Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 337
Filtrar
1.
Glycobiology ; 34(5)2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38438159

RESUMO

The Cre-lox system is one of the most widely used methods for lineage-specific and inducible genome editing in vivo. However, incomplete penetrance and off-target effects due to transient promoter expression in a stem or pluripotent precursor cell can be problematic and difficult to detect, especially if the target gene is not normally present in the fully differentiated but off-target cells. Yet, the loss of the target gene through the transient expression of Cre may impact the differentiation of those cells by virtue of transient expression in a precursor population. In these situations, off-target effects in an unknown precursor cell can, at best, complicate conclusions drawn from the model, and at worst, invalidate all data generated from that knockout strain. Thus, identifying Cre-driver promoter expression along entire cell lineages is crucial to improve rigor and reproducibility. As an example, transient expression in an early precursor cell has been documented in a variety of Cre strains such as the Tie2-based Cre-driver system that is used as an "endothelial cell-specific" model 1. Yet, Tie2 is now known to be transiently expressed in a stem cell upstream of both hematopoietic and endothelial cell lineages. Here, we use the Tie2 Cre-driver strain to demonstrate that due to its ubiquitous nature, plasma membrane glycans are a useful marker of both penetrance and specificity of a Cre-based knockout.


Assuntos
Células-Tronco Hematopoéticas , Integrases , Camundongos , Animais , Camundongos Transgênicos , Integrases/genética , Integrases/metabolismo , Glicosilação , Reprodutibilidade dos Testes , Células-Tronco Hematopoéticas/metabolismo
2.
Angiogenesis ; 27(3): 523-542, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38771392

RESUMO

Induced pluripotent stem cell (iPSC) derived endothelial cells (iECs) have emerged as a promising tool for studying vascular biology and providing a platform for modelling various vascular diseases, including those with genetic origins. Currently, primary ECs are the main source for disease modelling in this field. However, they are difficult to edit and have a limited lifespan. To study the effects of targeted mutations on an endogenous level, we generated and characterized an iPSC derived model for venous malformations (VMs). CRISPR-Cas9 technology was used to generate a novel human iPSC line with an amino acid substitution L914F in the TIE2 receptor, known to cause VMs. This enabled us to study the differential effects of VM causative mutations in iECs in multiple in vitro models and assess their ability to form vessels in vivo. The analysis of TIE2 expression levels in TIE2L914F iECs showed a significantly lower expression of TIE2 on mRNA and protein level, which has not been observed before due to a lack of models with endogenous edited TIE2L914F and sparse patient data. Interestingly, the TIE2 pathway was still significantly upregulated and TIE2 showed high levels of phosphorylation. TIE2L914F iECs exhibited dysregulated angiogenesis markers and upregulated migration capability, while proliferation was not affected. Under shear stress TIE2L914F iECs showed reduced alignment in the flow direction and a larger cell area than TIE2WT iECs. In summary, we developed a novel TIE2L914F iPSC-derived iEC model and characterized it in multiple in vitro models. The model can be used in future work for drug screening for novel treatments for VMs.


Assuntos
Células Endoteliais , Técnicas de Introdução de Genes , Células-Tronco Pluripotentes Induzidas , Receptor TIE-2 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Células Endoteliais/metabolismo , Mutação/genética , Sistemas CRISPR-Cas/genética , Malformações Vasculares/genética , Malformações Vasculares/patologia , Malformações Vasculares/metabolismo
3.
Biochem Biophys Res Commun ; 735: 150484, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39094232

RESUMO

BACKGROUND: Endothelial hyperpermeability-induced vascular dysfunction is a prevalent and significant characteristic in critical illnesses such as sepsis and other conditions marked by acute systemic inflammation. Platelet endothelial cell adhesion molecule-1 (PECAM-1) and Tie2 serve as transmembrane receptors within endothelial cells (ECs), playing pivotal roles not only in maintaining EC-EC junctions but also in influencing vasculogenesis, vessel homeostasis, and vascular remodeling. OBJECTIVES: At present, the molecular basis of the PECAM-1-Tie2 interaction remains inadequately elucidated. In the study, recombinant soluble PECAM-1 (sPECAM-1) and Tie2 (sTie2) were expressed by Drosophila S2 and HEK293 expression systems, respectively. The interactions between sPECAM-1 and sTie2 were investigated using the Surface Plasmon Resonance (SPR) and size-exclusion chromatography methods. An immunofluorescence assay was used to detect the binding of sPECAM-1 and sTie2 on endothelial cells. RESULTS: PECAM-1 was found to bind with sTie2 in a sodium and pH-dependent manner as confirmed by the ELISA, the D5-D6 domains of PECAM-1 might play a crucial role in binding with sTie2. Surface Plasmon Resonance (SPR) results showed that the full length of sPECAM-1 has the strongest binding affinity (KD = 48.4 nM) with sTie2, compared to sPECAM-1-D1-D4 and sPECAM-1-D1-D2. This result is consistent with that in the ELISA. In addition, size-exclusion chromatography demonstrated that sPECAM-1, sTie2, and Ang1 can form a ternary complex. CONCLUSION: In this study, we determined that sPECAM-1 binds to sTie2 in a pH and sodium-dependent manner. The full length of sPECAM-1 has the strongest binding affinity, and the D5-D6 domains in sPECAM-1 play a crucial role in the interaction between sPECAM-1 and sTie2.

4.
Microvasc Res ; 157: 104746, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39278537

RESUMO

The endothelialization of cardiovascular implants is supposed to improve the long-term patency of these implants. In addition, in previous studies, it has been shown, that the conditioning of endothelial cells by dynamic cultivation leads to the expression of an anti-thrombogenic phenotype. For the creation of a tissue-engineered vascular graft (TEVG), these two strategies were combined to achieve optimal hemocompatibility. In a clinical setup, this would require the transfer of the already endothelialized construct from the conditioning bioreactor to the patient. Therefore, the reversibility of the dynamic conditioning of the endothelial cells with arterial-like high shear stress (20 dyn/cm2) was investigated to define the timeframe (tested in a range of up to 24 h) for the perseverance of dynamically induced phenotypical changes. Two types of endothelial cells were compared: endothelial colony-forming cells (ECFCs) and human aortic endothelial cells (HAECs). The results showed that ECFCs respond far more sensitively and rapidly to flow than HAECs. The resulting cell alignment and increased protein expression of KLF-2, Notch-4, Thrombomodulin, Tie2 and eNOS monomer was paralleled by increased eNOS and unaltered KLF-2 mRNA levels even under stopped-flow conditions. VCAM-1 mRNA and protein expression was downregulated under flow and did not recover under stopped flow. From these time kinetic results, we concluded, that the maximum time gap between the TEVG cultivated with autologous ECFCs in future reactor cultivations and the transfer to the potential TEVG recipient should be limited to ∼6 h.

5.
Stem Cells ; 41(1): 93-104, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36368017

RESUMO

While supplemental angiopoietin-1 (Ang1) improves hematopoiesis, excessive Ang1 induces bone marrow (BM) impairment, hematopoietic stem cell (HSC) senescence, and erythropoietic defect. Here, we examined how excessive Ang1 disturbs hematopoiesis and explored whether hematopoietic defects were related to its level using K14-Cre;c-Ang1 and Col2.3-Cre;c-Ang1 transgenic mice that systemically and locally overexpress cartilage oligomeric matrix protein-Ang1, respectively. We also investigated the impacts of Tie2 inhibitor and AMD3100 on hematopoietic development. Transgenic mice exhibited excessive angiogenic phenotypes, but K14-Cre;c-Ang1 mice showed more severe defects in growth and life span with higher presence of Ang1 compared with Col2.3-Cre;c-Ang1 mice. Dissimilar to K14-Cre;c-Ang1 mice, Col2.3-Cre;c-Ang1 mice did not show impaired BM retention or senescence of HSCs, erythropoietic defect, or disruption of the stromal cell-derived factor 1 (SDF-1)/CXCR4 axis. However, these mice exhibited a defect in platelet production depending on the expression of Tie2 and globin transcription factor 1 (GATA-1), but not GATA-2, in megakaryocyte progenitor (MP) cells. Treatment with Tie2 inhibitor recovered GATA-1 expression in MP cells and platelet production without changes in circulating RBC in transgenic mice. Consecutive AMD3100 administration not only induced irrecoverable senescence of HSCs but also suppressed formation of RBC, but not platelets, via correlated decreases in number of erythroblasts and their GATA-1 expression in B6 mice. Our results indicate that genetic overexpression of Ang1 impairs hematopoietic development depending on its level, in which megakaryopoiesis is preferentially impaired via activation of Ang1/Tie2 signaling, whereas erythropoietic defect is orchestrated by HSC senescence, inflammation, and disruption of the SDF-1/CXCR4 axis.


Assuntos
Anemia , Trombocitopenia , Camundongos , Animais , Proteína de Matriz Oligomérica de Cartilagem/genética , Angiopoietina-1/genética , Angiopoietina-1/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Camundongos Transgênicos , Anemia/genética , Receptor TIE-2/genética , Receptor TIE-2/metabolismo
6.
Eur Spine J ; 33(5): 1713-1727, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38416190

RESUMO

PURPOSE: To investigate the therapeutic potential of extracellular vesicles (EVs) derived from human nucleus pulposus cells (NPCs), with a specific emphasis on Tie2-enhanced NPCs, compared to EVs derived from human bone marrow-derived mesenchymal stromal cells (BM-MSCs) in a coccygeal intervertebral disc degeneration (IDD) rat model. METHODS: EVs were isolated from healthy human NPCs cultured under standard (NPCSTD-EVs) and Tie2-enhancing (NPCTie2+-EVs) conditions. EVs were characterized, and their potential was assessed in vitro on degenerative NPCs in terms of cell proliferation and senescence, with or without 10 ng/mL interleukin (IL)-1ß. Thereafter, 16 Sprague-Dawley rats underwent annular puncture of three contiguous coccygeal discs to develop IDD. Phosphate-buffered saline, NPCSTD-EVs, NPCTie2+-EVs, or BM-MSC-derived EVs were injected into injured discs, and animals were followed for 12 weeks until sacrifice. Behavioral tests, radiographic disc height index (DHI) measurements, evaluation of pain biomarkers, and histological analyses were performed to assess the outcomes of injected EVs. RESULTS: NPC-derived EVs exhibited the typical exosomal morphology and were efficiently internalized by degenerative NPCs, enhancing cell proliferation, and reducing senescence. In vivo, a single injection of NPC-derived EVs preserved DHI, attenuated degenerative changes, and notably reduced mechanical hypersensitivity. MSC-derived EVs showed marginal improvements over sham controls across all measured outcomes. CONCLUSION: Our results underscore the regenerative potential of young NPC-derived EVs, particularly NPCTie2+-EVs, surpassing MSC-derived counterparts. These findings raise questions about the validity of MSCs as both EV sources and cellular therapeutics against IDD. The study emphasizes the critical influence of cell type, source, and culture conditions in EV-based therapeutics.


Assuntos
Vesículas Extracelulares , Degeneração do Disco Intervertebral , Células-Tronco Mesenquimais , Núcleo Pulposo , Ratos Sprague-Dawley , Animais , Degeneração do Disco Intervertebral/terapia , Vesículas Extracelulares/transplante , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/fisiologia , Núcleo Pulposo/metabolismo , Ratos , Humanos , Masculino , Células Cultivadas , Dor
7.
Brain Inj ; 38(3): 194-201, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38297513

RESUMO

AIM: To explore the potential role of microRNA miR-221-5p on the angiopoietin-1 (Ang-1)/Ang-2/Tie-2 signaling axis after subarachnoid hemorrhage (SAH) in a rat model. METHODS: Aspects of the rat's behavior were measured using the Kaoutzanis scoring system to test neurological responses. This included feeding behavior, body contraction, motor, and eye-opening responses. Brain sections were studied using transmission electron microscopy and Evans blue extravasation. Levels of Ang-1, Ang-2, and Tie-2 were determined by Western blot, while miR-221-5p was quantified using stem-loop real-time quantitative PCR (RT-qPCR). RESULTS: The SAH group responded worse to the neurological response test than the sham-operated group. The intercellular space was widened in the SAH group, but not in the sham-operated group. Evans blue dye leaked significantly more into brain tissue cells of the SAH group. Stem-loop qRT-PCR showed elevated miR-221-5p levels. Additionally, Ang-1 and Tie-2 were reduced but Ang-2 expression was increased after SAH. This led to a significant reduction of the Ang-1/Ang-2 ratio in the brain tissue, which was associated with the destruction of the blood-brain barrier. CONCLUSION: The data indicate that miR-221-5p might regulate blood-brain barrier dysfunction through the Ang-1/Ang-2/Tie-2 signaling axis, suggesting that it should be further investigated as a potential novel biomarker.


Assuntos
MicroRNAs , Hemorragia Subaracnóidea , Ratos , Animais , Barreira Hematoencefálica , Angiopoietina-1/genética , Angiopoietina-1/metabolismo , Azul Evans/metabolismo , MicroRNAs/metabolismo
8.
Phytother Res ; 38(8): 4036-4052, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38886264

RESUMO

Atherosclerosis represents the major cause of mortality worldwide and triggers higher risk of acute cardiovascular events. Pericytes-endothelial cells (ECs) communication is orchestrated by ligand-receptor interaction generating a microenvironment which results in intraplaque neovascularization, that is closely associated with atherosclerotic plaque instability. Notoginsenoside R1 (R1) exhibits anti-atherosclerotic bioactivity, but its effect on angiogenesis in atherosclerotic plaque remains elusive. The aim of our study is to explore the therapeutic effect of R1 on vulnerable plaque and investigate its potential mechanism against intraplaque neovascularization. The impacts of R1 on plaque stability and intraplaque neovascularization were assessed in ApoE-/- mice induced by high-fat diet. Pericytes-ECs direct or non-direct contact co-cultured with VEGF-A stimulation were used as the in vitro angiogenesis models. Overexpressing Ang1 in pericytes was performed to investigate the underlying mechanism. In vivo experiments, R1 treatment reversed atherosclerotic plaque vulnerability and decreased the presence of neovessels in ApoE-/- mice. Additionally, R1 reduced the expression of Ang1 in pericytes. In vitro experiments demonstrated that R1 suppressed pro-angiogenic behavior of ECs induced by pericytes cultured with VEGF-A. Mechanistic studies revealed that the anti-angiogenic effect of R1 was dependent on the inhibition of Ang1 and Tie2 expression, as the effects were partially reversed after Ang1 overexpressing in pericytes. Our study demonstrated that R1 treatment inhibited intraplaque neovascularization by governing pericyte-EC association via suppressing Ang1-Tie2/PI3K-AKT paracrine signaling pathway. R1 represents a novel therapeutic strategy for atherosclerotic vulnerable plaques in clinical application.


Assuntos
Angiopoietina-1 , Aterosclerose , Células Endoteliais , Ginsenosídeos , Neovascularização Patológica , Pericitos , Placa Aterosclerótica , Receptor TIE-2 , Animais , Ginsenosídeos/farmacologia , Camundongos , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Aterosclerose/tratamento farmacológico , Placa Aterosclerótica/tratamento farmacológico , Receptor TIE-2/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Neovascularização Patológica/tratamento farmacológico , Angiopoietina-1/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Comunicação Celular/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacos , Apolipoproteínas E , Dieta Hiperlipídica , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125917

RESUMO

Cell transplantation is being actively explored as a regenerative therapy for discogenic back pain. This study explored the regenerative potential of Tie2+ nucleus pulposus progenitor cells (NPPCs) from intervertebral disc (IVD) tissues derived from young (<25 years of age) and old (>60 years of age) patient donors. We employed an optimized culture method to maintain Tie2 expression in NP cells from both donor categories. Our study revealed similar Tie2 positivity rates regardless of donor types following cell culture. Nevertheless, clear differences were also found, such as the emergence of significantly higher (3.6-fold) GD2 positivity and reduced (2.7-fold) proliferation potential for older donors compared to young sources. Our results suggest that, despite obtaining a high fraction of Tie2+ NP cells, cells from older donors were already committed to a more mature phenotype. These disparities translated into functional differences, influencing colony formation, extracellular matrix production, and in vivo regenerative potential. This study underscores the importance of considering age-related factors in NPPC-based therapies for disc degeneration. Further investigation into the genetic and epigenetic alterations of Tie2+ NP cells from older donors is crucial for refining regenerative strategies. These findings shed light on Tie2+ NPPCs as a promising cell source for IVD regeneration while emphasizing the need for comprehensive understanding and scalability considerations in culture methods for broader clinical applicability.


Assuntos
Núcleo Pulposo , Receptor TIE-2 , Humanos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/citologia , Receptor TIE-2/metabolismo , Receptor TIE-2/genética , Adulto , Pessoa de Meia-Idade , Masculino , Feminino , Idoso , Fatores Etários , Adulto Jovem , Proliferação de Células , Células Cultivadas , Regeneração , Células-Tronco/citologia , Células-Tronco/metabolismo , Degeneração do Disco Intervertebral/terapia , Disco Intervertebral/metabolismo , Disco Intervertebral/citologia , Diferenciação Celular , Adolescente , Transplante de Células-Tronco/métodos , Animais
10.
Curr Issues Mol Biol ; 46(1): 67-80, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38275666

RESUMO

Tumor-induced lymphangiogenesis is strongly associated with the formation of tumor metastasis. Therefore, the regulation of lymphangiogenesis offers a promising target in cancer therapy. Arsenic trioxide (ATO) is highly effective in the treatment of patients with acute promyelocytic leukemia (APL). As ATO mediates anti-angiogenic effects on endothelial and tumor cells, we aimed to explore the impact of ATO on lymphangiogenesis in human lymphatic endothelial cells (LEC). The BrdU assay and flow cytometry analysis were used to evaluate the influence of ATO on the proliferation and cell cycle distribution of LECs. The lymphatic suppression effects of ATO were investigated in vitro using the lymphatic tube formation assay. The effects of ATO on apoptosis, mitochondrial membrane potential and endothelial cell receptors were investigated by Western blotting, ELISA, flow cytometry and qRT-PCR. The treatment of LECs with ATO attenuated cell proliferation, blocked tube formation and induced subG0/G1 arrest in LECs, thus suggesting enhanced apoptosis. Although subG0/G1 arrest was accompanied by the upregulation of p21 and p53, ATO treatment did not lead to visible cell cycle arrest in LECs. In addition, ATO caused apoptosis via the release of cytochrome c from mitochondria, activating caspases 3, 8 and 9; downregulating the anti-apoptotic proteins survivin, XIAP and cIAP-2; and upregulating the pro-apoptotic protein Fas. Furthermore, we observed that ATO inhibited the VEGF-induced proliferation of LECs, indicating that pro-survival VEGF/VEGFR signaling was affected by ATO treatment. Finally, we found that ATO inhibited the expression of the important endothelial cell receptors VEGFR-2, VEGFR-3, Tie-2 and Lyve-1. In conclusion, we demonstrate that ATO inhibits lymphangiogenesis by activating apoptotic pathways and inhibiting important endothelial cell receptors, which suggests that this drug should be further evaluated in the treatment of tumor-associated lymphangiogenesis.

11.
Angiogenesis ; 26(2): 233-248, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36371548

RESUMO

A wide range of cardiac symptoms have been observed in COVID-19 patients, often significantly influencing the clinical outcome. While the pathophysiology of pulmonary COVID-19 manifestation has been substantially unraveled, the underlying pathomechanisms of cardiac involvement in COVID-19 are largely unknown. In this multicentre study, we performed a comprehensive analysis of heart samples from 24 autopsies with confirmed SARS-CoV-2 infection and compared them to samples of age-matched Influenza H1N1 A (n = 16), lymphocytic non-influenza myocarditis cases (n = 8), and non-inflamed heart tissue (n = 9). We employed conventional histopathology, multiplexed immunohistochemistry (MPX), microvascular corrosion casting, scanning electron microscopy, X-ray phase-contrast tomography using synchrotron radiation, and direct multiplexed measurements of gene expression, to assess morphological and molecular changes holistically. Based on histopathology, none of the COVID-19 samples fulfilled the established diagnostic criteria of viral myocarditis. However, quantification via MPX showed a significant increase in perivascular CD11b/TIE2 + -macrophages in COVID-19 over time, which was not observed in influenza or non-SARS-CoV-2 viral myocarditis patients. Ultrastructurally, a significant increase in intussusceptive angiogenesis as well as multifocal thrombi, inapparent in conventional morphological analysis, could be demonstrated. In line with this, on a molecular level, COVID-19 hearts displayed a distinct expression pattern of genes primarily coding for factors involved in angiogenesis and epithelial-mesenchymal transition (EMT), changes not seen in any of the other patient groups. We conclude that cardiac involvement in COVID-19 is an angiocentric macrophage-driven inflammatory process, distinct from classical anti-viral inflammatory responses, and substantially underappreciated by conventional histopathologic analysis. For the first time, we have observed intussusceptive angiogenesis in cardiac tissue, which we previously identified as the linchpin of vascular remodeling in COVID-19 pneumonia, as a pathognomic sign in affected hearts. Moreover, we identified CD11b + /TIE2 + macrophages as the drivers of intussusceptive angiogenesis and set forward a putative model for the molecular regulation of vascular alterations.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Miocardite , Humanos , Remodelação Vascular , SARS-CoV-2 , Inflamação
12.
Biochem Biophys Res Commun ; 687: 149130, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37944468

RESUMO

The formation and progression of tumors in humans are linked to the abnormal development of new blood vessels known as neo-angiogenesis. Angiogenesis is a broad word that encompasses endothelial cell migration, proliferation, tube formation, and intussusception, as well as peri-EC recruitment and extracellular matrix formation. Tumor angiogenesis is regulated by angiogenic factors, out of which some of the most potent angiogenic factors such as vascular endothelial growth factor and Angiopoietins (ANGs) in the body are produced by macrophages and other immune cells within the tumor microenvironment. ANGs have a distinct function in tumor angiogenesis and behavior. ANG1, ANG 2, ANG 3, and ANG 4 are the family members of ANG out of which ANG2 has been extensively investigated owing to its unique role in modifying angiogenesis and its tight association with tumor progression, growth, and invasion/metastasis, which makes it an excellent candidate for therapeutic intervention in human malignancies. ANG modulators have demonstrated encouraging outcomes in the treatment of tumor development, either alone or in conjunction with VEGF inhibitors. Future development of more ANG modulators targeting other ANGs is needed. The implication of ANG1, ANG3, and ANG4 as probable therapeutic targets for anti-angiogenesis treatment in tumor development should be also evaluated. The article has described the role of ANG in tumor angiogenesis as well as tumor growth and the treatment strategies modulating ANGs in tumor angiogenesis as demonstrated in clinical studies. The pharmacological modulation of ANGs and ANG-regulated pathways that are responsible for tumor angiogenesis and cancer development should be evaluated for the development of future molecular therapies.


Assuntos
Angiopoietinas , Neoplasias , Humanos , Angiopoietinas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor TIE-2/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Angiopoietina-2/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/irrigação sanguínea , Angiopoietina-1 , Microambiente Tumoral
13.
Cancer Immunol Immunother ; 72(1): 55-71, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35708739

RESUMO

Tumour acidosis contributes to cancer progression by inhibiting anti-tumour immunity. However, the effect of acidosis on anti-tumour T cell phenotypes in oesophageal adenocarcinoma (OAC) is unknown. Therefore, this study investigated the effect of acidosis on anti-tumour T cell profiles and if immune checkpoint blockade (ICB) could enhance anti-tumour T cell immunity under acidosis. Acidic conditions substantially altered immune checkpoint expression profiles of OAC patient-derived T cells, upregulating TIM-3, LAG-3 and CTLA-4. Severe acidosis (pH 5.5) significantly decreased the percentage of central memory CD4+ T cells, an effect that was attenuated by ICB treatment. ICB increased T cell production of IFN-γ under moderate acidosis (pH 6.6) but not severe acidosis (pH 5.5) and decreased IL-10 production by T cells under severe acidic conditions only. A link between lactate and metastasis was also depicted; patients with nodal metastasis had higher serum lactate levels (p = 0.07) which also positively correlated with circulating levels of pro-angiogenic factor Tie-2. Our findings establish that acidosis-induced upregulation of immune checkpoints on T cells may potentially contribute to immune evasion and disease progression in OAC. However, acidic conditions curtailed ICB efficacy, supporting a rationale for utilizing systemic oral buffers to neutralize tumour acidity to improve ICB efficacy. Study schematic-PBMCs were isolated from OAC patients (A) and expanded ex vivo for 7 days using anti-CD3/28 +IL-2 T cell activation protocol (B) and further cultured for 48 h under increasing acidic conditions in the absence or presence of immune checkpoint blockade (nivolumab, ipilimumab or dual nivolumab + ipilimumab) (C). Immunophenotyping was then carried out to assess immune checkpoint expression profiles and anti-tumour T cell phenotypes (D). Serum lactate was assessed in OAC patients (E-F) and levels were correlated with patient demographics (G) and the levels of circulating immune/pro-angiogenic cytokines that were determined by multiplex ELISA (H). Key Findings-severe acidic conditions upregulated multiple immune checkpoints on T cells (I). Efficacy of ICB was curtailed under severe acidic conditions (J). Circulating lactate levels positively correlated with circulating levels of pro-angiogenic factor tie-2 and higher serum lactate levels were found in patients who had nodal metastasis (K).


Assuntos
Adenocarcinoma , Linfócitos T , Humanos , Linfócitos T/metabolismo , Ipilimumab/uso terapêutico , Nivolumabe/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Indutores da Angiogênese/uso terapêutico , Adenocarcinoma/patologia
14.
Development ; 147(19)2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32928907

RESUMO

Angiopoietin/TIE signalling plays a major role in blood and lymphatic vessel development. In mouse, Tek (previously known as Tie2) mutants die prenatally due to a severely underdeveloped cardiovascular system. In contrast, in zebrafish, previous studies have reported that although embryos injected with tek morpholinos (MOs) exhibit severe vascular defects, tek mutants display no obvious vascular malformations. To further investigate the function of zebrafish Tek, we generated a panel of loss-of-function tek mutants, including RNA-less alleles, an allele lacking the MO-binding site, an in-frame deletion allele and a premature termination codon-containing allele. Our data show that all these mutants survive to adulthood with no obvious cardiovascular defects. MO injections into tek mutants lacking the MO-binding site or the entire tek locus cause similar vascular defects to those observed in MO-injected +/+ siblings, indicating off-target effects of the MOs. Surprisingly, comprehensive phylogenetic profiling and synteny analyses reveal that Tek was lost in the largest teleost clade, suggesting a lineage-specific shift in the function of TEK during vertebrate evolution. Altogether, these data show that Tek is dispensable for zebrafish development, and probably dispensable in most teleost species.


Assuntos
Sistema Cardiovascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Sistema Cardiovascular/citologia , Edição de Genes , Organogênese/genética , Organogênese/fisiologia , Filogenia , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
15.
EMBO Rep ; 22(12): e53471, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34698433

RESUMO

Angiopoietins 1 and 2 (Ang1 and Ang2) regulate angiogenesis through their similar F-domains by activating Tie2 receptors on endothelial cells. Despite the similarity in the underlying receptor-binding interaction, the two angiopoietins have opposite effects: Ang1 induces phosphorylation of AKT, strengthens cell-cell junctions, and enhances endothelial cell survival while Ang2 can antagonize these effects, depending on cellular context. To investigate the molecular basis for the opposing effects, we examined the phenotypes of a series of computationally designed protein scaffolds presenting the Ang1 F-domain in a wide range of valencies and geometries. We find two broad phenotypic classes distinguished by the number of presented F-domains: Scaffolds presenting 3 or 4 F-domains have Ang2-like activity, upregulating pFAK and pERK but not pAKT, while scaffolds presenting 6, 8, 12, 30, or 60 F-domains have Ang1-like activity, upregulating pAKT and inducing migration and vascular stability. The scaffolds with 6 or more F-domains display super-agonist activity, producing stronger phenotypes at lower concentrations than Ang1. Tie2 super-agonist nanoparticles reduced blood extravasation and improved blood-brain barrier integrity four days after a controlled cortical impact injury.


Assuntos
Angiopoietinas , Células Endoteliais , Células Endoteliais/metabolismo , Neovascularização Fisiológica , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Transdução de Sinais
16.
Pediatr Blood Cancer ; 70(8): e30404, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37158500

RESUMO

Targeted therapy has become the first therapeutic option in many patients with vascular anomalies. A male 28-year-old patient presented a severe cervicofacial venous malformation involving half-lower face, anterior neck, and oral cavity with progression despite multiple previous treatments, with a somatic variant in TEK (endothelial-specific protein receptor tyrosine kinase) (c.2740C>T; p.Leu914Phe). The patient had facial deformity, daily episodes of pain and inflammation needing massive amount of medication, and difficulty in speech and swallowing, so rebastinib (a TIE2 kinase inhibitor) was approved for compassionate use. After 6 months of treatment, venous malformation had decreased in size and lightened, as well as improved quality-of-life scores.


Assuntos
Doenças Vasculares , Malformações Vasculares , Humanos , Masculino , Adulto , Receptor TIE-2 , Malformações Vasculares/tratamento farmacológico , Pirazóis/uso terapêutico
17.
BMC Psychiatry ; 23(1): 538, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491201

RESUMO

BACKGROUND: Schizophrenia (SCZ) is associated with chronic low-grade inflammation, which may be involved in the underlying pathological mechanism of the disease and may influence patient prognosis. We evaluated the differences in serum cytokine and Tie-2 receptor levels between patients with first-episode SCZ and healthy controls and explored the correlation thereof with clinical symptoms. METHODS: Seventy-six participants were recruited for the present study, including 40 patients with first-episode SCZ and 36 healthy controls. Positive and Negative Syndrome Scale (PANSS) and Brief Psychiatric Rating Scale (BPRS) scores, demographic data, and blood samples were collected at baseline. A hypersensitive Meso Scale Discovery (MSD) electrochemiluminescence assay system was used to measure cytokine and Tie-2 receptor levels. Spearman's correlation and stepwise linear regression were used to analyze the data. RESULTS: Serum interleukin-1ß and -4 levels were significantly increased, and Tie-2 levels were significantly decreased, in first-episode SCZ patients as compared to healthy controls. IL-1ß levels were positively correlated with total BPRS scores, resistance subscores, and PANSS positive subscores. Furthermore, IL-1ß levels were negatively correlated with Tie-2 receptor expression levels. Stepwise linear regression analysis demonstrated that IL-1ß levels correlated positively with PANSS positive subscores and BPRS total scores. PANSS negative subscores, general psychopathology subscores, and PANSS total scores had positive effects on the Tie-2 receptor. Receiver operating characteristic (ROC) curve analysis showed that IL-1ß and Tie-2 were highly sensitive and specific for predicting first-episode SCZ symptoms and achieving an area under the ROC curve of 0.8361 and 0.6462, respectively. CONCLUSION: Our results showed that patients with first-episode SCZ have low-grade inflammation. IL-1ß and Tie-2 receptors may be important mediators between inflammation and vascular dysfunction in patients with SCZ and may underlie the increased cardiovascular disease in this population. TRIAL REGISTRATION: The clinical trial registration date was 06/11/2018, registration number was chiCTR1800019343.


Assuntos
Citocinas , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico , Receptor TIE-2 , Escalas de Graduação Psiquiátrica Breve , Psicopatologia
18.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569664

RESUMO

To develop an off-the-shelf therapeutic product for intervertebral disc (IVD) repair using nucleus pulposus cells (NPCs), it is beneficial to mitigate dimethyl sulfoxide (DMSO)-induced cytotoxicity caused by intracellular reactive oxygen species (ROS). Hyaluronic acid (HA) has been shown to protect chondrocytes against ROS. Therefore, we examined the potential of HA on mitigating DMSO-induced cytotoxicity for the enhancement of NPC therapy. Human NPC cryopreserved in DMSO solutions were thawed, mixed with equal amounts of EDTA-PBS (Group E) or HA (Group H), and incubated for 3-5 h. After incubation, DMSO was removed, and the cells were cultured for 5 days. Thereafter, we examined cell viability, cell proliferation rates, Tie2 positivity (a marker of NP progenitor cells), and the estimated numbers of Tie2 positive cells. Fluorescence intensity of DHE and MitoSOX staining, as indicators for oxidative stress, were evaluated by flow cytometry. Group H showed higher rates of cell proliferation and Tie2 expressing cells with a trend toward suppression of oxidative stress compared to Group E. Thus, HA treatment appears to suppress ROS induced by DMSO. These results highlight the ability of HA to maintain NPC functionalities, suggesting that mixing HA at the time of transplantation may be useful in the development of off-the-shelf NPC products.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Ácido Hialurônico/farmacologia , Dimetil Sulfóxido/farmacologia , Espécies Reativas de Oxigênio , Células Cultivadas , Degeneração do Disco Intervertebral/terapia , Criopreservação
19.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069038

RESUMO

The angiopoietin-1 receptor (Tie2) marks specific nucleus pulposus (NP) progenitor cells, shows a rapid decline during aging and intervertebral disc degeneration, and has thus sparked interest in its utilization as a regenerative agent against disc degeneration. However, the challenge of maintaining and expanding these progenitor cells in vitro has been a significant hurdle. In this study, we investigated the potential of laminin-511 to sustain Tie2+ NP progenitor cells in vitro. We isolated cells from human NP tissue (n = 5) and cultured them for 6 days on either standard (Non-coat) or iMatrix-511 (laminin-511 product)-coated (Lami-coat) dishes. We assessed these cells for their proliferative capacity, activation of Erk1/2 and Akt pathways, as well as the expression of cell surface markers such as Tie2, GD2, and CD24. To gauge their regenerative potential, we examined their extracellular matrix (ECM) production capacity (intracellular type II collagen (Col2) and proteoglycans (PG)) and their ability to form spherical colonies within methylcellulose hydrogels. Lami-coat significantly enhanced cell proliferation rates and increased Tie2 expression, resulting in a 7.9-fold increase in Tie2-expressing cell yields. Moreover, the overall proportion of cells positive for Tie2 also increased 2.7-fold. Notably, the Col2 positivity rate was significantly higher on laminin-coated plates (Non-coat: 10.24% (±1.7%) versus Lami-coat: 26.2% (±7.5%), p = 0.010), and the ability to form spherical colonies also showed a significant improvement (Non-coat: 40.7 (±8.8)/1000 cells versus Lami-coat: 70.53 (±18.0)/1000 cells, p = 0.016). These findings demonstrate that Lami-coat enhances the potential of NP cells, as indicated by improved colony formation and proliferative characteristics. This highlights the potential of laminin-coating in maintaining the NP progenitor cell phenotype in culture, thereby supporting their translation into prospective clinical cell-transplantation products.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Núcleo Pulposo/metabolismo , Disco Intervertebral/metabolismo , Estudos Prospectivos , Células-Tronco/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Laminina/farmacologia , Laminina/metabolismo , Células Cultivadas
20.
Zhonghua Nan Ke Xue ; 29(8): 675-681, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-38619512

RESUMO

OBJECTIVE: To investigate whether androgens regulate the expression of endothelial nitric oxide synthase (eNOS) in rat penile cavernous tissue through endothelial-rich adventitial endothelial cell kinase 2 (Tie2)/phosphokinase (AKT) and affect penile erectile function. METHODS: Eight-week-old male SD (Sprague Dawley) rats were randomly divided into 6 groups (n=6): sham group, cast group, cast+testosterone replacement group (cast+T group, subcutaneous injection of testosterone propionate 3mg/kg every other day after castration), sham+Tie2 transfection group (sham+Tie2 group, 20ul Tie2 gene lentivirus injection into penile cavernosa of rats 4 weeks after castration, titer 1×108TU/ml), cast+Tie2 group, cast+empty vector group. Five weeks after castration, the ratio of maximum penile intracavernous pressure to mean arterial pressure (ICPmax/MAP), serum testosterone (T), nitric oxide (NO), and the expression levels of Tie2, AKT, P-AKT, eNOS and P-eNOS in the corpus cavernosa of the penis in each group of rats were measured. RESULTS: The contents of T、NO and ICPmax/MAP in the penile cavernous tissues of the cast group were significantly lower than the sham group (P< 0.01). After transfection with Tie2 overexpressing lentivirus, the NO content and ICPmax/MAP of the cast+Tie2 group were significantly higher than the cast group (P< 0.01). The expression of Tie2 and P-AKT/AKT and P-eNOS/eNOS in penile cavernous tissue of rats in the cast group were significantly lower than those in the sham group, and the expression of Tie2 and P-AKT/AKT and P-eNOS/eNOS in the cast+Tie2 group were significantly higher than the cast group. CONCLUSION: Hypoandrogen may inhibit penile erection by inhibiting the Tie2/AKT/eNOS signaling pathway, reducing the concentration of P-eNOS/eNOS and NO in penile cavernous tissue. Up-regulating the expression of Tie2 in penile cavernous tissue can increase the concentrations of P-AKT/AKT, P-eNOS/eNOS and NO, and improve ED.


Assuntos
Disfunção Erétil , Ereção Peniana , Animais , Masculino , Ratos , Androgênios , Lentivirus , Óxido Nítrico , Pênis , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Testosterona , Receptor TIE-2
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa