatment. So, IPCs transplantation improved diabetes and consequently protected against hyperglycemia-induced testicular damages.

3.
Cardiovasc Res ; 117(3): 918-929, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-32251516

RESUMO

AIMS: To establish pre-clinical proof of concept that sustained subcutaneous delivery of the secretome of human cardiac stem cells (CSCs) can be achieved in vivo to produce significant cardioreparative outcomes in the setting of myocardial infarction. METHODS AND RESULTS: Rats were subjected to permanent ligation of left anterior descending coronary artery and randomized to receive subcutaneous implantation of TheraCyte devices containing either culture media as control or 1 × 106 human W8B2+ CSCs, immediately following myocardial ischaemia. At 4 weeks following myocardial infarction, rats treated with W8B2+ CSCs encapsulated within the TheraCyte device showed preserved left ventricular ejection fraction. The preservation of cardiac function was accompanied by reduced fibrotic scar tissue, interstitial fibrosis, cardiomyocyte hypertrophy, as well as increased myocardial vascular density. Histological analysis of the TheraCyte devices harvested at 4 weeks post-implantation demonstrated survival of human W8B2+ CSCs within the devices, and the outer membrane was highly vascularized by host blood vessels. Using CSCs expressing plasma membrane reporters, extracellular vesicles of W8B2+ CSCs were found to be transferred to the heart and other organs at 4 weeks post-implantation. Furthermore, mass spectrometry-based proteomic profiling of extracellular vesicles of W8B2+ CSCs identified proteins implicated in inflammation, immunoregulation, cell survival, angiogenesis, as well as tissue remodelling and fibrosis that could mediate the cardioreparative effects of secretome of human W8B2+ CSCs. CONCLUSIONS: Subcutaneous implantation of TheraCyte devices encapsulating human W8B2+ CSCs attenuated adverse cardiac remodelling and preserved cardiac function following myocardial infarction. The TheraCyte device can be employed to deliver stem cells in a minimally invasive manner for effective secretome-based cardiac therapy.


Assuntos
Infarto do Miocárdio/cirurgia , Miocárdio/patologia , Proteoma , Regeneração , Secretoma , Transplante de Células-Tronco , Células-Tronco/metabolismo , Animais , Antígenos de Superfície/metabolismo , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Modelos Animais de Doenças , Fibrose , Humanos , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Neovascularização Fisiológica , Proteômica , Ratos Nus , Transplante de Células-Tronco/instrumentação , Fatores de Tempo
4.
Ann Biomed Eng ; 45(7): 1685-1696, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28028710

RESUMO

Premature ovarian insufficiency (POI) is a major complication of cytotoxic treatments due to extreme ovarian sensitivity to chemotherapy and radiation. In pediatric cancer patients modern therapy has improved the long-term survival to over 80% in the United States. However, these cancer survivors face long-term health problems related to treatment toxicity. In female cancer survivors POI leads to sterility, along with the consequences of estrogen deficiency such as premature osteopenia, muscle wasting, accelerated cardiovascular diseases and a vast array of other health and developmental problems. These long-lasting effects are particularly significant for young girls reaching puberty. As such, restoring ovarian endocrine function is paramount in this population. In the present study, we evaluated the feasibility of restoring ovarian endocrine function in ovariectomized mice by transplanting syngeneic and allogeneic ovarian tissue encapsulated in alginate capsules or TheraCyte®. Histological analysis of the implants retrieved after 7 and 30 days' post implantation showed follicular development up to the secondary and antral stages in both syngeneic and allogeneic implants. Implantation of syngeneic and allogeneic ovarian grafts encapsulated in TheraCyte devices restored ovarian endocrine function, which was confirmed by decreased serum FSH levels from 60 to 70 ng/mL in ovariectomized mice to 30-40 ng/mL 30 days after implantation. Absence of allo-MHC-specific IgG and IgM antibodies in the sera of implanted mice with allogeneic ovarian tissue encapsulated in TheraCyte indicate that the implants did not evoke an allo-immune response, while the allogeneic controls were rejected 21 days after implantation. Our results show that TheraCyte effectively isolates the graft from immune recognition but also supports follicular growth.


Assuntos
Alginatos/uso terapêutico , Ovário , Insuficiência Ovariana Primária , Aloenxertos , Animais , Feminino , Ácido Glucurônico/uso terapêutico , Ácidos Hexurônicos/uso terapêutico , Humanos , Camundongos , Ovário/imunologia , Ovário/metabolismo , Ovário/transplante , Insuficiência Ovariana Primária/imunologia , Insuficiência Ovariana Primária/metabolismo , Insuficiência Ovariana Primária/cirurgia , Transplante Isogênico
5.
Exp Biol Med (Maywood) ; 241(9): 955-61, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27188513

RESUMO

This review focuses on the concept of immunoisolation and how this method has evolved over the last few decades. The concept of immunoisolation came out of the need to protect allogeneic transplant tissue from the host immune system and avoid systemic side effects of immunosuppression. The latter remains a significant hurdle in clinical translation of using tissue transplants for restoring endocrine function in diabetes, growth hormone deficiency, and other conditions. Herein, we review the most significant works studying the use of hydrogels, specifically alginate and poly (ethylene glycol), and membranes for immunoisolation and discuss how this approach can be applied in reproductive biology.


Assuntos
Rejeição de Enxerto/imunologia , Transplante Homólogo/métodos , Alginatos , Animais , Diabetes Mellitus Experimental , Ácido Glucurônico , Ácidos Hexurônicos , Humanos , Hidrogéis , Camundongos , Transplante Homólogo/instrumentação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa