Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell Biol Int ; 48(3): 347-357, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38212941

RESUMO

Cell lines are important in vitro models to answer biological mechanisms with less genetic variations. The present study was attempted to develop a cell line from rainbow trout, where we obtained a cell line from the heart, named "RBT-H." The cell line was authenticated using karyotyping and cytochrome c oxidase subunit I (COI) gene sequencing. The karyotype demonstrated diploid chromosome number (2n) as 62 and the sequence of partial COI gene was 99.84% similar to rainbow trout COI data set, both suggesting the origin of RBT-H from the rainbow trout. The heart cell line was mycoplasma-free and found to be refractory to infection with the Tilapia lake virus. The RBT-H cell line is deposited in the National Repository of Fish Cell Line (NRFC) at ICAR-NBFGR, Lucknow, India, with Accession no. NRFC0075 for maintenance and distribution to researchers on request for R&D.


Assuntos
Doenças dos Peixes , Oncorhynchus mykiss , Tilápia , Animais , Oncorhynchus mykiss/metabolismo , Linhagem Celular , Índia
2.
Fish Shellfish Immunol ; 148: 109505, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521144

RESUMO

The E11 cell line, derived from striped snakehead fish (Channa striata), possesses a distinctive feature: it is persistently infected with a C-type retrovirus. Notably, it exhibits high permissiveness to piscine nodavirus and the emerging tilapia lake virus (TiLV). Despite its popularity in TiLV research, the absence of genome assembly for the E11 cell line and Channa striata has constrained research on host-virus interactions. This study aimed to fill this gap by sequencing, assembling, and annotating the E11 cell line genome. Our efforts yielded a 600.5 Mb genome including 24 chromosomes with a BUSCO score of 98.8%. In addition, the complete proviral DNA sequence of snakehead retrovirus (SnRV) was identified in the E11 cell genome. Comparative genomic analysis between the E11 cell line and another snakehead species Channa argus revealed the loss of many immune-related gene families in the E11 cell genome, indicating a compromised immune response. We also conducted transcriptome analysis of mock- and TiLV-infected E11 cells, unveiling new perspectives on virus-virus and host-virus interactions. The TiLV infection suppressed the high expression of SnRV in E11 cells, and activated some other endogenous retroviruses. The protein-coding gene comparison revealed a pronounced up-regulation of genes involved in immune response, alongside a down-regulation of genes associated with specific metabolic processes. In summary, the genome assembly and annotation of the E11 cell line provide valuable resources to understand the SnRV and facilitate further studies on nodavirus and TiLV. The RNA-seq profiles shed light on the cellular mechanisms employed by fish cells in response to viral challenges, potentially guiding the development of therapeutic strategies against TiLV in aquaculture. This study also provides the first insights into the viral transcriptome profiles of endogenous SnRV and evading TiLV, enhancing our understanding of host-virus interactions in fish.


Assuntos
Doenças dos Peixes , Tilápia , Vírus , Animais , Retroviridae , Cromossomos , Perfilação da Expressão Gênica/veterinária
3.
J Fish Dis ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37818735

RESUMO

Tilapia parvovirus (TiPV) has been associated with heavy mortalities in tilapia as a single infection or in co-infection with Tilapia lake virus (TiLV). In this study, TiPV was detected in farmed Nile tilapia, Oreochromis niloticus, from two geographical regions of India, Maharashtra and Uttar Pradesh. TiPV-specific polymerase chain reaction (PCR) reported earlier was used in the screening. Tilapia collected from Maharashtra showed characteristic clinical signs, and TiPV was detected along with TiLV and/or Aeromonas spp. However, fish from Uttar Pradesh were apparently healthy and only TiPV could be detected in these samples. A high prevalence of TiPV was recorded from both the geographical locations, Maharashtra and Uttar Pradesh (59.6% and 95.0% respectively). The virus could be detected in tissues such as the spleen, liver, kidney, brain and mucus. The spleen appeared to be the best tissue for detecting TiPV in apparently healthy tilapia. The presence of TiPV was further confirmed through sequencing the PCR products, isolation of the virus in the cell line and electron microscopy. Sequences of the NS1 gene of the two TiPV isolates showed similarity to the earlier reported TiPV isolates. The virus could be successfully propagated in O. niloticus Liver (OnL) cell line, and cytopathic effect was observed as early as 3 days post-infection. Furthermore, the presence of non-enveloped icosahedral to round virus particles measuring about 26-35 nm could be demonstrated in the cytoplasm and nucleus of infected OnL cells in transmission electron microscopy. With this confirmation of the presence of the virus, India is the third country to report TiPV after China and Thailand. The detection of TiPV in co-infection cases with TiLV and in apparently healthy Nile tilapia suggests its wide distribution and potential synergistic effect in co-infection cases. Therefore, this emerging virus needs holistic attention to understand its virulence, host-specificity and epidemiological risk factors.

4.
Cancer Immunol Immunother ; 71(5): 1199-1220, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34643766

RESUMO

BACKGROUND: In the past few years, immunotherapy has changed the way we treat solid tumors. People pay more and more attention to the immune microenvironment of laryngeal squamous cell carcinoma (LSCC). In this study, our immunotherapy research took advantage of the clinical database and focused our in-depth analysis on the tumor microenvironment (TME). METHODS: This study evaluated the relationship between the clinical outcome and the local tissue and overall immune status in 412 patients with primary LSCC. We constructed and validated a risk model that could predict prognosis, assess immune status, identify high-risk patients, and develop personalized treatment plans through bioinformatics. In addition, through immunohistochemical analysis, we verified the differential expression of CTSL and KDM5D genes with the largest weight coefficients in the model in LSCC tissues and their influence on the prognosis and tumor-infiltrating lymphocytes (TILs). RESULTS: We found that interstitial tumor-infiltrating lymphocytes, tumor parenchymal-infiltrating lymphocyte volume, tumor infiltrates lymphocytes of frontier invasion, and the platelet-to-lymphocyte ratio (PLR) were independent factors affecting the prognosis of patients with LSCC. A novel risk model can guide clinicians to accurately predict prognosis, identify high-risk patients, and formulate personalized treatment plans. The differential expression of genes such as CTSL and KDM5D has a significant correlation with the TILs of LSCC and the prognosis of patients. CONCLUSION: Local and systemic inflammatory markers in patients with laryngeal squamous cell carcinoma are reliable prognostic factors. The risk model and CTSL, KDM5D gene have important potential research value.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Laríngeas , Biomarcadores Tumorais/genética , Neoplasias de Cabeça e Pescoço/patologia , Histona Desmetilases , Humanos , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/terapia , Linfócitos do Interstício Tumoral , Antígenos de Histocompatibilidade Menor , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Microambiente Tumoral
5.
Microb Pathog ; 166: 105510, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35421555

RESUMO

Tilapia lake virus disease (TiLVD) caused by Tilapia lake virus (TiLV) is a great threat to the global tilapia culture industry. Effective prevention and control strategies have not been developed due to limited basic research of pathogenesis of TiLVD. Cell lines from different fish species have been found to be permissive to TiLV infection. In the current study, we comprehensively analyzed TiLV susceptibilities to 10 permanent growing fish cell lines. We found that the highest viral titers were generated onto TiB cells originated from the tilapia species Oreochromis mossambicus, MSF from the largemouth bass Micropterus salmoides, CAMK from the hybrid snakehead Channa argus × Channa maculata and SS derived from the perch species Siniperca chuatsi. Viral copy numbers from these four cell lines ranged from 4 × 107 copies/µL to 4.6 × 108 copies/µL. Confocal immunofluorescent microscopy also indicated that all 10 cell lines can support varying degrees of viral infection and replication. TiLV particles can be observed in cells from randomly selected three fish species using electron microscope. This study will assist in research and development of prevention and control of TiLVD.


Assuntos
Doenças dos Peixes , Vírus de RNA , Tilápia , Vírus , Animais , Linhagem Celular , Vírus de DNA , Suscetibilidade a Doenças
6.
Protein Expr Purif ; 190: 106013, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34752859

RESUMO

Tilapia Lake Virus Disease (TiLVD) is caused by Tilapia Lake Virus (TiLV), and it has a cumulative mortality rate of up to 90% in Nile tilapia (Oreochromis niloticus). TiLV is a negative enveloped single-stranded RNA virus with 10 genomic segments. Segment 5 (S5) and segment 6 (S6) were predicted to include a signaling peptide, suggesting that the encoded proteins of these two segments may exist as part of the virus envelope. Based on bioinformatic predictions, the S5 and S6 proteins in this study were produced, including S527-343, S527-172, S5196-272, S630-317, S630-190, and S6200-317. All proteins were tested for their expression in Escherichia coli. Only S5196-272 and S6200-317 were expressed as soluble and insoluble proteins, respectively. The soluble protein was purified using affinity chromatography, whereas the insoluble protein was solubilized using 6 M urea lysis buffer before purification. Both proteins were further purified using gel filtration chromatography, and the results showed a symmetric peak of both proteins suggested a high degree of uniformity in the conformation of these proteins. Antigenicity results indicated that these proteins were recognized by serum from TiLV-infected fish. The immunization tests revealed that serum antibodies levels in Nile tilapia produced by S5196-272 and S6200-317 were significantly increased (p-value < 0.05) at 7 days post-immunization (dpi) compared to antibody levels on Day 0 (D0). All the results combined suggested a potential vaccine candidate of S5 and S6 for TiLV protection in Nile tilapia.


Assuntos
Ciclídeos/virologia , Proteínas Virais , Vacinas Virais , Vírus , Animais , Ciclídeos/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/virologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Virais/biossíntese , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/imunologia , Vacinas Virais/biossíntese , Vacinas Virais/química , Vacinas Virais/genética , Vacinas Virais/imunologia , Vírus/química , Vírus/genética , Vírus/imunologia
7.
J Fish Dis ; 45(1): 77-87, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34580880

RESUMO

Sixteen countries, including Bangladesh, have reported the presence of tilapia lake virus (TiLV), an emerging tilapia pathogen. Fish polyculture is a common farming practice in Bangladesh. Some unusual mortalities reported in species co-cultivated with TiLV-infected tilapia led us to investigate whether any of the co-cultivated species would also test positive for TiLV and whether they were susceptible to TiLV infection under controlled laboratory experiments. Using 183 samples obtained from 15 farms in six districts across Bangladesh, we determined that 20% of the farms tested positive for TiLV in tilapia, while 15 co-cultivated fish species and seven other invertebrates (e.g. insects and crustaceans) considered potential carriers all tested negative. Of the six representative fish species experimentally infected with TiLV, only Nile tilapia showed the typical clinical signs of the disease, with 70% mortality within 12 days. By contrast, four carp species and one catfish species challenged with TiLV showed no signs of TiLV infection. Challenged tilapia were confirmed as TiLV-positive by RT-qPCR, while challenged carp and walking catfish all tested negative. Overall, our field and laboratory findings indicate that species used in polycultures are not susceptible to TiLV. Although current evidence suggests that TiLV is likely host-specific to tilapia, targeted surveillance for TiLV in other fish species in polyculture systems should continue, in order to prepare for a possible future scenario where TiLV mutates and/or adapts to new host(s).


Assuntos
Ciclídeos , Doenças dos Peixes , Vírus de RNA , Tilápia , Animais , Bangladesh/epidemiologia , Doenças dos Peixes/epidemiologia
8.
Bull Math Biol ; 83(8): 90, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34232396

RESUMO

This paper proposes a mathematical model for tilapia lake virus (TiLV) transmission in wild and farmed tilapias within freshwater. This model takes into account two routes of transmission: vertical and horizontal. This latter route integrates both the direct and indirect transmission. We define an explicit formula for the reproductive number [Formula: see text] and show by means of the Fatou's lemma that the disease-free equilibrium is globally asymptotically stable when [Formula: see text]. Furthermore, we find an explicit formula of the endemic equilibria and study its local stability as well as the uniform persistence of the disease when [Formula: see text]. Finally, a numerical scheme to solve the model is developed and some parameters of the model are estimated based on biological data. The numerical results illustrate the role of routes of transmission on the epidemic evolution.


Assuntos
Doenças dos Peixes , Tilápia , Animais , Número Básico de Reprodução , Doenças dos Peixes/epidemiologia , Lagos , Conceitos Matemáticos , Modelos Biológicos
9.
Dis Aquat Organ ; 147: 127-140, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34913441

RESUMO

Tilapia lake virus (TiLV) and Lactococcus garvieae are 2 major pathogens of cultured Nile tilapia Oreochromis niloticus. In June-July 2018, a disease outbreak was reported in Nile tilapia cultured in brackish water floating cages in Kerala, India. Affected fish died gradually, and cumulative mortality reached ~75% within 1 mo. In the present study, TiLV and L. garvieae were isolated from the infected fish and confirmed. Nucleotide analysis of the partial sequence of segment 3 revealed that the present TiLV isolate showed 100% similarity with TiLV MF574205 and 97.65% similarity with TiLV KU552135 isolated in Israel. The partial 16S rDNA nucleotide sequence of L. garvieae shared 99% similarity with the 16S rDNA nucleotide sequence of L. garvieae isolated from Nile tilapia in Brazil. Eight virulence genes (hly1, hly2, hly3, NADH oxidase, adhPav, LPxTG-1, LPxTG-4, adhC1) were amplified in the present isolate. In the experimental challenge study, the onset of mortality started earlier in fish co-infected with TiLV and L. garvieae (3 d post-infection [dpi]) compared to other groups. Cumulative mortality (90% at 12 dpi) was significantly higher in the co-infected group than in fish infected with TiLV (60% at 12 dpi) and L. garvieae (40% at 12 dpi) alone. This study reveals that synergistic co-infection with TiLV and other bacteria may increase mortality in disease outbreaks. To the best of our knowledge, this is the first reported co-infection of L. garvieae with TiLV associated with mass mortality in Nile tilapia in India.


Assuntos
Ciclídeos , Coinfecção , Doenças dos Peixes , Tilápia , Animais , Coinfecção/veterinária , Doenças dos Peixes/epidemiologia , Lactococcus
10.
Fish Shellfish Immunol ; 107(Pt A): 289-300, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33096246

RESUMO

Tilapia lake virus (TiLV) is regarded as one of the most important pathogens in tilapia aquaculture worldwide. Despite this, little is known regarding disease pathogenesis and immune responses to infection. The main objective of this study was to investigate the tissue distribution, histopathological changes, and immune response of fish exposed to TiLV. Nile tilapia (Oreochromis niloticus) maintained at 25 ± 2 °C were challenged with TiLV via intragastric-gavage. At 0.5, 1, 3, 5, 7, 10 and 15 days post-challenge (dpc), six fish per treatment were euthanized and subjected to complete necropsy. TiLV exposed fish presented 45% cumulative mortality at the end of the study. Gross lesions included cutaneous petechiae and ecchymoses, scale losses, skin ulcers, and exophthalmia. Mild multifocal hepatocellular degeneration and necrosis was observed as early as 3 dpc occasionally accompanied by syncytial formation, intracytoplasmic inclusion bodies, and inflammatory infiltrates of lymphocytes at subsequent time points. Necrosis of epithelial cells of the gastric glands and intestinal glands was also observed as early as 5 dpc. Intestinal samples showed reactive in situ hybridization signals as early as 1 dpc. No other lesions were observed in the brain or other organs. Histological changes were associated with viral dissemination and disease progression, as evidenced by increased TiLV detection in the intestine, gills, liver and spleen. Highest TiLV abundance was detected 7 dpc in gills, intestine, and liver showing an average of 6 LOG genome equivalent per ng of total RNA. Different transcript abundance was detected for the pro-inflammatory cytokine interleukin-1ß and interferon-induced myxovirus resistance protein gene in the mucosal sites (gills and intestine). Interferon regulatory transcription factor 3 transcript was more abundant in systemic organs (liver and spleen) while the expression in gills and intestine showed mixed expression at different time points. On the other hand, transforming growth factor ß expression patterns differed amongst the tissues with a trend towards downregulation of the gene in liver and gills, and a trend towards upregulation in the spleen and intestine. Overall, these results demonstrate the intestinal routes as a main port of entry for TiLV, which subsequently spreads systematically throughout the fish body.


Assuntos
Ciclídeos , Doenças dos Peixes/imunologia , Imunidade nas Mucosas , Infecções por Vírus de RNA/veterinária , Vírus de RNA/fisiologia , Animais , Doenças dos Peixes/virologia , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária
11.
Fish Shellfish Immunol ; 101: 1-8, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32201348

RESUMO

Tilapia lake virus (TiLV) is a novel enveloped orthomyxo-like virus with a genome of 10 segments of linear negative-sense single-stranded RNA. It causes massive mortality of wild and farmed tilapia species and because of its spread in Asia, Africa, South and North America, it is considered a threat to tilapia aquaculture. Here, we have evaluated the possible use of zebrafish (Danio rerio) to study immune response and host-pathogen interactions during an infection with TiLV. Adult zebrafish were infected with TiLV by intraperitoneal (i.p) injection or by cohabitation. Increased viral load was observed in liver, spleen and kidney of i.p. injected fish at 1, 3, 6, and 14 days post infection (dpi) but not in fish from the cohabitation group (only liver was tested). We also demonstrated that in spleen and kidney i.p. injection of TiLV induced up-regulation of the expression of the immune-related genes encoding pathogen recognition receptors involved in sensing of viral dsRNA (rig-I, tlr3, tlr22), transcription factors (irf3, irf7), type I interferon (infϕ1), antiviral protein (mxa), pro-inflammatory (il-1ß, tnf-α, il-8, ifnγ1-2) and anti-inflammatory (il-10) cytokines, CD4 markers (cd4-1, cd4-2), and IgM (igm). Moreover, tissue tropism of TiLV and histopathological changes were analyzed in selected organs of i.p. injected zebrafish. Our results indicate that zebrafish is a good model to study mechanisms of the TiLV infection and to follow antiviral responses.


Assuntos
Doenças dos Peixes/imunologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Imunidade Inata , Infecções por Vírus de RNA/veterinária , Carga Viral , Peixe-Zebra , Animais , Aquicultura , Doenças dos Peixes/genética , Doenças dos Peixes/virologia , Rim/virologia , Fígado/virologia , Infecções por Vírus de RNA/genética , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologia , Vírus de RNA/fisiologia , Baço/virologia
12.
Fish Shellfish Immunol ; 99: 208-226, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32001353

RESUMO

We investigated differential gene expression in Tilapia infected with the Tilapia Lake virus (TiLV).We used high-throughput sequencing to identify mRNAs and miRNAs involved in TiLV infection progression We identified 25,359 differentially expressed genes that included 863 new genes. We identified 1770, 4142 and 4947 differently expressed genes comparing non-infected controls with 24 and 120 h infections and between the infected groups, respectively. These genes were enriched to 291 GO terms and 62 KEGG pathways and included immune system progress and virion genes. High-throughput miRNA sequencing identified 316 conserved miRNAs, 525 known miRNAs and 592 novel miRNAs. Furthermore, 138, 198 and 153 differently expressed miRNAs were found between the 3 groups listed above, respectively. Target prediction revealed numerous genes including erythropoietin isoform X2, double-stranded RNA-specific adenosine deaminase isoform X1, bone morphogenetic protein 4 and tapasin-related protein that are involved in immune responsiveness. Moreover, these target genes overlapped with differentially expressed mRNAs obtained from RNA-seq. These target genes were significantly enriched to GO terms and KEGG pathways including immune system progress, virion and Wnt signaling pathways. Expression patterns of differentially expressed mRNA and miRNAs were validated in 20 mRNA and 19 miRNAs by qRT-PCR. We also were able to construct a miRNA-mRNA target network that can further understand the molecular mechanisms on the pathogenesis of TiLV and guide future research in developing effective agents and strategies to combat TiLV infections in Tilapia.


Assuntos
Regulação da Expressão Gênica/imunologia , MicroRNAs/metabolismo , Infecções por Vírus de RNA/veterinária , Vírus de RNA/classificação , RNA Mensageiro/metabolismo , Tilápia/virologia , Animais , MicroRNAs/genética , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologia , RNA Mensageiro/genética , Tilápia/genética
13.
Fish Shellfish Immunol ; 106: 666-674, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32858185

RESUMO

Tilapia lake virus (TiLV) is an emerging virus associated with high mortality in cultured tilapia. Since the first report of tilapia lake virus, it has been detected in diseased tilapia in sixteen countries around the world. Thus, there is an urgent need to develop an efficacious vaccine to prevent TiLV disease (TiLVD) and reduce its global economic impact. Understanding the role of the adaptive immune response following exposure of tilapia to TiLV is a critical step in the development of such a vaccine. In this study, we challenged red hybrid tilapia by cohabitation or intraperitoneal injection and demonstrated that surviving fish develop a protective immunity. We also demonstrated that tilapia that survived experimental infections possess significant antibodies against the protein encoded by the TiLV segment 4. We then developed a TiLV indirect ELISA to determine the antibody response in tilapia. The ELISA revealed high antibody levels in survivors of experimental challenges and following outbreaks on farms. The ELISA effectively distinguished TiLV-exposed from unexposed tilapia and was used to monitor anti-TiLV antibody kinetics following infection. During the primary infection, tilapia developed an antibody response as early as 7 days post TiLV challenge (dpc), peaked at 15 dpc, showed a gradual decline up until about 42 dpc, but persisted in some fish up until day 110 dpc. Upon re-infection, an increased antibody response occurred within 7-14 days, demonstrating that tilapia that survive TiLV infections develop humoral memory. In conclusion, our results demonstrated that tilapia mount antibody responses against TiLV that supports protective immunity to subsequent TiLV disease. The persistence of anti-TiLV antibodies in survivors following a single exposure suggests a single vaccination might be adequate to protect tilapia during the entire grow-out period. This study provides important information about the immune response of tilapia following exposure to TiLV as a first step in the development of an efficacious vaccine against this emerging and economically important viral disease.


Assuntos
Anticorpos Antivirais/sangue , Doenças dos Peixes/imunologia , Infecções por Vírus de RNA/imunologia , Vírus de RNA/imunologia , Tilápia/imunologia , Animais , Imunidade Humoral , Infecções por Vírus de RNA/veterinária , Tilápia/sangue
14.
J Fish Dis ; 43(11): 1381-1389, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32851674

RESUMO

Tilapia lake virus (TiLV) is an emerging pathogen in aquaculture, reportedly affecting farmed tilapia in 16 countries across multiple continents. Following an early warning in 2017 that TiLV might be widespread, we executed a surveillance programme on tilapia grow-out farms and hatcheries from 10 districts of Bangladesh in 2017 and 2019. Among farms experiencing unusual mortality, eight out of 11 farms tested positive for TiLV in 2017, and two out of seven tested positive in 2019. Investigation of asymptomatic broodstock collected from 16 tilapia hatcheries revealed that six hatcheries tested positive for TiLV. Representative samples subjected to histopathology confirmed pathognomonic lesions of syncytial hepatitis. We recovered three complete genomes of TiLV from infected fish, one from 2017 and two from 2019. Phylogenetic analyses based on both the concatenated coding sequences of 10 segments and only segment 1 consistently revealed that Bangladeshi TiLV isolates formed a unique cluster within Thai clade, suggesting a close genetic relation. In summary, this study revealed the circulation of TiLV in 10 farms and six hatcheries located in eight districts of Bangladesh. We recommend continuing TiLV-targeted surveillance efforts to identify contaminated sources to minimize the countrywide spread and severity of TiLV infection.


Assuntos
Doenças dos Peixes/virologia , Infecções por Orthomyxoviridae/veterinária , Orthomyxoviridae/isolamento & purificação , Animais , Aquicultura , Bangladesh/epidemiologia , Doenças dos Peixes/epidemiologia , Hepatite Viral Animal , Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/epidemiologia , Tilápia
15.
J Fish Dis ; 42(11): 1629-1636, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31578751

RESUMO

Detection of tilapia lake virus (TiLV) in tilapines is mainly from visceral organs of killed fish. However, lethal sampling might not be viable to broodstock and economically important ornamental cichlids. To contribute towards screening of the virus in asymptomatic infected fish, a subclinically infected population of Nile tilapia adults obtained from a local farm was preliminarily tested to compare different non-lethal sampling methods, for example liver biopsy, gill biopsy, fin clip, mucus, faeces and blood for detection of TiLV. Only liver and blood samples gave positive results by PCR. Since blood sampling is relatively simpler, it was further used for five naturally co-cultured juvenile fish species from above-mentioned farm including 40 red tilapia broodstock and 20 Nile tilapia adults from two other different farms. The results showed that from the tested fish, 4 of 5 Nile tilapia, 2 of 5 hybrid red tilapia and 3 of 5 giant gourami blood samples tested positive, while 38 of 40 blood samples of red tilapia tested positive for TiLV in second-step PCR. Sequencing representative PCR amplicons of positive samples confirmed sequence identity to TiLV. In conclusion, both blood and liver biopsy are practical non-destructive sampling platforms for TiLV screening in cichlids with blood being more convenient, especially for tilapia broodstock.


Assuntos
Biópsia/veterinária , Ciclídeos , Doenças dos Peixes/diagnóstico , Infecções por Vírus de RNA/veterinária , Vírus de RNA/isolamento & purificação , Animais , Infecções Assintomáticas , Biópsia/métodos , Sangue/virologia , Doenças dos Peixes/patologia , Fígado/patologia , Fígado/virologia , Infecções por Vírus de RNA/diagnóstico , Infecções por Vírus de RNA/patologia
18.
J Fish Dis ; 41(9): 1439-1448, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30003543

RESUMO

A novel virus, tilapia lake virus (TiLV), has been identified as a key pathogen responsible for disease outbreak and mass mortality of farmed tilapia. We used a deterministic susceptible-infectious-mortality (SIM) model to derive key disease information appraised with published TiLV-induced cumulative mortality data. The relationship between tilapia mortality and TiLV exposure dosages was described by the Hill model. Furthermore, a disease control model was proposed to determine the status of controlled TiLV infection using a parsimonious control reproduction number (RC )-control line criterion. Results showed that the key disease determinants of transmission rate and basic reproduction number (R0 ) could be derived. The median R0 estimate was 2.59 in a cohabitation setting with 2.6 × 105  TCID50 fish-1 TiLV. The present RC -control model can be employed to determine whether TiLV containment is feasible in an outbreak farm by quantifying the current level of transmission. The SIM model can then be applied to predict what additional control is required to manage RC  < 1. We offer valuable tools for aquaculture engineers and public health scientists the mechanistic-based assessment that allows a more rigorous evaluation of different control strategies to reduce waterborne diseases in aquaculture farming systems.


Assuntos
Doenças dos Peixes/mortalidade , Doenças dos Peixes/transmissão , Lagos/virologia , Infecções por Orthomyxoviridae/veterinária , Tilápia/virologia , Animais , Aquicultura , Suscetibilidade a Doenças , Doenças dos Peixes/virologia , Modelos Teóricos , Infecções por Orthomyxoviridae/transmissão
19.
J Fish Dis ; 41(2): 255-261, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29027697

RESUMO

Tilapia lake virus (TiLV) is an emerging pathogen associated with high mortalities of wild and farm-raised tilapia in different countries. In this study, a SYBR green-based reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay targeting segment three of the virus was developed to detect and quantify TiLV in clinical samples and experimentally challenged fish. All 30 field samples with clinical signs and history consistent with TiLV infection were positive for TiLV as detected by the developed RT-qPCR method. The RT-qPCR technique provided 100 and 10,000 times more sensitive for virus detection than those offered by the RT-PCR and virus isolation in cell culture methods, respectively. The detection limit of the RT-qPCR method was as low as two viral copies/µl. Moreover, the RT-qPCR technique could be applied for TiLV detection in various fish tissues including gills, liver, brain, heart, anterior kidney and spleen. Significantly, this study delivered an accurate and reliable method for rapid detection of TiLV viruses that facilitates active surveillance programme and disease containment.


Assuntos
Ciclídeos , Doenças dos Peixes/diagnóstico , Infecções por Vírus de RNA/veterinária , Vírus de RNA/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Animais , Doenças dos Peixes/virologia , Infecções por Vírus de RNA/diagnóstico , Infecções por Vírus de RNA/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
20.
J Clin Microbiol ; 55(3): 759-767, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27974544

RESUMO

Tilapia are an important group of farmed fish that serve as a significant protein source worldwide. In recent years, substantial mortality of wild tilapia has been observed in the Sea of Galilee and in commercial ponds in Israel and Ecuador. We have identified the etiological agent of these mass die-offs as a novel orthomyxo-like virus and named it tilapia lake virus (TiLV). Here, we provide the conditions for efficient isolation, culturing, and quantification of the virus, including the use of susceptible fish cell lines. Moreover, we describe a sensitive nested reverse transcription-PCR (RT-PCR) assay allowing the rapid detection of TiLV in fish organs. This assay revealed, for the first time to our knowledge, the presence of TiLV in diseased Colombian tilapia, indicating a wider distribution of this emerging pathogen and stressing the risk that TiLV poses for the global tilapia industry. Overall, the described procedures should provide the tilapia aquaculture industry with important tools for the detection and containment of this pathogen.


Assuntos
Doenças dos Peixes/diagnóstico , Infecções por Orthomyxoviridae/veterinária , Orthomyxoviridae/isolamento & purificação , RNA Viral/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Tilápia/virologia , Cultura de Vírus/métodos , Animais , Linhagem Celular , Colômbia , Doenças dos Peixes/virologia , Infecções por Orthomyxoviridae/diagnóstico , Infecções por Orthomyxoviridae/virologia , Reação em Cadeia da Polimerase/métodos , RNA Viral/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa