Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(1): e202302526, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37787075

RESUMO

The reaction of hydrazine hydrate, N2 H4 ⋅ H2 O, and SO3 leads to hydrazine sulfonic acid (Pca21 , a=849.59(4) pm, b=482.18(2) pm, c=832.17(4) pm). Structure elucidation reveals the zwitter-anionic nature of the compound according to NH3 NH(SO3 ). With the barium salt Ba[NH2 NH(SO3 )]2 (H2 O), a first salt of hydrazine sulfonic acid has been prepared (P 1 ‾ $\bar 1$ , a=489.75(5) pm, b=737.52(7) pm, c=1317.4(1) pm, α=88.238(4)°, ß=84.761(4)°, γ=79.701(4)°). The compounds were characterized by vibrational spectroscopy, DFT calculations and thermal analyses.

2.
J Fluoresc ; 33(3): 1077-1087, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36571646

RESUMO

Novel materials of (E)-N'-(4-chlorobenzylidene)-4-hydroxybenzohydrazide (CBHB) and (E)-N'-(4-(diethylamino) benzylidene)-4-hydroxybenzohydrazide (DEABHB) were synthesized by condensation reaction process and solvent evaporation method was employed to grow CBHB and DEABHB single crystals at room temperature. Lattice parameters of CBHB and DEABHB compounds were recorded using single crystal X-ray diffraction method. The presence of functional groups of the synthesized CBHB and DEABHB compounds were confirmed by Fourier transform infrared and Fourier transform Raman spectral analyses. Various intermolecular interactions were studied using Hirshfeld surface analysis. Thermal stability of the hydrazone Schiff base compounds CBHB and DEABHB were studied by thermogravimetric and differential thermal analyses. Third order nonlinear optical properties of CBHB and DEABHB were measured using open aperature Z scan technique. Two photon absorption coefficient and optical limiting properties of the crystals were reported from the Z scan studies.

3.
Chem Biodivers ; 19(11): e202200806, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36224743

RESUMO

This study aimed to microencapsulate the sea grape ethanolic extract by the spray drying process, characterizing the obtained powder, and evaluating its antimutagenicity activity. Microparticles showed a mean size of 6.28 µm and a spherical shape with a smooth surface. The powder had a low moisture content (4.02±0.92 %) and water activity (0.27±0.01), and high solubility (76±3.60 %). Moreover, hygroscopicity (14.75±2.63 g/100 g of powder) and bulk density (0.63±0.03 g/cm3 ) values suggested that this powder can be easily handled at a pilot or industrial scale. In addition, microencapsulation protected the extract against oxidation by ultraviolet light, improved its thermal stability, and its antimutagenicity activity was similar to fresh sea grape extract. In conclusion, the microencapsulation with maltodextrin by spray drying technique is an alternative to protect bioactive compounds from sea grapes against environmental conditions, maintaining their antimutagenic activity.


Assuntos
Composição de Medicamentos , Polygonaceae , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Polygonaceae/química , Pós , Composição de Medicamentos/métodos
4.
Polymers (Basel) ; 16(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38543370

RESUMO

Several researchers have examined the interest in using a thermoplastic to increase thermoset polymers' shock resistance. However, fewer studies have examined the nature of the mechanisms involved between both kinds of polymers. This was the objective of our work, which was carried out using a gradual approach. First, we describe the synthesis of a poly(ether ether ketone) oligomer (oPEEK) with hydroxyl terminations from the reaction of hydroquinone and 4,4'-difluorobenzophenone in N-methyl-2-pyrrolidone. Then, the main physicochemical properties of this oligomer were determined using different thermal analyses (i.e., differential scanning calorimetry (DSC), thermogravimetric (ATG), and thermomechanical analyses) to isolate its response alone. The chemical characterisation of this compound using conventional analytical chemistry techniques was more complex due to its insolubility. To this end, it was sulfonated, according to a well-known process, to make it soluble and enable nuclear magnetic resonance (NMR) and size exclusion chromatography (SEC) experiments. Additional information about the structural and chemical characteristics of the oligomer and its average molecular weight could thus be obtained. The synthesis of an oligoPEEK with α,ω-hydroxyl end-groups and a molecular weight of around 5070 g/mol was thus confirmed by NMR. This value was in accordance with that determined by SEC analysis. Next, the reaction of oPEEK with an epoxy prepolymer was demonstrated using DSC and dynamic rheometry. To this end, uncured mixtures of epoxy prepolymer (DGEBA) with different proportions of oPEEK (3, 5, 10 and 25%) were prepared and characterised by both techniques. Ultimately, the epoxy-oPEEK mixture was cured with isophorone diamine. Finally, topological analyses were performed by atomic force microscopy (AFM) in tapping mode to investigate the interface quality between the epoxy matrix and the oPEEK particles indirectly. No defects, such as decohesion areas, microvoids, or cracks, were observed between both systems.

