Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Pharmacol Toxicol Methods ; 84: 111-127, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27956204

RESUMO

INTRODUCTION: Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are anticipated to be a useful tool for conducting proarrhythmia risk assessments of drug candidates. However, a torsadogenic risk prediction paradigm using hiPSC-CMs has not yet been fully established. METHODS: Extracellular field potentials (FPs) were recorded from hiPSC-CMs using the multi-electrode array (MEA) system. The effects on FPs were evaluated with 60 drugs, including 57 with various clinical torsadogenic risks. Actual drug concentrations in medium were measured using the equilibrium dialysis method with a Rapid Equilibrium Dialysis device. Relative torsade de pointes (TdP) scores were determined for each drug according to the degree of FP duration prolongation and early afterdepolarization occurrence. The margins were calculated from the free concentration in medium and free effective therapeutic plasma concentration. Each drug's results were plotted on a two-dimensional map of relative TdP risk scores versus margins. RESULTS: Each drug was categorised as high, intermediate, or low risk based on its location within predefined areas of the two-dimensional map. We categorised 19 drugs as high risk; 18 as intermediate risk; and 17 as low risk. We examined the concordance between our categorisation of high and low risk drugs against the torsadogenic risk categorisation in CredibleMeds®. Our system demonstrated high concordance, as reflected in a sensitivity of 81%, specificity of 87%, and accuracy of 83%. DISCUSSION: These results indicate that our torsadogenic risk assessment is reliable and has a potential to replace the hERG assay for torsadogenic risk prediction, however, this system needs to be improved for the accurate of prediction of clinical TdP risk. Here, we propose a novel drug induced torsadogenic risk categorising system using hiPSC-CMs and the MEA system.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Cardiotoxinas/toxicidade , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Torsades de Pointes/induzido quimicamente , Potenciais de Ação/fisiologia , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Medição de Risco , Torsades de Pointes/patologia , Torsades de Pointes/fisiopatologia
2.
Front Pharmacol ; 3: 99, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22712017

RESUMO

Since unexpected sudden deaths have been reported with the use of diverse non-cardiac drugs, cardio-safety experts focused their attention on security measures to improve survival rates in heart stoppages due to this prescribed drugs (Inchauspe 2010a). Considering that prolongation of the QTc is a reliable marker of a menacing arrhythmia called torsade de pointes (TdP) - that can progress to ventricular fibrillation, application of Bazett, or Rautaharhu formulas can lead to a proper predictive valuation of a "torsadogenic risk." Case-analysis raises up the proposal that QTc or QTp will allow to identify high risk groups; performs a close pharmaco-vigilance and legally register ECG follow-up, avoiding unnecessary withdrawal of useful drugs from market.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa