RESUMO
The reaction of 4-(chloroacetamido)pyrimidine (1) with ammonium thiocyanate gave 2-(pyrimidin-4-ylimino)thiazolidin-4-one (2), which, when condensed with four substituted benzaldehyde analogues, gave the consequent 5-arylidine-2-(pyrimidin-4-ylimino)thiazolidin-4-ones 3a-d. In addition, the absorbance and fluorescence behaviours of pyrimidinylimino-thiazolidin-4-one hybrids 3a-d in various organic solvents were investigated. The emphasis was on studying UV absorption capacities and the effect of various structural components on photophysical qualities such as the 5-arylidene-2-(pyrimidin-4-ylimino)thiazolidin-4-ones and N,N-dimethylamino tail. The cytotoxic effect of four pyrimidinylimino-thiazolidin-4-one hybrids 3a-d on tumour cell lines (HepG2, HCT-116, PC3, MCF-7) and a normal cell line (WI38) is investigated in this work. The cytotoxicity was measured by comparing the half-maximal inhibitory concentration (IC50 ) to the reference medication, 5-fluorouracil. The findings indicate that these hybrid compounds had varying cytotoxic effects on the cell lines examined; hybrids 3b and 3c demonstrated significant anticancer activity against MCF-7 with IC50 values of 7.53 ± 0.43 and 9.17 ± 0.31 µM, respectively. The inhibitory efficacy of various synthesized hybrids on the epidermal growth factor receptor (EGFR) kinase was investigated. EGFR is a crucial target in cancer treatment because inhibiting it may reduce tumour development and proliferation. The IC50 value was used to calculate the inhibitory activity, which is the concentration of inhibitor necessary to induce half-maximal inhibition of EGFR kinase activity. In addition, the predicted ADME results show that pyrimidinylimino-thiazolidin-4-one hybrids have good pharmacokinetic properties; hybrid 3d is more lipophilic than the other compounds. It has a medium molecular weight, a small number of hydrogen bond acceptors and donors, and a large number of aromatic heavy atoms. Moreover, molecular docking simulations revealed precise information on the interactions of pyrimidinylimino-thiazolidin-4-one hybrids 3a-d and 5-Fu with their respective protein targets. These interactions point to possible pathways for their biological activities and call for more testing to establish their effectiveness as bioactive molecules or therapeutic candidates.
Assuntos
Antineoplásicos , Receptores ErbB , Estrutura Molecular , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Antineoplásicos/química , Pirimidinas/farmacologia , Pirimidinas/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/químicaRESUMO
The thiazolidine-4-one scaffold has recently emerged as a potential pharmacophore having clinical significance for medicinal chemists. This heterocyclic ring has been reported to possess a plethora of biological activities, including antidiabetic activity that has inspired researchers to integrate this core with different pharmacophoric fragments to design novel and effective antidiabetic leads. The antidiabetic activity has been observed due to the ability of the thiazolidine-4-one nucleus to interact with different biological targets, including peroxisome proliferator-activated receptor γ, protein tyrosine phosphatase 1B, aldose reductase, α-glucosidase, and α-amylase. The present review discusses the mode of action of thiazolidine-4-ones through these antidiabetic drug targets. This review attempts to summarize and analyze the recent developments with regard to the antidiabetic potential of thiazolidine-4-ones covering different synthetic strategies, structure-activity relationships, and docking studies reported in the literature. The significance of various structural modifications at C-2, N-3, and C-5 of the thiazolidine-4-one ring has also been discussed in this manuscript. This comprehensive compilation will provide an inevitable scope for the design and development of potential antidiabetic drug candidates having a thiazolidine-4-one core.
Assuntos
Hipoglicemiantes , Tiazolidinedionas , Relação Estrutura-Atividade , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Tiazolidinas/farmacologia , Tiazolidinas/química , PPAR gama/metabolismo , Tiazolidinedionas/químicaRESUMO
Herein, we report computational and experimental evaluations of the antimicrobial activity of twenty one 2,3-diaryl-thiazolidin-4-ones. All synthesized compounds exhibited an antibacterial activity against six Gram-positive and Gram-negative bacteria to different extents. Thus, the MIC was in the range of 0.008-0.24 mg/mL, while the MBC was 0.0016-0.48 mg/mL. The most sensitive bacterium was S. Typhimurium, whereas S. aureus was the most resistant. The best antibacterial activity was observed for compound 5 (MIC at 0.008-0.06 mg/mL). The three most active compounds 5, 8, and 15, as well as compound 6, which were evaluated against three resistant strains, MRSA, P. aeruginosa, and E. coli, were more potent against all bacterial strains used than ampicillin. The antifungal activity of some compounds exceeded or were equipotent with those of the reference antifungal agents bifonazole and ketoconazole. The best activity was expressed by compound 5. All compounds exhibited moderate to good drug-likeness scores ranging from -0.39 to 0.39. The docking studies indicated a probable involvement of E. coli Mur B inhibition in the antibacterial action, while CYP51 inhibition is likely responsible for the antifungal activity of the tested compounds. Finally, the assessment of cellular cytotoxicity of the compounds in normal human MRC-5 cells revealed that the compounds were not toxic.
Assuntos
Anti-Infecciosos , Bactérias Gram-Negativas , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Escherichia coli , Bactérias Gram-Positivas , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Staphylococcus aureus , Relação Estrutura-AtividadeRESUMO
Two series of functionalized imidazothiazolotriazine derivatives were synthesized via the condensation of imidazo[4,5-e]-1,2,4-triazine-3-thiones with acetylenedicarboxylic acid dimethyl and diethyl esters (DMAD and DEAD) and subsequent base-catalyzed rearrangement of the obtained imidazo[4,5-e]thiazolo[3,2-b]-1,2,4-triazines into regioisomeric imidazo[4,5-e]thiazolo[2,3-c]-1,2,4-triazine derivatives.
RESUMO
Two series of rhodanine-3-acetic and rhodanine-3-propionic acids derivatives having benzylidene and cinnamylidene substituents with additional electron donating and withdrawing groups at the C-5 position, were synthesised. The structures of the obtained derivatives were confirmed by spectroscopic methods and their lipophilicity was screened. The crystal structures were determined for selected compounds. The antibacterial activity of the derivatives was depended on the type of carboxyalkyl group in the N-3 position and on the type of the substituent in the C-5 position. The derivatives of rhodanine-3-propionic acid demonstrated the highest activity against Gram-positive bacteria. However, none of tested derivatives showed activity against Gram-negative bacteria and yeast. We believe that the presence of the N,N-diethylamine group in the aromatic system and the number of carbon atoms in the carboxyalkyl group is more significant for the biological activity than the fact that the benzylidene or cinnamylidene substituent was present at the C-5 position.
RESUMO
A series of rhodanine 3-carboxyalkanoic acid derivatives possessing 4'-(N,N-dialkyl-amino or diphenylamino)-benzylidene moiety as a substituent at the C-5 position were synthesised and their antibacterial activity was screened. All the rhodanine derivatives showed bacteriostatic or bactericidal activity to the reference gram-positive bacterial strains, but lack of activity to the reference Gram-negative bacterial strains and yeast strains was observed.
RESUMO
Thiazolidinones have been the subject of various research areas for their biological activities, thus they were promising scaffolds to develop new drug agents. A novel thiazolidine 4-one-based fluorescent chemosensor probes PS (thiazolidine) and BO (oxazolidine) were designed and synthesized. Both probes showed specific recognition against Cu2+ via a "turn-off" fluorescence response in ACN/H2O (v/v: 50/50) stock solution (10 mM, pH = 7.0) with a detection limit of (for BO: 1.9 nM and PS: 1.03 nM). Finally, the detection of chemosensory PS and BO showed positive potential for the determination of Cu2+ in real food samples, drinking water, and mung beans. The compounds were characterized by diferent chemical and spectroscopic methods. The proposed binding mode for PS and BO with Cu2+ was confirmed by DFT calculation, and also they elucidated by bioimaging studies against MCF-7 live cell lines. Additionally, the docking experiment was performed on XylE and hAChE targets.
RESUMO
Targeting kinases with oncogenic driver mutations in malignancies with allosteric kinase inhibitors is a promising new treatment technique. EGFR inhibitors targeting the L858R/T790M/C797S mutation bearing thiazolidine-4-one scaffold were discovered, optimized, synthesized, and biologically evaluated. According to in silico and in vitro studies, compounds 6a and 6b resulted to be highly potent with IC50 values of 120 nM and 134 nM and good selectivity. Compound 6a displayed significant antioxidant activity, with a DPPH radical scavenging value of 92.15%. The potency of compounds was also compared with ADMET and molecular dynamics simulations study. A comparative simulation of model protein and protein-ligand complex in presence and absence of compound 6a has been carried out.Communicated by Ramaswamy H. Sarma.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Simulação de Dinâmica Molecular , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/química , MutaçãoRESUMO
BACKGROUND: Aryl-propionic acid derivatives with ibuprofen as representative drug are very important for therapy, being recommended especially for anti-inflammatory and analgesic effects. On other hand 1,3-thiazolidine-4-one scaffold is an important heterocycle, which is associated with different biological effects such as anti-inflammatory and analgesic, antioxidant, antiviral, antiproliferative, antimicrobial etc. The present study aimed to evaluated the toxicity degree and the anti-inflammatory and analgesic effects of new 1,3-thiazolidine-4-one derivatives of ibuprofen. METHODS: For evaluation the toxicity degree, cell viability assay using MTT method and acute toxicity assay on rats were applied. The carrageenan-induced paw-edema in rat was used for evaluation of the anti-inflammatory effect while for analgesic effect the tail-flick test, as thermal nociception in rats and the writhing assay, as visceral pain in mice, were used. RESULTS: The toxicological screening, in terms of cytotoxicity and toxicity degree on mice, revealed that the ibuprofen derivatives (4a-n) are non-cytotoxic at 2 µg/ml. In addition, ibuprofen derivatives reduced carrageenan-induced paw edema in rats, for most of them the maximum effect was recorded at 4 h after administration which means they have medium action latency, similar to that of ibuprofen. Moreover, for compound 4d the effect was higher than that of ibuprofen, even after 24 h of administration. The analgesic effect evaluation highlighted that 4 h showed increased pain inhibition in reference to ibuprofen in thermal (tail-flick assay) and visceral (writhing assay) nociception models. CONCLUSIONS: The study revealed for ibuprofen derivatives, noted as 4 m, 4 k, 4e, 4d, a good anti-inflammatory and analgesic effect and also a safer profile compared with ibuprofen. These findings could suggest the promising potential use of them in the treatment of inflammatory pain conditions.
Assuntos
Analgésicos , Anti-Inflamatórios não Esteroides , Edema/tratamento farmacológico , Ibuprofeno , Dor/tratamento farmacológico , Tiazolidinas , Ácido Acético , Analgésicos/uso terapêutico , Analgésicos/toxicidade , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Anti-Inflamatórios não Esteroides/toxicidade , Carragenina , Sobrevivência Celular/efeitos dos fármacos , Edema/induzido quimicamente , Temperatura Alta/efeitos adversos , Ibuprofeno/análogos & derivados , Ibuprofeno/uso terapêutico , Ibuprofeno/toxicidade , Dose Letal Mediana , Camundongos , Dor/induzido quimicamente , Ratos Wistar , Tiazolidinas/uso terapêutico , Tiazolidinas/toxicidadeRESUMO
BACKGROUND: Thiazolidine-4-one is a promising class of heterocyclic compounds with interesting pharmacological and biological activities, such as anticancer and antibacterial. Therefore, many researchers have synthesized thiazolidine-4-ones and evaluated their biological potential for developing new drugs. OBJECTIVE: In this study, two novel thiazolidine-4-one derivatives (T1 and T2) were synthesized and evaluated for their antibacterial activity toward Staphylococcus aureus, Escherichia coli, and Proteus mirabilis. Also, the cytotoxic activities of compounds T1 and T2 were estimated against MCF-7 (HER2+, ER+, and ER+) and MDAMB- 231 (triple-negative) human breast cancer cell lines. The chemical structures of the compounds T1 and T2 were proven using spectral techniques (FT-IR, 1HNMR, and 13CNMR) and CHN elemental analysis. METHODS: The synthesis of thiazolidine-4-one compounds was performed in two steps. The first step consisted of the formation of Schiff bases S1 and S2. In the second step, the synthesized Schiff bases were reacted with thioglycolic acid to prepare thiazolidine-4-one compounds. Hemolysis assay, molecular docking, cytotoxicity activity (MTT assay), and antibacterial activity (disc diffusion assay) were studied. RESULTS: The hemolysis study demonstrated that the hemolytic ratio of compounds T1 and T2 at (1, 2, and 3) mg/ml was less than 4%. MTT assay showed that 100 µg/ml of compounds T1 and T2 diminish the MCF-7 cell growth up to 80.05 ± 1.72 and 69.85 ± 3.26 respectively after 72hr., while the same concentration of compounds T1 and T2 reduces the MDA-MB-231 cell growth up 70.28 ± 2.31 and 57.15 ± 1.49, respectively. The inhibition zones of T1 and T2 were 12 mm at 50 mg/ml and 10 mm at 5 mg/ml in E. coli bacteria. Furthermore, a docking study was carried out to investigate the affinity and binding mode of compounds T1 and T2 towards the ERα, VEGF, and HER2 protein receptors in breast cancer cells. Data obtained from the docking study were exactly identical to that obtained from in vitro cytotoxicity assay. CONCLUSION: The results proved that T1 is an optimal anticancer agent toward breast cancer cells and the hemolysis study indicates the use of safety inside the body for compound T1. Synthesized compound T1 was most effective against MCF-7 cells compared to MDA-MB-231 cells and more effective than the reference drug tamoxifen in breast cell lines. The high cytotoxicity of T1 on the growth of MCF-7 cells because T1 binds with a high degree of affinity to the estrogen and HER2 receptors, which in turn inhibits cell proliferation and induces apoptosis.
Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Simulação de Acoplamento Molecular , Tiazolidinas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Feminino , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Proteus mirabilis/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Tiazolidinas/síntese química , Tiazolidinas/químicaRESUMO
In this study we present design and synthesis of nineteen new nitric oxide-releasing indomethacin derivatives with 1,3-thiazolidine-4-one scaffold (NO-IND-TZDs) (6a-s), as a new safer and efficient multi-targets strategy for inflammatory diseases. The chemical structure of all synthesized derivatives (intermediaries and finals) was proved by NMR and mass spectroscopic analysis. In order to study the selectivity of NO-IND-TZDs for COX isoenzymes (COX-1 and COX-2) a molecular docking study was performed using AutoDock 4.2.6 software. Based on docking results, COX-2 inhibitors were designed and 6o appears as the most selective derivative which showed an improved selective index compared with indomethacin (IND) and diclofenac (DCF), used as reference drugs. The biological evaluation of 6a-s, using in vitro assays has included the anti-inflammatory and antioxidant effects as well as the nitric oxide (NO) release. Referring to the anti-inflammatory effects, the most active compound was 6i, which was more active than IND and aspirin (ASP) in term of denaturation effect, on bovine serum albumin (BSA), as indirect assay to predict the anti-inflammatory effect. An appreciable anti-inflammatory effect, in reference with IND and ASP, was also showed by 6k, 6c, 6q, 6o, 6j, 6d. The antioxidant assay revealed the compound 6n as the most active, being 100 times more active than IND. The compound 6n showed also the most increase capacity to release NO, which means is safer in terms of gastro-intestinal side effects. The ADME-Tox study revealed also that the NO-IND-TZDs are generally proper for oral administration, having optimal physico-chemical and ADME properties. We can conclude that the compounds 6i and 6n are promising agents and could be included in further investigations to study in more detail their pharmaco-toxicological profile.
Assuntos
Indometacina/análogos & derivados , Indometacina/farmacologia , Doadores de Óxido Nítrico/farmacologia , Tiazolidinas/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/síntese química , Antioxidantes/farmacologia , Aspirina/farmacologia , Simulação por Computador , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Diclofenaco/farmacologia , Desenho de Fármacos , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Humanos , Indometacina/química , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/toxicidade , Soroalbumina Bovina/química , Relação Estrutura-AtividadeRESUMO
In the past many research studies have focused on the thiazolidine-4-one scaffold, due to the important biological effects associated with its heterocycle. This scaffold is present in the structure of many synthetic compounds, which showed significant biological effects such as antimicrobial, antifungal, antioxidant, anti-inflammatory, analgesic, antidiabetic effects. It was also identified in natural compounds, such as actithiazic acid, isolated from Streptomyces strains. Starting from this scaffold new xanthine derivatives have been synthetized and evaluated for their antibacterial and antifungal effects. The antibacterial action was investigated against Gram positive (Staphyloccoccus aureus ATCC 25923, Sarcina lutea ATCC 9341) and Gram negative (Escherichia coli ATCC 25922) bacterial strains. The antifungal potential was investigated against Candida spp. (Candida albicans ATCC 10231, Candida glabrata ATCC MYA 2950, Candida parapsilosis ATCC 22019). In order to improve the antimicrobial activity, the most active xanthine derivatives with thiazolidine-4-one scaffold (XTDs: 6c, 6e, 6f, 6k) were included in a chitosan based polymeric matrix (CS). The developed polymeric systems (CS-XTDs) were characterized in terms of morphological (aspect, particle size), physic-chemical properties (swelling degree), antibacterial and antifungal activities, toxicity, and biological functions (bioactive compounds loading, entrapment efficiency). The presence of xanthine-thiazolidine-4-one derivatives into the chitosan matrix was confirmed using Fourier transform infrared (FT-IR) analysis. The size of developed polymeric systems, CS-XTDs, ranged between 614 µm and 855 µm, in a dry state. The XTDs were encapsulated into the chitosan matrix with very good loading efficiency, the highest entrapment efficiency being recorded for CS-6k, which ranged between 87.86 ± 1.25% and 93.91 ± 1.41%, depending of the concentration of 6k. The CS-XTDs systems showed an improved antimicrobial effect with respect to the corresponding XTDs. Good results were obtained for CS-6f, for which the effects on Staphylococcus aureus ATCC 25923 (21.2 ± 0.43 mm) and Sarcina lutea ATCC 9341 (25.1 ± 0.28 mm) were comparable with those of ciprofloxacin (25.1 ± 0.08 mm/25.0 ± 0.1 mm), which were used as the control. The CS-6f showed a notable antifungal effect, especially on Candida parapsilosis ATCC 22019 (18.4 ± 0.42 mm), the effect being comparable to those of nystatin (20.1 ± 0.09 mm), used as the control. Based on the obtained results these polymeric systems, consisting of thiazolidine-4-one derivatives loaded with chitosan microparticles, could have important applications in the food field as multifunctional (antimicrobial, antifungal, antioxidant) packaging materials.
RESUMO
AIM AND OBJECTIVE: This work presents the synthetic capability and the exploitation of 1,3-diphenyl- 1H-pyrazole-4-carboxladehyde 1 and 5-diphenyl pyrazolyl-2-pyrazoline analogue 8 to serve as excellent precursors for the synthesis of substituted indol-2,3-dione, trizolo[3,4-a]benzazoles, thiazolo[2,3- a]benzimidazole-3-one, substituted 2-pyrazoline and pyrazole-substituted-pyrazolines using various reagents. MATERIALS AND METHODS: Using chemicals from Aldrich, Fluka, or Merck, and pure solvents, we apply the synthetic procedures for the synthesis of novel heterocycles. The melting points of these compounds were determined using APP. Digital ST 15 melting point apparatus. SP3-100 spectrophotometer recorded FT-IR spectra (KBr) (cm-1). NMR spectra (δ, ppm) were recorded on 400 MHz AVANCE-III High-Performance FT-NMR Spectrometer BRUCKER (Switzerland) and some 1H NMR spectra were recorded on Varian EM-360L NMR Spectrophotometer (90 MHz) (USA) in CDCl3 or DMSO-d6 as a solvent. Elemental analyses were carried out at a Vario EL C, H, N, and S Analyzer. Bromine was determined using direct titration method after carius combustion. RESULTS: The structures of the compounds were confirmed by IR, 1H NMR, 13C NMR, and elemental analyses. CONCLUSION: 1,3-Diphenyl-1H-pyrazole-4-carboxladehyde 1 and 2-pyrazoline derivative 9 confirmed their importance in the synthetic organic chemistry. Depending on the formyl group of aldehyde 1 and active methylene of pyrazoline 8, we synthesized new series of heterocycles; indol-2,3-dione, trizolo[3,4-a]benzazole, thiazolo[2,3-a]benzimidazole-3-one and pyrazolyl-pyrazoline derivatives expecting their pharmacological applications. The targeted compounds were substantiated from its spectral data.
RESUMO
BACKGROUND: Thiazolidine compounds are known to show interesting pharmacological activity. In particular, they are used as antiseizure, fungicidal, anti-bacterial, antitubercular, antiinflammatory, antiamoebic, anti-diabetic and local anesthetic agents. Some of these compounds have also shown antiparkinsonism, antioxidant, anticonvulsant, hypoglycemic and non-narcotic analgesic activities. On the other hand, pyrazoles have shown antibacterial, antitumor, antiviral, antifungal, anti-tubercular, antiparasitic, anesthetic, anti-diabetic, anti-inflammatory, analgesic and insecticidal activities. In order to improve the pharmacological effects of thiazolidine-4-ones, new pyrazole derivatives have been synthesized. MATERIAL AND METHODS: A mixture of pyrazolcarbaldehydes, anilines, thioglycolic acid and DSDABCOC was stirred at room temperature for the required reaction times. The progress of the reaction was monitored by TLC (EtOAc: petroleum ether 1:3). After completion of the reaction as indicated by TLC, the ionic liquid was separated by extraction with 2×15 mL of water. The solid residue was separated by column chromatography. The product was recrystallized from EtOH. The pure products were collected in 82-92% yields. RESULTS: In continuation of our ongoing studies to synthesize heterocyclic and pharmaceutical compounds under mild and practical protocols, we wish to report herein our experimental results on the ultrasound promoted synthesis of 2-pyrazolo-3-phenyl-1,3-thiazolidine-4-ones using various synthesized pyrazolecarbaldehydes, anilines and thioglycolic acid at room temperature. The results illustrated that ionic liquid DSDABCOC certainly improved the yield of the products and reduced the reaction time. CONCLUSION: In conclusion, we have developed an efficient and simple protocol for the synthesis of novel pyrazolo-1,3-thiazolidine-4-ones using DSDABCOC as an ionic liquid. The easy workup together with the use of inexpensive, reusable and eco-friendly ionic liquid is the notable feature of this novel procedure. To the best of our knowledge, this is the first report of the synthesis of a new library of 1,3-thiazolidine-4-ones bearing a pyrazolyl moiety that enhances the biological activity under solvent-free conditions.
Assuntos
Compostos Bicíclicos com Pontes/química , Líquidos Iônicos/química , Tiazolidinedionas/síntese química , Estrutura Molecular , Tiazolidinedionas/químicaRESUMO
BACKGROUND: The xanthine structure has proved to be an important scaffold in the process of developing a wide variety of biologically active molecules such as bronchodilator, hypoglycemiant, anticancer and anti-inflammatory agents. It is known that hyperglycemia generates reactive oxygen species which are involved in the progression of diabetes mellitus and its complications. Therefore, the development of new compounds with antioxidant activity could be an important therapeutic strategy against this metabolic syndrome. RESULTS: New thiazolidine-4-one derivatives with xanthine structure have been synthetized as potential antidiabetic drugs. The structure of the synthesized compounds was confirmed by using spectral methods (FT-IR, 1H-NMR, 13C-NMR, 19F-NMR, HRMS). Their antioxidant activity was evaluated using in vitro assays: DPPH and ABTS radical scavenging ability and phosphomolybdenum reducing antioxidant power assay. The developed compounds showed improved antioxidant effects in comparison to the parent compound, theophylline. In the case of both series, the intermediate (5a-k) and final compounds (6a-k), the aromatic substitution, especially in para position with halogens (fluoro, chloro), methyl and methoxy groups, was associated with an increase of the antioxidant effects. CONCLUSIONS: For several thiazolidine-4-one derivatives the antioxidant effect of was superior to that of their corresponding hydrazone derivatives. The most active compound was 6f which registered the highest radical scavenging activity.Graphical abstractDesign and synthesis of new thiazolidine-4-one derivatives.
RESUMO
A new series of 2-substituted imino-3-substituted-5- heteroarylidene-1,3-thiazolidine-4-ones as the potent bidentate PTP1B inhibitors were designed and synthesized in this paper. All of the new compounds were characterized and identified by spectra analysis. The biological screening test against PTP1B showed that some of these compounds have the positive inhibitory activity against PTP1B. The activity of the compounds with 5-substituted pyrrole on 5-postion of 1,3-thiazolidine-4-one are more potent than that of those compounds with 5-substituted pyridine group. Compound 14b, 14h and 14i showed IC50 values of 8.66 µM, 6.83 µM and 6.09 µM against PTP1B, respectively. Docking analysis of these active compounds with PTP1B showed the possible interaction modes of these biheterocyclic compounds with the active sites of PTP1B. The inhibition tests against oncogenetic CDC25B were also conducted on this set of compounds to evaluate the selectivity and possible anti-neoplastic activity. Compound 14b also showed the lowest IC50 of 1.66 µM against CDC25B among all the possible inhibitors, including 14g, 14h, 14i and 15c. Some pharmacological parameters including VolSurf, steric and electric descriptors of all the compounds were calculated to give some hints about the relative relationship with the biological activity. The result of this study might give some light on designing the possible anti-cancer drugs targeting at phosphatases. The most active compound 14i might be used as the lead compound for further structure modification of the new low molecular weight PTP1B inhibitors with the N-containing heterocyclic skeleton.
Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Tiazolidinas/síntese química , Tiazolidinas/farmacologia , Técnicas de Química Sintética , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Simulação de Acoplamento Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Relação Estrutura-Atividade , Tiazolidinas/química , Tiazolidinas/metabolismo , Fosfatases cdc25/antagonistas & inibidoresRESUMO
BACKGROUND: l-Arginine is a semi-essential aminoacid with important role in regulation of physiological processes in humans. It serves as precursor for the synthesis of proteins and is also substrate for different enzymes such as nitric oxide synthase. This amino-acid act as free radical scavenger, inhibits the activity of pro-oxidant enzymes and thus acts as an antioxidant and has also bactericidal effect against a broad spectrum of bacteria. RESULTS: New thiazolidine-4-one derivatives of nitro-l-arginine methyl ester (NO2-Arg-OMe) have been synthesized and biologically evaluated in terms of antioxidant and antibacterial/antifungal activity. The structures of the synthesized compounds were confirmed by (1)H, (13)C NMR, Mass and IR spectral data. The antioxidant potential was investigated using in vitro methods based on ferric/phosphomolybdenum reducing antioxidant power and DPPH/ABTS radical scavenging assay. The antibacterial effect was investigated against Gram positive (Staphylococcus aureus ATCC 25923, Sarcina lutea ATCC 9341) and Gram negative (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853) bacterial strains. The antifungal activity was also investigated against Candida spp. (Candida albicans ATCC 10231, Candida glabrata ATCC MYA 2950, Candida parapsilosis ATCC 22019). CONCLUSIONS: Synthesized compounds showed a good antioxidant activity in comparison with the NO2-Arg-OMe. The antimicrobial results support the selectivity of tested compounds especially on P. aeruginosa as bacterial strain and C. parapsilosis as fungal strain. The most proper compounds were 6g (R = 3-OCH3) and 6h (R = 2-OCH3) which showed a high free radical (DPPH, ABTS) scavenging ability and 6j (R = 2-NO2) that was the most active on both bacterial and fungal strains and also it showed the highest ABTS radical scavenging ability.Graphical abstract1: ethyl 3-aminopropionate hydrochloride, 2a-j: aromatic aldehydes, 3: thioglycolic acid, 4a-j: thiazolidine-propionic acid derivatives , 5: Nω-nitro-L-arginine methyl ester hydrochloride, 6a-j: thiazolidine-propionyl-nitro-L-arginine methyl ester derivatives.