5.
Polymers (Basel) ; 16(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38337248

RESUMO

In this study, four different plastic materials usually used in the agricultural sector (polystyrene film (PS), polyethylene terephthalate film (PET), low-density polyethylene film (LDPE) and linear low-density polyethylene film (LLDPE)) were subjected to different abiotic treatments, including photo-oxidation (ultraviolet and e-beam radiation) and thermochemical treatments, to enhance polymer degradation. The extensive use of these polymers leads to large amounts of plastic waste generation, including small plastic pieces, known as microplastics, which affect the quality of the agricultural environment, including soil fertility and quality. Therefore, polymer degradation strategies are needed to effectively reduce plastic waste to protect the agricultural sector. The degree of polymer degradation was assessed by the use of thermal and spectroscopic analyses, such as TGA and FTIR. In addition, efficiency, cost-benefits, and potential side-effects were also evaluated to propose the optimal degradation strategy to reduce plastic waste from the point of view of efficiency. The results obtained showed that the pre-treatments based on photo-oxidation (ultraviolet B and C and e-beam radiation) were more efficient and had a better cost-benefit for the degradation of the polymers studied in relation to the thermochemical treatments. Specifically, ultraviolet photo-oxidation worked well for PS and PET, requiring low energy and medium times. However, e-beam radiation was recommended for PE (LDPE and LLDPE) degradation, since high energy and long times were needed when ultraviolet energy was applied to this polymer. Furthermore, the overall efficiency of the plastic degradation of pre-treatments should be studied using a multicriteria approach, since FTIR assessments, in some cases, only consider oxidation processes on the plastic surface and do not show the potential integrity changes on the plastic probes.

6.
Polymers (Basel) ; 15(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36987155

RESUMO

This paper undertakes the thermal and electrical characterization of three commercial unsaturated polyester imide resins (UPIR) to identify which among them could better perform the insulation function of electric motors (high-power induction motors fed by pulse-wide modulation (PWM) inverters). The process foreseen for the motor insulation using these resins is Vacuum Pressure Impregnation (VPI). The resin formulations were specially selected because they are one-component systems; hence, before the VPI process, they do not require mixing steps with external hardeners to activate the curing process. Furthermore, they are characterized by low viscosity and a thermal class higher than 180 °C and are Volatile Organic Compound (VOC)-free. Thermal investigations using Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) techniques prove their excellent thermal resistance up to 320 °C. Moreover, impedance spectroscopy in the frequency range of 100 Hz-1 MHz was analyzed to compare the electromagnetic performance of the considered formulations. They manifest an electrical conductivity starting from 10-10 S/m, a relative permittivity around 3, and a loss tangent value lower than 0.02, which appears almost stable in the analyzed frequency range. These values confirm their usefulness as impregnating resins in secondary insulation material applications.

7.
Polymers (Basel) ; 15(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37242885

RESUMO

In the present research, groups of nanolayered structures and nanohybrids based on organic green dyes and inorganic species are designated to act as fillers for PVA to induce new optical sites and increase its thermal stability through producing polymeric nanocomposites. In this trend, different percentages of naphthol green B were intercalated as pillars inside the Zn-Al nanolayered structures to form green organic-inorganic nanohybrids. The two-dimensional green nanohybrids were identified by X-ray diffraction, TEM and SEM. According to the thermal analyses, the nanohybrid, which has the highest amount of green dyes, was used for modifying the PVA through two series. In the first series, three nanocomposites were prepared depending on the green nanohybrid as prepared. In the second series, the yellow nanohybrid, which was produced from the green nanohybrid by thermal treatment, was used to produce another three nanocomposites. The optical properties revealed that the polymeric nanocomposites depending on green nanohybrids became optical-active in UV and visible regions because the energy band gap decreased to 2.2 eV. In addition, the energy band gap of the nanocomposites which depended on yellow nanohybrids was 2.5 eV. The thermal analyses indicated that the polymeric nanocomposites are thermally more stable than that of the original PVA. Finally, the dual functionality of organic-inorganic nanohybrids that were produced from the confinement of organic dyes and the thermal stability of inorganic species converted the non-optical PVA to optical-active polymer in a wide range with high thermal stability.

8.
Pharmaceutics ; 14(12)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36559269

RESUMO

Viscum album L., popularly known as mistletoe, is well known for its anti-cancer properties, and the pharmaceutical application of hydroalcoholic dry extracts is still limited due to its low solubility in aqueous media, and physicochemical instability. The Pluronic® F127 is an amphiphilic polymer, which permits the solubilization of lipophilic and hydrophilic compounds. In this investigation, physicochemical features of hydrogel containing V. album dry extract (VADE-loaded-hydrogel) were performed by: dynamic light scattering (DLS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). VADE-loaded-hydrogel presented nanometer-size micelles with volume distribution ranging from 10.58 nm to 246.7 nm, and a polydispersity index of 0.441. The sample thermal analyses (TG and DSC) showed similar decomposition curves; however, the thermal events indicated an increase in thermal stability in relation to the presence of the extract. In addition to these interesting pharmaceutical features, IC50 values of 333.40 µg/mL and >1000 µg/mL were obtained when tumor (SCC-25) and non-tumor (L929) cells were incubated with VADE-loaded-hydrogel, respectively. The optical and ultrastructural cellular analysis confirmed the tumor selectivity since the following alterations were detected only in SCC-25 cells: disorganization of plasmatic membrane; an increase of cytoplasmatic vacuole size; alteration in the cristae mitochondrial shape; and generation of amorphous cellular material. These results emphasize the promising antitumoral potential of VADE-loaded-hydrogel as an herbal drug delivery system via in vitro assays.

9.
Front Chem ; 10: 863083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35494627

RESUMO

Thermal analysis is widely used for the measurement of the relationship between temperature and physical properties of the materials. Many studies have reported different thermal analysis methods, including thermogravimetry (TG), derivative thermogravimetry (DTG), differential heat analysis (DTA), and differential scanning calorimetry (DSC), but few comprehensively studied the factors influencing TG-DTA by the combined thermogravimetry-differential thermal methods. In this study, taking chalcanthite as the research object, the thermogravimetric-differential thermal analyses were systematically conducted by using synchronous thermal analyzer technology. The results demonstrate that 1) DTA curves of low- and medium-weight chalcanthite show five dehydration endothermic peaks, while TG curves do not display obvious weight-loss steps; DTA and TG curves of high-weight chalcanthite samples, on the other hand, illustrate three endothermic peaks, indicating three-step loss of crystalline water; 2) higher weight of samples may cause longer time of internal heat transfer and larger temperature gradient, consequently resulting in the expansion of DTA peak shape and the decline of resolution as well as the increase of the peak temperature; 3) the weight-loss deviation between the measured and theoretical data is relatively higher in the low-weight samples than that in the medium- and high-weight samples; 4) the heating rate can increase the DTA curve peak and thermal inertia and the temperature at the thermodynamic equilibrium, causing the temperature lagging behind and the overall peak moving toward high temperature; 5) sample grinding may destroy the structure of the crystal, thereby breaking the relatively weak chemical bond, and thus affects the structure of thermogravimetric-differential thermal analyses. These suggest that the sample weight, heating rate, and sample grinding probably have significant effects on the thermogravimetric-differential thermal analyses. Therefore, proper experimental conditions are needed to obtain the accurate results during the thermogravimetric-differential thermal analyses. This study can provide a basis and reference for future synchronous thermal analyses.

10.
Materials (Basel) ; 14(10)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063363

RESUMO

Bio-based composites made of poly(L-lactic acid) (PLLA) and ß-cyclodextrin/d-limonene inclusion complex (CD-Lim) were prepared by melt extrusion. Encapsulation of volatile d-limonene molecules within ß-cyclodextrin cages was proven to be a successful strategy to prevent evaporation during high-temperature processing. However, small amounts of limonene were released upon processing, resulting in the plasticization of the polymeric matrix. Morphological analysis revealed good dispersion of the filler, which acted as a nucleating agent, favoring the growth of PLLA crystals. The composites' lowered glass transition temperature upon the addition of CD-Lim was also proved by thermomechanical analysis (DMA). Moreover, DMA revealed constant stiffness of modified materials at room temperature, which is crucial in PLLA-based formulations.

11.
J Mol Model ; 27(11): 325, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671847

RESUMO

The importance of this study stems from, it concentrates on new approach applying both practical and theoretical aspects to study structure stability of direct orange dye 26 (DO26) as an important dye widely used for dyeing of cotton or viscose for red orange direct printing. The stable dyes are so difficult to remove, decolorized and/or degrade, in pure solution or in wastewater samples, without using powerful removal environmental techniques electrochemical oxidations suggest and efficiently used in our Lab. Therefore, it is very important to compare between practical thermal and mass results as efficient techniques in studying dye stability, in comparison with theoretical results using Gaussian program for structural stability identification of DO26 dye, via careful inspection of various phenomena detected in its two symmetrical arms around urea center. Direct orange dye 26 (DO26) structure has been studied applying both practical spectroscopic and theoretical investigations. DFT-B3LYP/6-311 + + G(d,p) calculations and the electronic vibrational properties are performed to investigate its structure stability and consequently its degradation and removal from its environmental media. Correlation is found between experimental and calculated data. An intra-molecular hydrogen bonding interaction had been detected and characterized in dye skeleton. The hydrogen bonding present in the dye structure affecting its vibrational properties had been discussed. Natural population analysis like HOMO and LUMO and high-quality molecular electrostatic potential plots along with various electronics had been presented at the same level of theory. Chemical reactivity descriptors from conceptual density functional theory point of view and structure activity relationship descriptor were obtained. The experimental UV/visible, FT-IR, mass and GC-mass spectral data of the dye DO26 (D1) had been presented. These data had been supported by TD-DFT calculations to simulate the experimental spectra with computing the natural transition orbitals (NTO) and the orbital composition. Actually there is a problem that the degradation of this dye in wastewater by different techniques leads to various unknown fragments, but on using theoretical possibilities, it can be expected what happened in practical work.

12.
Artigo em Inglês | MEDLINE | ID: mdl-31167376

RESUMO

A method for evaluating the potential of reuse of biomasses for economic purposes is here presented starting from a case study. Juncus acutus plants and rhizospheres were harvested from abandoned Zn-Pb mine areas of southwest Sardinia (Italy). Thermogravimetry and Differential Thermal analyses were performed to evaluate the temperatures at which significant reactions occur. X-ray Diffraction (XRD) analysis was carried out on raw samples and on samples heated ex-situ (by a conventional diffractometer) or in-situ (by synchrotron-based diffraction). Raw samples mainly consist of quartz, phyllosilicates, and feldspars with minor amounts of sulfides, sulfates, and Fe, Pb, and Zn carbonates, concentrated in the rhizosphere. After heating, Zn and Fe oxides and willemite are observed in internal roots and stems, revealing the presence of these metals in the plant tissues. In-situ heating was less effective than ex-situ in revealing minor phases in organic samples, probably because the scarcity of oxygen within the sample holder did not allow the degradation of organic compounds and the oxidation of sulfides, resulting in a low quality XRD signal even if obtained with the high resolution ensured by a synchrotron light source. This method can be applied to plants from polluted sites for metal exploitation, and/or to biomasses from unpolluted sites for biochar production, since both applications take advantage of the knowledge of the minerals formed after heating.


Assuntos
Biodegradação Ambiental , Carvão Vegetal , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/metabolismo , Poluentes Ambientais/química , Itália , Metais/química , Metais Pesados/análise , Minerais/química , Plantas , Rizosfera , Poluentes do Solo/análise
13.
Waste Manag ; 75: 333-339, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29433900

RESUMO

In this paper, the thermal characteristics of sewage sludge and the transformation behavior of Pb and Cd during the thermal conversion process were addressed. The incineration process and pyrolysis process of the sewage sludge were investigated by thermogravimetric analysis. The results indicated that the thermal conversion process of the sewage sludge could be divided into three stages and the presence of oxygen could accelerate the decomposition of the sewage sludge. Furthermore, the effects of thermal conditions on the concentration ratio of Cd and Pb and their species partitioning in the residual char and ash were investigated. For the pyrolysis process, the maximum concentration ratio of Cd reached 41.64% at 500 °C and the lowest one 2.92% at 700 °C. Contrary, the concentration ratio of Pb remained above 93% as the temperature increased. Thus, the suitable temperature for the sewage sludge pyrolysis was below 500 °C. For the incineration process, the incineration temperature had great influence on the concentration ratio of Cd and Pb. When the incineration temperature increased from 700 °C to 900 °C, the concentration ratio of Cd decreased drastically from 99.32% to 10.96%. The maximum concentration ratio for Pb (95.31%) was reached at 800 °C. Besides, the lowest concentration ratio of Cd and Pb were obtained at a residence time of 30 min. The partitioning analyses of the Cd and Pb contained in the ash showed that the residence time had little effect on the partitioning of Cd and Pb, and the residual fractions of Cd and Pb were both above 90%. It was concluded that Cd and Pb were properly stabilized in the ash. Thus, Cd and Pb in the ash were difficult to be released into the environment and to cause secondary pollution.


Assuntos
Cádmio/química , Incineração , Chumbo/química , Esgotos , Metais Pesados , Volatilização
14.
Front Chem ; 6: 612, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619821

RESUMO

Dicationic ionic liquids (DILs), a subset of the ionic liquid (IL) family, have attracted growing interest in recent years, and the range of applications within which they are investigated is constantly expanding. However, data which allows structure to property correlation of a DIL is still limited, and thus selecting an appropriate salt to address a specific challenge can be problematic. In comparison to traditional ILs, DILs physico-chemical properties can be tuned by changing the length and type of spacer which connects the cationic heads as well as the type of cation. This in turn could give rise to symmetrical or asymmetrical DILs. In this work, a systematic study of a homogeneous class of 12 dibromide DILs and 12 di-carboxylate salts has been performed. The latter class of DILs were also compared to mono cation derivatives. The different traditional exchange methods to prepare carboxylate DILs have been evaluated and an insight into the drawbacks encountered is also presented. Prepared DILs were characterized (NMR, TGA, DSC) allowing the influence of the structure on their thermal stability to be understood. Most DILs were obtained as solid salts after careful drying. For some of these compounds, a new possible application was studied, namely their use as hydrogen bond acceptors (HBA) of deep eutectic mixtures, showing again some significant structural related effects.

15.
Comput Biol Chem ; 76: 338-356, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30165312

RESUMO

In the present work novel para chloro, para fluoro and para nitro maleanilic acid derivatives were prepared and investigated using FT-IR, thermal analyses (TA) measurements (TGA/DTG and DTA) in comparison with mass spectral (MS) fragmentation at 70 eV. The crystallographic structures of studied compounds were investigated by X-ray diffraction (XRD). The vibrational frequencies and the corresponding normal modes were evaluated at the optimized geometry. Vibrational modes were analyzed using GAUSSVIEW software. Experimental FT-IR and Raman spectra of the three newly prepared derivatives, namely, (E) - oxo -4- ((4- nitro phenyl) amino)-4- oxobut-2-enoic acid (p-NMA), (E) -4- ((4- chloro phenyl)amino)-4- oxobut -2- enoic acid (p-ClMA), (E) -4- ((4- fluoro phenyl) amino)- 4- oxobut -2- enoic acid (p-FMA) were compared with the theoretically calculated one. FT-IR and the observed vibrational frequencies were assigned; thermal analysis and mass spectrum measurements of the maleanilic acid derivatives were recorded and discussed. The computational calculations were carried out by DFT - B3LYP method with 6-311++G(d,p) basis sets and the corresponding results were tabulated. The alternations of structures of p-FMA, p-ClMA and p-NMA due to the subsequent substitutions were investigated. This correlation between experimental and theoretical calculations provided a good confirmation of the proposed structures of the newly prepared compounds. The derivatives were found to be highly effective against Hepatocellular carcinoma cells > Breast carcinoma cells > colon carcinoma cells. It was recognized, that cancer cells over expression promotes tumorigenic functions; can be suppressed by p-NMA > p-FMA > p-ClMA inhibitors.

16.
Ultrason Sonochem ; 35(Pt A): 458-470, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27838221

RESUMO

As a type of transdermal drug delivery method, low frequency sonophoresis (LFS) has been investigated during the last twenty years and is currently being attempted in a clinical setting. However, the safety of low frequency ultrasound on humans has not been completely guaranteed with high-intensity ultrasound. Thermal damage, one of the challenges in the LFS process, e.g., burns, epidermal detachment and necrosis of tissues, hinders its widespread applications. To predict and impede the overheating problems in LFS, an acoustic-flow-thermal finite element method (FEM) based on COMSOL Multiphysics software is proposed in this paper to achieve thermal analyses. The temperature distribution and its rising curves in in vitro LFS are obtained by the FEM method and experimental measurements. Both simulated and experimental maximum temperatures are larger than the safety value (e.g., 42°C on human tissues) when the driving voltage is higher than 40V (5.5W input electric power), which proves that the overheating problem really exists in high-intensity ultrasound. Furthermore, the results show that the calculated temperature rising curves in in vitro LFS correspond to the experimental results, proving the effectiveness of this FEM method. In addition, several potential thermal influence factors have been studied, including a duty ratio and amplitude of the driving voltage, and liquid height in the donor, which may be helpful in restraining the temperature increase to limit thermal damage. According to the calculated and experimental results, the former two factors are sensitive to the rise in temperature, but a small scale of liquid volume increase can enhance the permeation of Calcein without obvious temperature change. Hence, the above factors can be synthetically utilized to restrain the rise in temperature with little sacrifice of permeation ability. So this acoustic-flow-thermal FEM method could be applied to an optimized LFS system design and simulating the thermal analyses of LFS in healthy human body in terms of safe thermal limits.


Assuntos
Administração Cutânea , Temperatura , Ondas Ultrassônicas , Animais , Análise de Elementos Finitos , Ratos
17.
Food Chem ; 236: 49-58, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28624089

RESUMO

The moisture content of ß-cyclodextrin/Danube fish oils complexes (common barbel, Pontic shad, European wels catfish, common bleak) was evaluated by thermal methods. Saturated and monounsaturated fatty acids were the most concentrated in fish oils (25.3-30.8% and 36.1-45.0%). ω-3 And ω-6 fatty acids were identified in low concentrations of 2.8-12.1% and 4.1-7.1%. The moisture content was significantly lowered after ß-CD complexation, as revealed by thermogravimetric (TG) analysis (13.3% for ß-CD, 2.5-6.5% for complexes). These results are consistent with the differential scanning calorimetry (DSC) data for the peaks corresponding to dissociation of water (calorimetric effect of 536Jg-1 for ß-cyclodextrin and 304-422.5Jg-1 for complexes). Furthermore, both TG and DSC results support the formation of inclusion complexes. This is the first study on the nanoencapsulation of Danube fish oils in ß-cyclodextrin.


Assuntos
Cyprinidae , Óleos de Peixe/química , beta-Ciclodextrinas/química , Animais , Peixes-Gato , Rios
18.
J Photochem Photobiol B ; 170: 271-285, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28456118

RESUMO

The present study was conducted to synthesis of some new imine Cr(III), VO(II), Mn(II) and Ni(II) complexes derived from the condensation of 2-amino phenol with 2-hydroxynapthaldehyde were synthesized. The prepared HNPN imine ligand was analyzed by its melting point, IR, 1H NMR and 13C NMR spectroscopies. The investigated HNPN imine complexes were characterized by elemental analysis, FT IR, UV-vis and thermal analysis (TGA) under nitrogen atmosphere from ambient temperature to 750°C. The experimental results revealed that the investigated complexes contain hydrated water molecules. The molar conductance values of complexes are relatively low, indicating the non-electrolytic nature of these complexes. Magnetic susceptibility measurements show that the investigated complexes are paramagnetic. Moreover, the stability constants of the preparing complexes were determined spectrophotometrically. All the complexes were found to be monomeric 1:1 (M:L) stoichiometry in nature with octahedral geometry for Cr(III), tetrahedral for Mn(II), square planner for Ni(II) and square pyramidal for VO(II). Moreover, the prepared HNPN imine ligand and its complexes were evaluated for antimicrobial effect against some types of bacteria such as Bacillus subtilis (+ve), Escherichia coli(-ve) and Staphylococcus aureus (+ve) and some types of fungi such as Aspergillusniger, Candida glabrata and Trichophyton rubrum. The results of these studies indicate that the metal complexes exhibit a stronger antibacterial and antifungal efficiency compared to their corresponding imine ligand. Moreover, the interaction of the investigated complexes with CT-DNA was checked using spectral studies, viscosity measurements and gel electrophoreses. The absorption titration studies revealed that each of these complexes is an avid binder to calf thymus-DNA. Also, there was appreciable changes in the relative viscosity of DNA, which is consistent with enhanced hydrophobic interaction of the aromatic rings and intercalation mode of binding. In addition to, the cytotoxic activity of the prepared imine complexes on human colon carcinoma cells, (HCT-116 cell line), hepatic cellular carcinoma cells, (HepG-2 cell line) and breast carcinoma cells (MCF-7 cell line) has cytotoxicity effect against growth of carcinoma cells compared to the clinically used Vinblastine standard. Furthermore, the molecular docking into TRK (PDB: 1t46) was done for the optimization of the investigated compounds as potential TRK inhibitors.


Assuntos
Anti-Infecciosos/química , Quelantes/química , Complexos de Coordenação/metabolismo , DNA/metabolismo , Iminas/química , Animais , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/toxicidade , Sítios de Ligação , Bovinos , Proliferação de Células/efeitos dos fármacos , Cobalto/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , DNA/química , Fungos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Células HCT116 , Células Hep G2 , Humanos , Ligantes , Células MCF-7 , Espectroscopia de Ressonância Magnética , Manganês/química , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Níquel/química , Conformação de Ácido Nucleico , Óxidos/química , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Compostos de Vanádio/química
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 182: 143-159, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28431312

RESUMO

A simple, accurate and fast spectrophotometric method for the quantitative determination of melatonin (ML) drug in its pure and pharmaceutical forms was developed based on the formation of its charge transfer complex with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as an electron acceptor. The different conditions for this method were optimized accurately. The Lambert-Beer's law was found to be valid over the concentration range of 4-100µgmL-1 ML. The solid form of the CT complex was structurally characterized by means of different spectral methods. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations were carried out. The different quantum chemical parameters of the CT complex were calculated. Thermal properties of the CT complex and its kinetic thermodynamic parameters were studied, as well as its antimicrobial and antifungal activities were investigated. Molecular docking studies were performed to predict the binding modes of the CT complex components towards E. coli bacterial RNA and the receptor of breast cancer mutant oxidoreductase.


Assuntos
Benzoquinonas/química , Melatonina/química , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Benzoquinonas/metabolismo , Melatonina/metabolismo , Simulação de Acoplamento Molecular , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Espectrofotometria , Eletricidade Estática , Temperatura
20.
J Photochem Photobiol B ; 162: 298-308, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27395793

RESUMO

Three new nano sized Cu(II), Co(II) and Ni(II) complexes of imine ligand derived from the condensation of 2-amino-3-hydroxypyridine and 3-methoxysalicylaldehyde have been prepared and investigated using various chemical techniques such as NMR, elemental analysis, molar conductance, IR, electronic spectra, TGA and magnetic moment measurements. The obtained chemical analysis data showed that the synthesis of 1:1 (metal:ligand) ratio and octahedral geometry was proposed on the basis of magnetic moment and spectral data studies except the Cu(II) complex which is tetrahedral geometry. Nano-sized particles of the investigated complexes were prepared by sonochemistry method. Furthermore, metal oxides nanoparticles were gained by calcination of the prepared corresponding complexes at 500°C and their structures were characterized by powder x-ray and transmittance electron microscopy. Moreover, the free ligand, its complexes and their metal oxides have been checked in vitro against a number of bacteria and fungi in order to assess their antimicrobial activities. In addition to that, DNA binding of the prepared complexes was tested by many routes such as electronic spectra, viscosity and gel electrophoresis. The results showed that the investigated complexes could bind to DNA via an intercalative mode. The cytotoxicity of the Schiff base complexes on human colon carcinoma cells, (HCT-116 cell line) and Breast carcinoma cells, (MCF-7 cell line) showed potent cytotoxicity effect against growth of carcinoma cells compared to the clinically used Vinblastine standard.


Assuntos
DNA/metabolismo , Iminas/química , Nanoestruturas/química , Compostos Organometálicos/síntese química , Compostos Organometálicos/farmacologia , Óxidos/química , Ondas Ultrassônicas , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Quelantes/síntese química , Quelantes/química , Quelantes/metabolismo , Quelantes/farmacologia , Técnicas de Química Sintética , Cobalto/química , Cobre/química , Humanos , Hidrodinâmica , Cinética , Ligantes , Células MCF-7 , Níquel/química , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa