Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 344: 118619, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37467518

RESUMO

The degradable protective articles made of thermoplastic polyvinyl alcohol (TPVA) are widely used in nuclear power plants, and they are thermally decomposed after use to reduce solid waste. However, in the real decomposition of TPVA, the temperature in the oxidation reactor is not self-sustaining; as a result, the degradation products contain a lot of CO, resulting in more pollution and energy waste. In this paper, jet stirred reactor (JSR) and Chemkin software were used to study the reaction kinetics characteristics of the oxidation process of degradation products from TPVA in the range of 550 °C-700 °C. Both experiments and kinetic simulation show that a higher average temperature of the oxidation reactor is needed to achieve lower CO emissions. When using 5% or 10% TPVA degradation solution, the average temperature should not befall below 625 °C or 675 °C. The corresponding residence time should be greater than 6 s and 5 s respectively. The combination of research findings and engineering practice provides great help to the optimization of the actual work process.


Assuntos
Temperatura Alta , Álcool de Polivinil , Temperatura , Simulação por Computador , Oxirredução
2.
Polymers (Basel) ; 15(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37177217

RESUMO

Ultra-fine fibers derived from sea-island fibers have attracted great attention due to their excellent overall performance. However, green and efficient splitting of sea-island fibers is still a challenging task. In this work, thermoplastic polyvinyl alcohol (TPVA) was prepared by the physical blending of plasticizer. The modified TPVA showed a high decomposition temperature (285 °C) and a wide thermoplastic processing window. This made TPVA match well with polyamide 6 (PA6) to form conjugated melts at 250 °C. Corresponding PVA/PA6 sea-island fibers were first reported to realize water-splitting instead of alkali-extraction of "sea" polymers. The effects of sea/island mass ratios and different spinning speeds on the properties of PVA/PA6 sea-island pre-oriented yarn (POY) were investigated. A higher spinning speed enhanced the orientation-induced crystalline behavior of fiber, therefore increasing the tensile strength of fibers. As the increase of spinning speed from 1000 to 1500 m/min, the crystalline degree of corresponding POYs increased from 9.9 to 14.3%. The plasticizer in PVA did not diffuse to the PA matrix during spinning. However, PVA could induce the crystallization of PA6 via interfacial hydrogen bonding. When the spinning speed was 1500 m/min, and PVA/PA6 was 7:3, the tensile strength reached the highest value of 1.67 cN/dtex. The uniform diameters of ultra-fine PA6 fibers (2-5 µm) were obtained by an environment-friendly water-splitting process. The "sea" phase (TPVA) in sea-island fiber could be removed quickly by boiling water treatment in 3 min. This green and energy-saving sea-island fiber splitting technique is of great significance in reducing CO2 emissions during the preparation of super-fine fibers.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa