Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
World J Urol ; 42(1): 157, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483596

RESUMO

PURPOSE: To evaluate the thermal profiles of the holmium laser at different laser parameters at different locations in an in vitro anatomic pelvicalyceal collecting system (PCS) model. Laser lithotripsy is the cornerstone of treatment for urolithiasis. With the prevalence of high-powered lasers, stone ablation efficiency has become more pronounced. Patient safety remains paramount during surgery. It is well recognized that the heat generated from laser lithotripsy has the potential to cause thermal tissue damage. METHODS: Utilizing high-fidelity, 3D printed hydrogel models of a PCS with a synthetic BegoStone implanted in the renal pelvis, laser lithotripsy was performed with the Moses 2.0 holmium laser. At a standard power (40 W) and irrigation pressure (100 cm H2O), we evaluated operator duty cycle (ODC) variations with different time-on intervals at four different laser settings. Temperature was measured at two separate locations-at the stone and away from the stone. RESULTS: Temperatures were highest closest to the laser tip with a decrease away from the laser. Fluid temperatures increased with longer laser-on times and higher ODCs. Thermal doses were greater with increased ODCs and the threshold for thermal injury was reached for ODCs of 75% and 100%. CONCLUSION: Temperature generation and thermal dose delivered are greatest closer to the tip of the laser fiber and are not dependent on power alone. Significant temperature differences were noted between four laser settings at a standardized power (40 W). Temperatures can be influenced by a variety of factors, such as laser-on time, operator duty cycle, and location in the PCS.


Assuntos
Lasers de Estado Sólido , Litotripsia a Laser , Litotripsia , Humanos , Hólmio , Lasers de Estado Sólido/uso terapêutico , Modelos Anatômicos
2.
World J Urol ; 42(1): 453, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073430

RESUMO

PURPOSE: To examine temporal-spatial distribution of heat generated upon laser activation in a bench model of renal calyx. To establish reference values for a safety distance between the laser fiber and healthy tissue during laser lithotripsy. METHODS: We developed an in-vitro experimental setup employing a glass pipette and laser activation under various intra-operative parameters, such as power and presence of irrigation. A thermal camera was used to monitor both temporal and spatial temperature changes during uninterrupted 60-second laser activation. We computed the thermal dose according to Sapareto and Dewey's formula at different distances from the laser fiber tip, in order to determine a safety distance. RESULTS: A positive correlation was observed between average power and the highest recorded temperature (Spearman's coefficient 0.94, p < 0.001). Irrigation was found to reduce the highest recorded temperature, with a maximum average reduction of 9.4 °C at 40 W (p = 0.002). A positive correlation existed between average power and safety distance values (Spearman's coefficient 0.86, p = 0.001). A thermal dose indicative of tissue damage was observed at 20 W without irrigation (safety distance 0.93±0.11 mm). While at 40 W, irrigation led to slight reduction in mean safety distance (4.47±0.85 vs. 5.22±0.09 mm, p = 0.08). CONCLUSIONS: Laser settings with an average power greater than 10 W deliver a thermal dose indicative of tissue damage, which increases with higher average power values. According to safety distance values from this study, a maximum of 10 W should be used in the ureter, and a maximum of 20 W should be used in kidney in presence of irrigation.


Assuntos
Litotripsia a Laser , Litotripsia a Laser/métodos , Litotripsia a Laser/instrumentação , Humanos , Temperatura Alta , Cálices Renais , Irrigação Terapêutica/métodos
3.
Lasers Surg Med ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39175158

RESUMO

BACKGROUND: Focal laser ablation (FLA) serves as a targeted therapy for prostate cancer (PCa). Clinical studies have demonstrated significant variations in ablation volumes with consistent fiber configurations. Consequently, a prediction model is needed for the safe application of FLA in treating PCa. OBJECTIVE: This study aimed to evaluate the reproducibility of FLA-induced temperature profiles in controlled ex vivo experiments using clinical laser treatment protocols. Additionally, it sought to examine the effectiveness of the CEM43 model in predicting the zone of irreversible damage (ZID) and to compare these findings with outcomes derived from the Arrhenius model. METHODS: Freshly excised postmortem human prostate and porcine liver specimens were used for controlled ex vivo ablation. Tissues were secured in a Perspex sample holder for precise placement of the laser fiber and thermocouples. FLA was conducted with a 1064-nm Nd:YAG laser at 3 W in continuous-wave mode for 10 min. Pre- and post-FLA 3D T1-weighted 7 T MRI scans were obtained to assess the treatment area. Whole-mount hematoxylin and eosin histological slides were prepared and digitized. On histology, the ZID was defined as the total of vaporized, carbonized, and coagulated tissue. A 2D thermal development map was created from temperature data, using bi-cubic interpolation. The cumulative equivalent thermal isoeffect dose at 43°C in minutes (CEM43) model was applied to predict the ZID, with 240 equivalent minutes (240-CEM43) used as the damage threshold. Additionally, the Arrhenius thermal model was used for comparison of CEM43 results. Predicted ZIDs were compared to MRI and histology. RESULTS: FLA treatment was performed on ex vivo human prostate samples (n = 2) and porcine liver specimens (n = 5). For human prostate tissue, FLA did not result in an identifiable ZID upon histological macroscopic examination or a lesion on MRI. Ex vivo porcine liver samples showed a clearly demarcated oval-shaped hyperintense lesion surrounding the laser fiber tip on post-FLA MRI. The MRI lesion (range 1.6-2.1 cm2) corresponded with the shape and location of the ZID on histology, but was smaller (median 1.7 vs. 3.2, p = 0.02). Histological examination of porcine liver samples revealed ZIDs ranging from 2.1 to 4.1 cm2, whereas 240-CEM43-predicted ZIDs ranged from 3.3 to 3.8 cm2. Although the median 240-CEM43-predicted ZID was not significantly larger than the histology ZID (3.8 vs. 3.2 cm2, p = 0.22), it tended to overpredict the histological results in most experiments. The median Arrhenius-predicted ZID was similar to the histological ZID (3.2 vs. 3.2 cm2, p = 0.56), but varied in size when comparing individual experiments (range 2.5-3.2 cm2). CONCLUSION: FLA on ex vivo human prostate showed no thermal damage on histopathology or MRI. Ex vivo porcine liver FLA resulted in identifiable ZID on histology and lesions on MRI. 240-CEM43 generally overestimated the ZID and had less variability compared to histology. Results from the Arrhenius model were in better agreement with the histology findings, but still did not predict the individual FLA-induced histological thermal damage. Inter-experiment ZID variability underlines the need for developing a more comprehensive predictive dosimetry model for FLA in PCa treatment.

4.
Strahlenther Onkol ; 199(5): 436-444, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36038671

RESUMO

PURPOSE: The combination of hyperthermia (HT) with radio(chemo)therapy or chemotherapy (CT) is an established treatment strategy for specific indications. Its application in routine clinical practice in Europe depends on regulatory and local conditions. We conducted a survey among European clinical centers to determine current practice of HT. METHODS: A questionnaire with 22 questions was sent to 24 European HT centers. The questions were divided into two main categories. The first category assessed how many patients are treated with HT in combination with radio(chemo)therapy or CT for specific indications per year. The second category addressed which hyperthermia parameters are recorded. Analysis was performed using descriptive methods. RESULTS: The response rate was 71% (17/24) and 16 centers were included in this evaluation. Annually, these 16 centers treat approximately 637 patients using HT in combination with radio(chemo)therapy or CT. On average, 34% (range: 3-100%) of patients are treated in clinical study protocols. Temperature readings and the time interval between HT and radio(chemo)therapy or CT are recorded in 13 (81%) and 9 (56%) centers, respectively. The thermal dose quality parameter "cumulative equivalent minutes at 43 °C" (CEM43°C) is only evaluated in five (31%) centers for each HT session. With regard to treatment sequence, 8 (50%) centers administer HT before radio(chemo)therapy and the other 8 in the reverse order. CONCLUSION: There is a significant heterogeneity among European HT centers as to the indications treated and the recording of thermometric parameters. More evidence from clinical studies is necessary to achieve standardization of HT practice.


Assuntos
Hipertermia Induzida , Humanos , Hipertermia Induzida/métodos , Terapia Combinada , Europa (Continente)
5.
Int J Hyperthermia ; 40(1): 2157498, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755433

RESUMO

PURPOSE: In nonmuscle invasive bladder cancer (NMIBC) patients who fail standard intravesical treatment and are unfit or unwilling to undergo a radical cystectomy, radiofrequency (RF)-induced hyperthermia combined with intravesical chemotherapy (RF-CHT) has shown promising results. We studied whether higher thermal dose improves clinical NMIBC outcome. METHODS AND MATERIALS: The cohort comprised 108 patients who started with RF-CHT between November 2013 and December 2019. Patients received intravesical mitomycin-C or epirubicin. Bladder hyperthermia was accomplished with an intravesical 915 MHz RF device guided by intravesical thermometry. We assessed the association between thermal dose parameters (including median temperature and Cumulative Equivalent Minutes of T50 at 43 °C [CEM43T50]) and complete response (CR) at six months for patients with (concomitant) carcinoma in situ (CIS), and recurrence-free survival (RFS) for patients with papillary disease. RESULTS: Median temperature and CEM43T50 per treatment were 40.9 (IQR 40.8-41.1) °C and 3.1 (IQR 0.9-2.4) minutes, respectively. Analyses showed no association between any thermal dose parameter and CR or RFS (p > 0.05). Less bladder spasms during treatment sessions was associated with increased median temperature and CEM43T50 (adjusted OR 0.01 and 0.34, both p < 0.001). CONCLUSIONS: No significant association between thermal dose and NMIBC outcome was found. Possibly thermal dose effect in patients of the current cohort exceeds a certain threshold value. On the other hand, occurrence of bladder spasms had a thermal dose limiting effect. We advise to treat patients with temperatures >40.5 °C for at least 45 min while respecting individual tolerability, including occurrence of bladder spasms.


Assuntos
Hipertermia Induzida , Neoplasias da Bexiga Urinária , Humanos , Hipertermia Induzida/métodos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Mitomicina/uso terapêutico , Epirubicina/uso terapêutico , Terapia Combinada , Invasividade Neoplásica , Recidiva Local de Neoplasia/tratamento farmacológico
6.
Int J Hyperthermia ; 40(1): 2275540, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37932002

RESUMO

Purpose: Radiotherapy (RT) in combination with deep regional hyperthermia (HT) after transurethral removal of bladder tumor (TURBT) can be offered to elderly and frail patients with muscle-invasive bladder cancer (MIBC).Methods: In total, 21 patients (mean age 84 years) with unifocal or multifocal MIBC received radiation to a dose of 48-50 Gy/16-20 fractions with weekly HT. The primary endpoint was the variation in temperature metrics, thermal dose expressed as cumulative equivalent minutes at 43 °C when the measured temperature is T90 (CEM43T90) and net power applied in target volume per each HT session. Secondary endpoints were three-year overall survival (OS), disease-free survival (DFS), local progression-free survival (LPFS) and toxicity.Results: The temperature metrics, CEM43T90, mean and maximum net power applied did not differ significantly among the HT sessions of the 21 patients. With a median follow-up of 65 months, 52% (95% CI 32-72%) of patients had died 3 years after treatment. The three-year DFS and LPFS rates were 62% (95%CI 41-79%) and 81% (95%CI 60-92%), respectively. The three-year bladder preservation rate was 100%. Three out of four patients with local failure received a thermal dose CEM43T90 below a median of 2.4 min. The rates of acute and late grade-3 toxicities were 10% and 14%, respectively.Conclusion: The reproducibility of HT parameters between sessions was high. A moderately high CEM43T90 (> 2.4 min) for each HT session seems to be preferable for local control. RT combined with HT is a promising organ-preservation therapy for elderly and frail MIBC patients.


Assuntos
Hipertermia Induzida , Neoplasias da Bexiga Urinária , Humanos , Idoso , Idoso de 80 Anos ou mais , Hipertermia Induzida/métodos , Reprodutibilidade dos Testes , Idoso Fragilizado , Terapia Combinada , Neoplasias da Bexiga Urinária/terapia , Músculos
7.
J Nanobiotechnology ; 21(1): 196, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340410

RESUMO

BACKGROUND: Hyperthermia-based therapies have shown great potential for clinical applications such as for the antitumor and antipathogenic activities. Within all strategies, the so-called photothermal therapy proposes to induce the hyperthermia by the remote laser radiation on a photothermal conversion agent, in contact with the target tissue. METHODS: This paper reviews the most relevant in vitro and in vivo studies focused on NIR laser-induced hyperthermia due to photoexcitation of graphene oxide (GO) and reduced graphene oxide (rGO). Relevant parameters such as the amount of GO/rGO, the influence of the laser wavelength and power density are considered. Moreover, the required temperature and exposure time for each antitumor/antipathogenic case are collected and unified in a thermal dose parameter: the CEM43. RESULTS: The calculated CEM43 thermal doses revealed a great variability for the same type of tumor/strain. In order to detect potential tendencies, the values were classified into four ranges, varying from CEM43 < 60 min to CEM43 ≥ 1 year. Thus, a preference for moderate thermal doses of CEM43 < 1 year was detected in antitumor activity, with temperatures ≤ 50 °C and exposure time ≤ 15 min. In case of the antipathogenic studies, the most used thermal dose was higher, CEM43 ≥ 1 year, with ablative hyperthermia (> 60ºC). CONCLUSIONS: The ability of GO/rGO as effective photothermal conversion agents to promote a controlled hyperthermia is proven. The variability found for the CEM43 thermal doses on the reviewed studies reveals the potentiality to evaluate, for each application, the use of lower temperatures, by modulating time and/or repetitions in the doses.


Assuntos
Grafite , Hipertermia Induzida , Neoplasias , Humanos , Grafite/farmacologia , Neoplasias/terapia , Luz
8.
NMR Biomed ; 35(5): e4656, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34962689

RESUMO

In this study, the performance of an integrated body-imaging array for 7 T with 32 radiofrequency (RF) channels under consideration of local specific absorption rate (SAR), tissue temperature, and thermal dose limits was evaluated and the imaging performance was compared with a clinical 3 T body coil. Thirty-two transmit elements were placed in three rings between the bore liner and RF shield of the gradient coil. Slice-selective RF pulse optimizations for B1 shimming and spokes were performed for differently oriented slices in the body under consideration of realistic constraints for power and local SAR. To improve the B1+ homogeneity, safety assessments based on temperature and thermal dose were performed to possibly allow for higher input power for the pulse optimization than permissible with SAR limits. The results showed that using two spokes, the 7 T array outperformed the 3 T birdcage in all the considered regions of interest. However, a significantly higher SAR or lower duty cycle at 7 T is necessary in some cases to achieve similar B1+ homogeneity as at 3 T. The homogeneity in up to 50 cm-long coronal slices can particularly benefit from the high RF shim performance provided by the 32 RF channels. The thermal dose approach increases the allowable input power and the corresponding local SAR, in one example up to 100 W/kg, without limiting the exposure time necessary for an MR examination. In conclusion, the integrated antenna array at 7 T enables a clinical workflow for body imaging and comparable imaging performance to a conventional 3 T clinical body coil.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Temperatura
9.
World J Urol ; 40(6): 1575-1580, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35220474

RESUMO

PURPOSE: High-power laser lithotripsy can elevate temperature within the urinary collecting system and increase risk of thermal injury. Temperature elevation is dependent on power settings and operator duty cycle (ODC)-the percentage of time the laser pedal is depressed. The objective of this study was to quantify temperature and thermal dose resulting from laser activation at different ODC in an in-vitro model. METHODS: Holmium laser energy (1800 J) was delivered at 30 W (0.5 J × 60 Hz) to a fluid filled glass bulb. Room temperature irrigation was applied at 8 ml/min. ODC was evaluated in 10% increments from 50-100%. Bulb fluid temperature was recorded and thermal dose calculated. Time to reach threshold of thermal injury and maximal allowable energy were also determined at each ODC. RESULTS: Upon laser activation, there was an immediate rise in fluid temperature with a "saw-tooth" oscillation superimposed on the curves for 50-90% ODC corresponding to periodic activation of the laser. Higher ODC resulted in greater maximum temperature and thermal dose, with ODC ≥ 70% exceeding threshold. Use of 50% compared to 60% ODC resulted in a tenfold increase in time required to reach threshold of thermal injury and an eightfold increase in maximal allowable energy. CONCLUSIONS: Laser activation at higher ODC produced greater fluid temperature and thermal dose. Time to threshold of thermal injury and maximal allowable energy were dramatically higher for 50% compared to 60% ODC at high-power settings. Proper management of laser ODC can enhance patient safety and optimize stone treatment.


Assuntos
Lasers de Estado Sólido , Litotripsia a Laser , Febre , Humanos , Lasers de Estado Sólido/uso terapêutico , Litotripsia a Laser/métodos , Temperatura , Ureteroscopia/métodos
10.
Int J Hyperthermia ; 39(1): 713-724, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634916

RESUMO

AIM: Metal implant infections are a devastating problem due to the formation of biofilm which impairs the effectiveness of antibiotics and leads to surgical replacement as definitive treatment. Biofilm on metal implants can be reduced using heat generated by alternating magnetic fields (AMF). In this study, the relationship between implant surface biofilm reduction and surrounding tissue thermal damage during AMF exposure is investigated through numerical simulations. METHODS: Mathematical models of biofilm reduction with heat were created based on in vitro experiments. Simulations were performed to predict the spatial and temporal heating on the implant surface and surrounding tissue when exposed to AMF. RESULTS: The modeling results show that intermittent and slow heating can achieve biofilm reduction with a narrow zone of tissue damage around an implant of less than 3 mm. The results also emphasize that uniformity of implant heating is an extremely important factor impacting the effectiveness of biofilm reduction. For a knee implant, using a target temperature of 75 °C, an intermittent treatment strategy of 15 exposures (10 s to target temperature followed by cooldown) achieved a bacterial CFU reduction of 6-log10 across 25% of the implant surface with less than 3 mm of tissue damage. Alternatively, a single 60 s heating exposure to same temperature achieved a bacterial reduction of 6-log10 across 85% of the implant surface, but with 4 mm of tissue damage. CONCLUSION: Overall, this study demonstrates that with uniform heating to temperatures above 70 °C, an implant surface can be largely reduced of biofilm, with only a few mm of surrounding tissue damage.


Assuntos
Biofilmes , Próteses e Implantes , Antibacterianos , Campos Magnéticos , Metais , Próteses e Implantes/efeitos adversos
11.
Int J Hyperthermia ; 39(1): 81-96, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34949138

RESUMO

Aim: Treatment of infected orthopedic implants remains a major medical challenge, involving prolonged antibiotic therapy and revision surgery, and adding a >$1 billion annual burden to the health care system in the US alone. Exposure of metallic implants to alternating magnetic fields (AMF) generates heat that can provide a noninvasive means to target biofilm adhered to the surface. In this study, an AMF system with a solenoid coil was constructed for targeting a metal plate surgically implanted in a sheep model.Methods: A tissue-mimicking phantom of the sheep leg was developed along with simulation model of phantom and the live sheep leg. This was used evaluate heating with the AMF system and to compare experimental results with numerical simulations. Comparative AMF exposures were performed/simulated in these model for feasibility of design, verification, and validation of simulations.Results: The system produced magnetic field strengths up to 12mT and achieved plate temperatures of 65-80 °C within 10-14 s. Single and intermittent AMF exposures of a tissue-mimicking phantom agreed with numerical simulations within 5 °C. Similar agreement between experimental measurements and simulations was also observed in the live sheep metal implant model. The simulations also predicted 2-3 mm of tissue damage using a CEM43 thermal dose model for 1-h AMF exposures targeting 65 °C for pulse delays of 2.5 and 5 mins.Conclusion: This study confirmed that AMF technology can be scaled up to treat implants in a large animal model with the same rates of heating and peak temperatures achieved in prior in vitro studies. Further, numerical simulations provided accurate predictions of the heating produced by AMF on metal implants and surrounding tissues, and can be used to design AMF coils for treating human prosthetic joint implants with more complex geometrical shapes.


Assuntos
Calefação , Campos Magnéticos , Animais , Estudos de Viabilidade , Temperatura Alta , Metais , Ovinos
12.
Int J Hyperthermia ; 39(1): 697-705, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35469518

RESUMO

Thermal dose models are metrics that quantify the thermal effect on tissues based on the temperature and the time of exposure. These models are used to predict and control the outcome of hyperthermia (up to 45°C) treatments, and of thermal coagulation treatments at higher temperatures (>45°C). The validity and accuracy of the commonly used models (CEM43) are questionable when heating above the hyperthermia temperature range occurs, leading to an over-estimation of the accumulation of thermal damage. A new CEM43 dose model based on an Arrhenius-type, Vogel-Tammann-Fulcher, equation using published data, is introduced in this work. The new dose values for the same damage threshold that was produced at different in-vivo skin experiments were in the same order of magnitude, while the current dose values varied by two orders of magnitude. In addition, the dose values obtained using the new model for the same damage threshold in 6 lesions in ex-vivo liver experiments were more consistent than the current model dose values. The contribution of this work is to provide new modeling approaches to inform more robust thermal dosimetry for improved thermal therapy modeling, monitoring, and control.


Assuntos
Hipertermia Induzida , Eletrocoagulação , Temperatura Alta , Fígado , Temperatura
13.
Int J Hyperthermia ; 38(1): 1627-1632, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34775895

RESUMO

OBJECTIVES: To compare the therapeutic effects of locoregional deep hyperthermia combined with intravesical chemotherapy with those of intravesical chemotherapy alone in patients with intermediate-/high-risk non-muscle invasive bladder cancer (NMIBC). To evaluate the impact of thermal dose in hyperthermia treatment. METHODS: We analyzed data retrieved from the medical records of patients with intermediate-/high-risk NMIBC treated with intravesical mitomycin (IM group) or locoregional deep hyperthermia combined with intravesical mitomycin (CHT group) at a single tertiary care hospital between May 2016 and June 2019. The primary and secondary endpoints were the recurrence-free survival rate and progression-free survival rate, respectively. Thermal dose was evaluated and adverse events were also recorded. RESULTS: In total, 43 patients (CHT: 18 patients, IM: 25 patients) were enrolled. The median follow-up durations were 14 and 23 months, respectively. The recurrence rate at 12 months was significantly lower in the CHT group than in the IM group (11.1% vs. 44%, p = .048); this trend persisted at 24 months (CHT: 11.1%, IM: 48%; p = .027). The recurrence-free survival was also significantly higher in the CHT group than in the IM group (p = .028). No tumor recurrence was noted in patients who received a thermal dose of ≥4 CEM43. All adverse events were well tolerated, and there was no treatment-related mortality. CONCLUSIONS: Intravesical chemotherapy combined with locoregional deep hyperthermia for intermediate-/high-risk papillary NMIBC can significantly decrease the recurrence rate relative to that observed after intravesical chemotherapy alone.


Assuntos
Hipertermia Induzida , Neoplasias da Bexiga Urinária , Administração Intravesical , Antibióticos Antineoplásicos/uso terapêutico , Humanos , Mitomicina/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias da Bexiga Urinária/tratamento farmacológico
14.
Int J Hyperthermia ; 38(1): 447-460, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33730953

RESUMO

PURPOSE: The localized heating of magnetic nanoparticles (MNPs) via the application of time-varying magnetic fields - a process known as magnetic field hyperthermia (MFH) - can greatly enhance existing options for cancer treatment; but for broad clinical uptake its optimization, reproducibility and safety must be comprehensively proven. As part of this effort, the quantification of MNP heating - characterized by the specific loss power (SLP), measured in W/g, or by the intrinsic loss power (ILP), in Hm2/kg - is frequently reported. However, in SLP/ILP measurements to date, the apparatus, the analysis techniques and the field conditions used by different researchers have varied greatly, leading to questions as to the reproducibility of the measurements. MATERIALS AND METHODS: An interlaboratory study (across N = 21 European sites) of calorimetry measurements that constitutes a snapshot of the current state-of-the-art within the MFH community has been undertaken. Identical samples of two stable nanoparticle systems were distributed to all participating laboratories. Raw measurement data as well as the results of in-house analysis techniques were collected along with details of the measurement apparatus used. Raw measurement data was further reanalyzed by universal application of the corrected-slope method to examine relative influences of apparatus and results processing. RESULTS: The data show that although there is very good intralaboratory repeatability, the overall interlaboratory measurement accuracy is poor, with the consolidated ILP data having standard deviations on the mean of ca. ± 30% to ± 40%. There is a strong systematic component to the uncertainties, and a clear rank correlation between the measuring laboratory and the ILP. Both of these are indications of a current lack of normalization in this field. A number of possible sources of systematic uncertainties are identified, and means determined to alleviate or minimize them. However, no single dominant factor was identified, and significant work remains to ascertain and remove the remaining uncertainty sources. CONCLUSION: We conclude that the study reveals a current lack of harmonization in MFH characterization of MNPs, and highlights the growing need for standardized, quantitative characterization techniques for this emerging medical technology.


Assuntos
Hipertermia Induzida , Humanos , Hipertermia , Campos Magnéticos , Magnetismo , Reprodutibilidade dos Testes
15.
Int J Hyperthermia ; 38(1): 296-307, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33627018

RESUMO

BACKGROUND: Thermal dose in clinical hyperthermia reported as cumulative equivalent minutes (CEM) at 43 °C (CEM43) and its variants are based on direct thermal cytotoxicity assuming Arrhenius 'break' at 43 °C. An alternative method centered on the actual time-temperature plot during each hyperthermia session and its prognostic feasibility is explored. METHODS AND MATERIALS: Patients with bladder cancer treated with weekly deep hyperthermia followed by radiotherapy were evaluated. From intravesical temperature (T) recordings obtained every 10 secs, the area under the curve (AUC) was computed for each session for T > 37 °C (AUC > 37 °C) and T ≥ 39 °C (AUC ≥ 39 °C). These along with CEM43, CEM43(>37 °C), CEM43(≥39 °C), Tmean, Tmin and Tmax were evaluated for bladder tumor control. RESULTS: Seventy-four hyperthermia sessions were delivered in 18 patients (median: 4 sessions/patient). Two patients failed in the bladder. For both individual and summated hyperthermia sessions, the Tmean, CEM43, CEM43(>37 °C), CEM43(≥39 °C), AUC > 37 °C and AUC ≥ 39 °C were significantly lower in patients who had a local relapse. Individual AUC ≥ 39 °C for patients with/without local bladder failure were 105.9 ± 58.3 °C-min and 177.9 ± 58.0 °C-min, respectively (p = 0.01). Corresponding summated AUC ≥ 39 °C were 423.7 ± 27.8 °C-min vs. 734.1 ± 194.6 °C-min (p < 0.001), respectively. The median AUC ≥ 39 °C for each hyperthermia session in patients with bladder tumor control was 190 °C-min. CONCLUSION: AUC ≥ 39 °C for each hyperthermia session represents the cumulative time-temperature distribution at clinically defined moderate hyperthermia in the range of 39 °C to 45 °C. It is a simple, mathematically computable parameter without any prior assumptions and appears to predict treatment outcome as evident from this study. However, its predictive ability as a thermal dose parameter merits further evaluation in a larger patient cohort.


Assuntos
Hipertermia Induzida , Hipertermia , Área Sob a Curva , Terapia Combinada , Humanos , Recidiva Local de Neoplasia/terapia , Temperatura
16.
Int J Hyperthermia ; 38(1): 1443-1456, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34612127

RESUMO

BACKGROUND: Sub-ablative heat induces pleiotropic biological effects in cancer cells, activating programmed cell death or survival processes. These processes decide the fate of the heated cell. This study investigates these and assesses whether heat, in combination with HSP90 inhibition, augments cell death and induces a pro-immune phenotype in these cells. METHODS: HCT116 and HT29 cells were subjected to thermal doses (TID) of 60 and 120CEM43 using a PCR thermal cycler. HSP90 was inhibited with NVP-AUY922. Viability was assessed using the MTT assay. Cellular ATP and HSP70 release were assessed using ATP and Enzyme-linked Immunosorbent assays, respectively. Flow cytometry and immunoblotting were used to study the regulation of biomarkers associated with the heat shock response, the cell cycle, and immunogenic and programmed cell death. RESULTS: Exposure of HCT116 and HT29 cells to TIDs of 60 and 120CEM43 decreased their viability. In addition, treatment with 120CEM43 increased intracellular HSP70 and the percentage of HCT116/HT29 cells in the G2/M cell cycle phase, ATP release and Calreticulin/HSP70/HSP90 exposure in the plasma membrane, while downregulating CD47 compared to sham-exposed cells. When combined with NVP-AUY922, treatment of HCT116/HT29 cells with 120CEM43 resulted in a synergistic decrease of cell viability associated with the induction of apoptosis. Also, the combined treatments increased Calreticulin exposure, CD47 downregulation, and HSP70 release compared to the sham-exposed cells. CONCLUSION: Sub-ablative heating can act synergistically with the clinically relevant HSP90 inhibitor NVP-AUY922 to induce a pro-immunogenic form of cell death in colon cancer cells.


Assuntos
Neoplasias do Colo , Proteínas de Choque Térmico HSP90 , Apoptose , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Células HCT116 , Humanos
17.
Int J Hyperthermia ; 38(1): 229-240, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33602033

RESUMO

PURPOSE: In pancreatic cancer treatment, hyperthermia can be added to increase efficacy of chemo- and/or radiotherapy. Gas in stomach, intestines and colon is often in close proximity to the target volume. We investigated the impact of variations in gastrointestinal gas (GG) on temperature distributions during simulated hyperthermia treatment (HT). METHODS: We used sets of one CT and eight cone-beam CT (CBCT) scans obtained prior to/during fractionated image-guided radiotherapy in four pancreatic cancer patients. In Plan2Heat, we simulated locoregional heating by an ALBA-4D phased array radiofrequency system and calculated temperature distributions for (i) the segmented CT (sCT), (ii) sCT with GG replaced by muscle (sCT0), (iii) sCT0 with eight different GG distributions as visible on CBCT inserted (sCTCBCT). We calculated cumulative temperature-volume histograms for the clinical target volume (CTV) for all ten temperature distributions for each patient and investigated the relationship between GG volume and change in ΔT50 (temperature increase at 50% of CTV volume). We determined location and volume of normal tissue receiving a high thermal dose. RESULTS: GG volume on CBCT varied greatly (9-991 cm3). ΔT50 increased for increasing GG volume; maximum ΔT50 difference per patient was 0.4-0.6 °C. The risk for GG-associated treatment-limiting hot spots appeared low. Normal tissue high-temperature regions mostly occurred anteriorly; their volume and maximum temperature showed moderate positive correlations with GG volume, while fat-muscle interfaces were associated with higher risks for hot spots. CONCLUSIONS: Considerable changes in volume and position of gastrointestinal gas can occur and are associated with clinically relevant tumor temperature differences.


Assuntos
Hipertermia Induzida , Neoplasias Pancreáticas , Tomografia Computadorizada de Feixe Cônico , Humanos , Hipertermia , Dosagem Radioterapêutica , Temperatura
18.
Int J Hyperthermia ; 37(1): 506-516, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32423261

RESUMO

Introduction: The Cumulative Equivalent Minute at 43 °C (CEM43) thermal dose model has been empirically derived more than 30 years ago and still serves as a benchmark for hyperthermia protocols despite the advent of regulatory network models. However, CEM43 suffers from several limitations regarding its inability to predict the effect of complex time varying profiles (thermotolerance, step-down heating), to predict synergistic effects with drug treatments or to explain the specificity of a cell line in thermal resistance.Objective: Define a new generic predictive tool for thermal injury based on regulatory network models. Identify the biological parameters that account for the thermal resistance.Materials: Comparative study of cell survival upon hyperthermia collected from literature (17 sets in 11 publications that cover 14 different cell lines from 8 different tissues).Results: A dynamical model describes accurately cell survival according to the amplitude and duration of exposure but also molecular chaperone expression level. In the case of square shape hyperthermia, approximated analytical expression of the cell survival is derived from the dynamical model and compared to CEM43 description. The molecular chaperone expression level defines the thermal resistance of a given cell line and can be estimated from a single experimental result through an easy-to-use graphical tool.Conclusion: The tools offered here can be useful for designing treatments combining hyperthermia and chemotherapy targeting molecular chaperones, but also for designing personalized hyperthermic treatment by prior biochemical screening of molecular chaperones. These tools could advantageously replace the description of CEM43.


Assuntos
Hipertermia Induzida/métodos , Animais , Linhagem Celular , Sobrevivência Celular , Humanos , Mamíferos
19.
Int J Hyperthermia ; 37(1): 786-798, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32619373

RESUMO

Purpose: Pancreatic cancer is typically diagnosed in a late stage with limited therapeutic options. For those patients, ultrasound-guided high-intensity focused ultrasound (US-HIFU) can improve local control and alleviate pain. However, MRI-guided HIFU (MR-HIFU) has not yet been studied extensively in this context. To facilitate related research and accelerate clinical translation, we report a workflow for the in vivo HIFU ablation of the porcine pancreas under MRI guidance.Materials and methods: The pancreases of five healthy German landrace pigs (35-58 kg) were sonicated using a clinical MR-HIFU system. Acoustic access to the pancreas was supported by a specialized diet and a hydrogel compression device for bowel displacement. Organ motion was suspended using periods of apnea. The size of the resulting thermal lesions was assessed using the thermal threshold- and dose profiles, non-perfused volume, and gross examination. The effect of the compression device on beam path length was assessed using MRI imaging.Results: Eight of ten treatments resulted in clearly visible damage in the target tissue upon gross examination. Five treatments resulted in coagulative necrosis. Good agreement between the four metrics for lesion size and a clear correlation between the delivered energy dose and the resulting lesion size were found. The compression device notably shortened the intra-abdominal beam path.Conclusions: We demonstrated a workflow for HIFU treatment of the porcine pancreas in-vivo under MRI-guidance. This development bears significance for the development of MR-guided HIFU interventions on the pancreas as the pig is the preferred animal model for the translation of pre-clinical research into clinical application.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Imagem por Ressonância Magnética Intervencionista , Animais , Estudos de Viabilidade , Humanos , Imageamento por Ressonância Magnética , Pâncreas/diagnóstico por imagem , Pâncreas/cirurgia , Suínos
20.
Int J Hyperthermia ; 37(3): 76-99, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33426989

RESUMO

Magnetic nanoparticle hyperthermia (MNH) is a promising nanotechnology-based cancer thermal therapy that has been approved for clinical use, together with radiation therapy, for treating brain tumors. Almost ten years after approval, few new clinical applications had appeared, perhaps because it cannot benefit from the gold standard noninvasive MRI thermometry technique, since static magnetic fields inhibit heat generation. This might limit its clinical use, in particular as a single therapeutic modality. In this article, we review the in vivo MNH preclinical studies, discussing results of the last two decades with emphasis on safety as a clinical criteria, the need for low-field nano-heaters and noninvasive thermal dosimetry, and the state of the art of computational modeling for treatment planning using MNH. Limitations to more effective clinical use are discussed, together with suggestions for future directions, such as the development of ultrasound-based, computed tomography-based or magnetic nanoparticle-based thermometry to achieve greater impact on clinical translation of MNH.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Termometria , Simulação por Computador , Humanos , Hipertermia , Nanopartículas de Magnetita/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa