Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Neuroimage ; 293: 120611, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643890

RESUMO

Dynamic PET allows quantification of physiological parameters through tracer kinetic modeling. For dynamic imaging of brain or head and neck cancer on conventional PET scanners with a short axial field of view, the image-derived input function (ID-IF) from intracranial blood vessels such as the carotid artery (CA) suffers from severe partial volume effects. Alternatively, optimization-derived input function (OD-IF) by the simultaneous estimation (SIME) method does not rely on an ID-IF but derives the input function directly from the data. However, the optimization problem is often highly ill-posed. We proposed a new method that combines the ideas of OD-IF and ID-IF together through a kernel framework. While evaluation of such a method is challenging in human subjects, we used the uEXPLORER total-body PET system that covers major blood pools to provide a reference for validation. METHODS: The conventional SIME approach estimates an input function using a joint estimation together with kinetic parameters by fitting time activity curves from multiple regions of interests (ROIs). The input function is commonly parameterized with a highly nonlinear model which is difficult to estimate. The proposed kernel SIME method exploits the CA ID-IF as a priori information via a kernel representation to stabilize the SIME approach. The unknown parameters are linear and thus easier to estimate. The proposed method was evaluated using 18F-fluorodeoxyglucose studies with both computer simulations and 20 human-subject scans acquired on the uEXPLORER scanner. The effect of the number of ROIs on kernel SIME was also explored. RESULTS: The estimated OD-IF by kernel SIME showed a good match with the reference input function and provided more accurate estimation of kinetic parameters for both simulation and human-subject data. The kernel SIME led to the highest correlation coefficient (R = 0.97) and the lowest mean absolute error (MAE = 10.5 %) compared to using the CA ID-IF (R = 0.86, MAE = 108.2 %) and conventional SIME (R = 0.57, MAE = 78.7 %) in the human-subject evaluation. Adding more ROIs improved the overall performance of the kernel SIME method. CONCLUSION: The proposed kernel SIME method shows promise to provide an accurate estimation of the blood input function and kinetic parameters for brain PET parametric imaging.


Assuntos
Encéfalo , Tomografia por Emissão de Pósitrons , Humanos , Tomografia por Emissão de Pósitrons/métodos , Tomografia por Emissão de Pósitrons/normas , Encéfalo/diagnóstico por imagem , Imagem Corporal Total/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
2.
Eur J Nucl Med Mol Imaging ; 51(3): 896-906, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37889299

RESUMO

PURPOSE: This study aimed to quantitatively assess [68Ga]Ga-PSMA-11 uptake in pathological lesions and normal organs in prostate cancer using the total-body [68Ga]Ga-PSMA-11 PET/CT and to characterize the dynamic metabolic heterogeneity of prostate cancer. METHODS: Dynamic total-body [68Ga]Ga-PSMA-11 PET/CT scans were performed on ten prostate cancer patients. Manual delineation of volume-of-interests (VOIs) was performed on multiple normal organs displaying high [68Ga]Ga-PSMA-11 uptake, as well as pathological lesions. Time-to-activity curves (TACs) were generated, and the four compartment models including one-tissue compartmental model (1T1k), reversible one-tissue compartmental model (1T2k), irreversible two-tissue compartment model (2T3k) and reversible two-tissue compartmental model (2T4k) were fitted to each tissue TAC. Various rate constants, including K1 (forward transport rate from plasma to the reversible compartment), k2 (reverse transport rate from the reversible compartment to plasma), k3 (tracer binding on the PSMA-receptor and its internalization), k4 (the externalization rate of the tracer) and Ki (net influx rate), were obtained. The selection of the optimal model for describing the uptake of both lesions and normal organs was determined using the Akaike information criteria (AIC). Receiver operating characteristic (ROC) curve analysis was performed to determine the cut-off values for differentiating physiological and pathological [68Ga]Ga-PSMA-11 uptake. RESULTS: Both 1T1k and 1T2k models showed relatively high AIC values compared to the 2T3k and 2T4k models in both pathological lesions and normal organs. The kinetic behavior of pathological lesions was better described by the 2T3k model compared to the 2T4k model, while the normal organs were better described by the 2T4k model. Significant variations in kinetic metrics, such as K1, k2, and k3, and Ki, were observed among normal organs with high [68Ga]Ga-PSMA-11 uptake and pathological lesions. The high Ki value in normal organs was primarily determined by elevated K1 and low k3, rather than k2. Conversely, the high Ki value in pathological lesions, ranking second to the kidney and similar to salivary glands and spleen, was predominantly determined by the highest k3 value. Notably, k3 exhibited the highest performance in distinguishing between physiological and pathological [68Ga]Ga-PSMA-11 uptake, with an area under the curve (AUC) of 0.844 (95% CI, 0.773-0.915), sensitivity of 82.9%, and specificity of 74.1%. The k3 values showed better performance than SUVmean (AUC, 0.659), SUVmax (AUC, 0.637), and other kinetic parameter including K1 (AUC, 0.604), k2 (AUC, 0.634), and Ki (AUC, 0.651). CONCLUSIONS: Significant discrepancies in kinetic metrics were detected between pathological lesions and normal organs, despite their shared high uptake of [68Ga]Ga-PSMA-11. Notably, the k3 value exhibits a noteworthy capability to distinguish between pathological lesions and normal organs with elevated [68Ga]Ga-PSMA-11 uptake. This discovery implies that k3 holds promise as a prospective imaging biomarker for distinguishing between pathologic and non-specific [68Ga]Ga-PSMA-11 uptake in patients with prostate cancer.


Assuntos
Radioisótopos de Gálio , Neoplasias da Próstata , Masculino , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Estudos Prospectivos , Neoplasias da Próstata/patologia , Ácido Edético
3.
Artigo em Inglês | MEDLINE | ID: mdl-38958680

RESUMO

PURPOSE: While sedation is routinely used in pediatric PET examinations to preserve diagnostic quality, it may result in side effects and may affect the radiotracer's biodistribution. This study aims to investigate the feasibility of sedation-free pediatric PET imaging using ultra-fast total-body (TB) PET scanners and deep learning (DL)-based attenuation and scatter correction (ASC). METHODS: This retrospective study included TB PET (uExplorer) imaging of 35 sedated pediatric patients under four years old to determine the minimum effective scanning time. A DL-based ASC method was applied to enhance PET quantification. Both quantitative and qualitative assessments were conducted to evaluate the image quality of ultra-fast DL-ASC PET. Five non-sedated pediatric patients were subsequently used to validate the proposed approach. RESULTS: Comparisons between standard 300-second and ultra-fast 15-second imaging, CT-ASC and DL-ASC ultra-fast 15-second images, as well as DL-ASC ultra-fast 15-second images in non-sedated and sedated patients, showed no significant differences in qualitative scoring, lesion detectability, and quantitative Standard Uptake Value (SUV) (P = ns). CONCLUSIONS: This study demonstrates that pediatric PET imaging can be effectively performed without sedation by combining ultra-fast imaging techniques with a DL-based ASC. This advancement in sedation-free ultra-fast PET imaging holds potential for broader clinical adoption.

4.
Eur J Nucl Med Mol Imaging ; 51(8): 2353-2366, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38383744

RESUMO

PURPOSE: This study aims to develop deep learning techniques on total-body PET to bolster the feasibility of sedation-free pediatric PET imaging. METHODS: A deformable 3D U-Net was developed based on 245 adult subjects with standard total-body PET imaging for the quality enhancement of simulated rapid imaging. The developed method was first tested on 16 children receiving total-body [18F]FDG PET scans with standard 300-s acquisition time with sedation. Sixteen rapid scans (acquisition time about 3 s, 6 s, 15 s, 30 s, and 75 s) were retrospectively simulated by selecting the reconstruction time window. In the end, the developed methodology was prospectively tested on five children without sedation to prove the routine feasibility. RESULTS: The approach significantly improved the subjective image quality and lesion conspicuity in abdominal and pelvic regions of the generated 6-s data. In the first test set, the proposed method enhanced the objective image quality metrics of 6-s data, such as PSNR (from 29.13 to 37.09, p < 0.01) and SSIM (from 0.906 to 0.921, p < 0.01). Furthermore, the errors of mean standardized uptake values (SUVmean) for lesions between 300-s data and 6-s data were reduced from 12.9 to 4.1% (p < 0.01), and the errors of max SUV (SUVmax) were reduced from 17.4 to 6.2% (p < 0.01). In the prospective test, radiologists reached a high degree of consistency on the clinical feasibility of the enhanced PET images. CONCLUSION: The proposed method can effectively enhance the image quality of total-body PET scanning with ultrafast acquisition time, leading to meeting clinical diagnostic requirements of lesion detectability and quantification in abdominal and pelvic regions. It has much potential to solve the dilemma of the use of sedation and long acquisition time that influence the health of pediatric patients.


Assuntos
Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Imagem Corporal Total , Humanos , Criança , Imagem Corporal Total/métodos , Feminino , Tomografia por Emissão de Pósitrons/métodos , Masculino , Processamento de Imagem Assistida por Computador/métodos , Adolescente , Adulto , Fatores de Tempo , Estudos de Viabilidade , Pré-Escolar , Aprendizado Profundo
5.
Eur J Nucl Med Mol Imaging ; 51(8): 2271-2282, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38393375

RESUMO

PURPOSE: Dynamic total-body imaging enables new perspectives to investigate the potential relationship between the central and peripheral regions. Employing uEXPLORER dynamic [11C]CFT PET/CT imaging with voxel-wise simplified reference tissue model (SRTM) kinetic modeling and semi-quantitative measures, we explored how the correlation pattern between nigrostriatal and digestive regions differed between the healthy participants as controls (HC) and patients with Parkinson's disease (PD). METHODS: Eleven participants (six HCs and five PDs) underwent 75-min dynamic [11C]CFT scans on a total-body PET/CT scanner (uEXPLORER, United Imaging Healthcare) were retrospectively enrolled. Time activity curves for four nigrostriatal nuclei (caudate, putamen, pallidum, and substantia nigra) and three digestive organs (pancreas, stomach, and duodenum) were obtained. Total-body parametric images of relative transporter rate constant (R1) and distribution volume ratio (DVR) were generated using the SRTM with occipital lobe as the reference tissue and a linear regression with spatial-constraint algorithm. Standardized uptake value ratio (SUVR) at early (1-3 min, SUVREP) and late (60-75 min, SUVRLP) phases were calculated as the semi-quantitative substitutes for R1 and DVR, respectively. RESULTS: Significant differences in estimates between the HC and PD groups were identified in DVR and SUVRLP of putamen (DVR: 4.82 ± 1.58 vs. 2.58 ± 0.53; SUVRLP: 4.65 ± 1.36 vs. 2.84 ± 0.67; for HC and PD, respectively, both p < 0.05) and SUVREP of stomach (1.12 ± 0.27 vs. 2.27 ± 0.65 for HC and PD, respectively; p < 0.01). In the HC group, negative correlations were observed between stomach and substantia nigra in both the R1 and SUVREP values (r=-0.83, p < 0.05 for R1; r=-0.94, p < 0.01 for SUVREP). Positive correlations were identified between pancreas and putamen in both DVR and SUVRLP values (r = 0.94, p < 0.01 for DVR; r = 1.00, p < 0.001 for SUVRLP). By contrast, in the PD group, no correlations were found between the aforementioned target nigrostriatal and digestive areas. CONCLUSIONS: The parametric images of R1 and DVR generated from the SRTM model, along with SUVREP and SUVRLP, were proposed to quantify dynamic total-body [11C]CFT PET/CT in HC and PD groups. The distinction in correlation patterns of nigrostriatal and digestive regions between HC and PD groups identified by R1 and DVR, or SUVRs, may provide new insights into the disease mechanism.


Assuntos
Doença de Parkinson , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Masculino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Feminino , Pessoa de Meia-Idade , Idoso , Substância Negra/diagnóstico por imagem , Substância Negra/metabolismo , Tetrabenazina/análogos & derivados , Tetrabenazina/farmacocinética , Imagem Corporal Total/métodos , Estudos de Casos e Controles , Radioisótopos de Carbono
6.
Eur J Nucl Med Mol Imaging ; 51(8): 2484-2494, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38514483

RESUMO

BACKGROUND AND PURPOSE: [68Ga]Ga-PSMA PET imaging has been extensively utilized for the detection of biochemical recurrence (BCR) in prostate cancer. However, the detection rate declines to merely 10-40% when PSA levels are < 0.2 ng/mL employing short axial field-of-view (SAFOV) PET. Prior studies exhibited superior detection rates with total-body [68Ga]Ga-PSMA-11 PET compared to SAFOV [68Ga]Ga-PSMA-11 PET in BCR patients with PSA > 0.2 ng/mL. Nevertheless, the diagnostic utility of total-body [68Ga]Ga-PSMA-11 PET for BCR patients when PSA is < 0.2 ng/mL remains unclear. This study aimed to assess whether total-body [68Ga]Ga-PSMA-11 PET/CT could improve the detection rate compared to SAFOV [68Ga]Ga-PSMA-11 PET/CT in BCR patients with PSA < 0.2 ng/mL. METHODS: Eighty BCR patients with PSA < 0.2 ng/mL underwent total-body [68Ga]Ga-PSMA-11 PET/CT. These patients were matched by baseline qualities to another 80 patients who received SAFOV [68Ga]Ga-PSMA-11 PET/CT. The detection rates of total-body [68Ga]Ga-PSMA-11 PET/CT and SAFOV [68Ga]Ga-PSMA-11 PET/CT were compared utilizing a chi-square test and stratified analysis. Image quality of total-body [68Ga]Ga-PSMA PET/CT and SAFOV [68Ga]Ga-PSMA-11 PET/CT was assessed based on subjective scoring and objective parameters. The objective parameters measured were SUVmax, SUVmean, standard deviation (SD) of SUV, and signal-to-noise ratio (SNR) of liver and gluteus maximus. RESULTS: The image quality of total-body [68Ga]Ga-PSMA PET/CT was superior to that of SAFOV [68Ga]Ga-PSMA-11 PET/CT in both early and delayed scans. The detection rate of total-body [68Ga]Ga-PSMA PET/CT for BCR patients with PSA < 0.2 ng/mL was significantly higher than that of SAFOV [68Ga]Ga-PSMA-11 PET/CT (73.75% vs. 43.75%, P < 0.001). Total-body [68Ga]Ga-PSMA PET/CT resulted in noteworthy modifications to the treatment regimen when contrasted with SAFOV [68Ga]Ga-PSMA-11 PET/CT. CONCLUSIONS: In BCR patients with PSA < 0.2 ng/mL, total-body [68Ga]Ga-PSMA-11 PET/CT not only demonstrated a significantly higher detection rate compared to SAFOV [68Ga]Ga-PSMA-11 PET/CT but also led to significant alterations in treatment regimens.


Assuntos
Ácido Edético , Isótopos de Gálio , Radioisótopos de Gálio , Oligopeptídeos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Antígeno Prostático Específico , Prostatectomia , Neoplasias da Próstata , Humanos , Masculino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/cirurgia , Ácido Edético/análogos & derivados , Idoso , Antígeno Prostático Específico/sangue , Pessoa de Meia-Idade , Imagem Corporal Total/métodos , Recidiva , Estudos Retrospectivos , Recidiva Local de Neoplasia/diagnóstico por imagem
7.
Artigo em Inglês | MEDLINE | ID: mdl-38763962

RESUMO

BACKGROUND: The long axial field of view, combined with the high sensitivity of the Biograph Vision Quadra PET/CT scanner enables the precise deviation of an image derived input function (IDIF) required for parametric imaging. Traditionally, this requires an hour-long dynamic PET scan for [18F]-FDG, which can be significantly reduced by using a population-based input function (PBIF). In this study, we expand these examinations and include the scanner's ultra-high sensitivity (UHS) mode in comparison to the high sensitivity (HS) mode and evaluate the potential for further shortening of the scan time. METHODS: Patlak Ki and DV estimates were determined by the indirect and direct Patlak methods using dynamic [18F]-FDG data of 6 oncological patients with 26 lesions (0-65 min p.i.). Both sensitivity modes for different number/duration of PET data frames were compared, together with the potential of using abbreviated scan durations of 20, 15 and 10 min by using a PBIF. The differences in parametric images and tumour-to-background ratio (TBR) due to the shorter scans using the PBIF method and between the sensitivity modes were assessed. RESULTS: A difference of 3.4 ± 7.0% (Ki) and 1.2 ± 2.6% (DV) was found between both sensitivity modes using indirect Patlak and the full IDIF (0-65 min). For the abbreviated protocols and indirect Patlak, the UHS mode resulted in a lower bias and higher precision, e.g., 45-65 min p.i. 3.8 ± 4.4% (UHS) and 6.4 ± 8.9% (HS), allowing shorter scan protocols, e.g. 50-65 min p.i. 4.4 ± 11.2% (UHS) instead of 7.3 ± 20.0% (HS). The variation of Ki and DV estimates for both Patlak methods was comparable, e.g., UHS mode 3.8 ± 4.4% and 2.7 ± 3.4% (Ki) and 14.4 ± 2.7% and 18.1 ± 7.5% (DV) for indirect and direct Patlak, respectively. Only a minor impact of the number of Patlak frames was observed for both sensitivity modes and Patlak methods. The TBR obtained with direct Patlak and PBIF was not affected by the sensitivity mode, was higher than that derived from the SUV image (6.2 ± 3.1) and degraded from 20.2 ± 12.0 (20 min) to 10.6 ± 5.4 (15 min). Ki and DV estimate images showed good agreement (UHS mode, RC: 6.9 ± 2.3% (Ki), 0.1 ± 3.1% (DV), peak signal-to-noise ratio (PSNR): 64.5 ± 3.3 dB (Ki), 61.2 ± 10.6 dB (DV)) even for abbreviated scan protocols of 50-65 min p.i. CONCLUSIONS: Both sensitivity modes provide comparable results for the full 65 min dynamic scans and abbreviated scans using the direct Patlak reconstruction method, with good Ki and DV estimates for 15 min short scans. For the indirect Patlak approach the UHS mode improved the Ki estimates for the abbreviated scans.

8.
Eur J Nucl Med Mol Imaging ; 51(2): 581-589, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37819451

RESUMO

PURPOSE: The objective of this study was to evaluate the diagnostic performance and image quality of total-body positron emission tomography/computed tomography (PET/CT) imaging using a half-dose of [68 Ga]Ga-prostate specific membrane antigen ([68 Ga]Ga-PSMA) radiotracer, compared to conventional short axial field-of-view PET/CT imaging using a full dose of [68 Ga]Ga-PSMA. METHODS: This retrospective study enrolled 52 patients with biochemical recurrent (BCR) prostate cancer after radical prostatectomy who underwent total-body PET/CT with a half-dose (0.9-1.1 MBq/kg) of [68 Ga]Ga-PSMA. These patients were matched by baseline characteristics to another 52 BCR patients after prostatectomy who underwent conventional PET/CT with a full dose (1.8-2.2 MBq/kg) of [68 Ga]Ga-PSMA. The half-dose group was further divided into 5-min (G5) and 2-min (G2) acquisition subgroups. Image quality was assessed through subjective analysis using a 5-point scale and objective measurements of standard uptake value maximum (SUVmax), standard uptake value mean (SUVmean), background variation (BV) of the liver, blood pool, and parotid glands. Additionally, SUVmax and tumor-to-background ratio (TBR) were calculated for lesions. RESULTS: No significant difference in subjective image quality was found between the G2 and full-dose groups (p > 0.05). PET/CT image quality was significantly higher for the G5 versus G2 (p < 0.001) and full-dose groups (p < 0.001). TBR did not differ between the G2 and full-dose groups (4.23 ± 5.21 vs 4.22 ± 3.97, p = 0.99). Liver BV was significantly lower for G2 versus full-dose groups (0.16 ± 0.03 vs 0.20 ± 0.05, p < 0.001). CONCLUSIONS: Total-body PET/CT with a half-dose [68 Ga]Ga-PSMA yields image quality superior or comparable to that of conventional PET/CT. The utilization of total-body [68 Ga]Ga-PSMA PET/CT meets the diagnostic demands of BCR patients, particularly those who exhibit reduced tolerance to prolonged horizontal positioning and scan durations, while simultaneously reducing radiation exposure for the subjects.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata , Masculino , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Estudos Retrospectivos , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/patologia , Neoplasias da Próstata/patologia , Radioisótopos de Gálio , Ácido Edético
9.
Eur J Nucl Med Mol Imaging ; 50(3): 661-666, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36308535

RESUMO

PURPOSE: [68 Ga]Ga-FAPI-04 PET/CT has been widely used in oncology patients. The patients need to lie still for 20-30 min during scan after waiting for 60 min post-tracer injection in traditional [68 Ga]Ga-FAPI-04 PET/CT scan. This is difficult for some patients who are intolerant to prolonged horizontal positioning and waiting time. Therefore, we evaluated the diagnostic value of the images obtained in ultra-early and fast scan (5-min p.i., 30-s acquisition time) by the total-body [68 Ga]Ga-FAPI-04 PET/CT and to investigate whether they could meet the requirements of clinical diagnosis. METHODS: Total-body [68 Ga]Ga-FAPI-04 PET/CT was conducted in 12 patients at the Renji Hospital. Patients underwent PET with two acquisitions: 5-min p.i. and 30-s acquisition time (ultra-early and fast imaging) and 60-min p.i. and 300-s acquisition time (traditional imaging). Mean [68 Ga]Ga-FAPI-04 injection dose was 1.85 MBq/kg. RESULTS: Forty-four lesions were detected in 12 patients on traditional imaging. All the 44 lesions on conventional imaging could also detected by ultra-early and fast imaging. For all the 12 patients, the tumor stage did not change, as same lesions were visible for every case in both images. There was no statistically significant difference in SUVmax of lesions between ultra-early and fast imaging and traditional imaging (12.5 ± 8.7 vs 13.7 ± 8.5, P = 0.528). Background bloodpool (4.0 ± 0.6 vs 0.9 ± 0.2, P < 0.001)and liver (2.5 ± 0.7 vs 1.0 ± 0.5, P < 0.001)at traditional imaging showed a significant decrease in SUVmean compared to ultra-early and fast imaging. CONCLUSIONS: Ultra-early and fast imaging versus traditional [68 Ga]Ga-FAPI-04 imaging resulted in equivalent tumor detection and lesion uptake. Ultra-early and fast total-body [68 Ga]Ga-FAPI-04 PET/CT scan could meet clinical diagnostic requirements for patients with poor tolerant to prolonged horizontal positioning and waiting time.


Assuntos
Fígado , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Estudos de Viabilidade , Transporte Biológico , Radioisótopos de Gálio
10.
Eur J Nucl Med Mol Imaging ; 50(12): 3538-3557, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37460750

RESUMO

BACKGROUND: Positron emission tomography (PET) scanning is an important diagnostic imaging technique used in disease diagnosis, therapy planning, treatment monitoring, and medical research. The standardized uptake value (SUV) obtained at a single time frame has been widely employed in clinical practice. Well beyond this simple static measure, more detailed metabolic information can be recovered from dynamic PET scans, followed by the recovery of arterial input function and application of appropriate tracer kinetic models. Many efforts have been devoted to the development of quantitative techniques over the last couple of decades. CHALLENGES: The advent of new-generation total-body PET scanners characterized by ultra-high sensitivity and long axial field of view, i.e., uEXPLORER (United Imaging Healthcare), PennPET Explorer (University of Pennsylvania), and Biograph Vision Quadra (Siemens Healthineers), further stimulates valuable inspiration to derive kinetics for multiple organs simultaneously. But some emerging issues also need to be addressed, e.g., the large-scale data size and organ-specific physiology. The direct implementation of classical methods for total-body PET imaging without proper validation may lead to less accurate results. CONCLUSIONS: In this contribution, the published dynamic total-body PET datasets are outlined, and several challenges/opportunities for quantitation of such types of studies are presented. An overview of the basic equation, calculation of input function (based on blood sampling, image, population or mathematical model), and kinetic analysis encompassing parametric (compartmental model, graphical plot and spectral analysis) and non-parametric (B-spline and piece-wise basis elements) approaches is provided. The discussion mainly focuses on the feasibilities, recent developments, and future perspectives of these methodologies for a diverse-tissue environment.


Assuntos
Algoritmos , Tomografia por Emissão de Pósitrons , Humanos , Cinética , Tomografia por Emissão de Pósitrons/métodos
11.
Eur J Nucl Med Mol Imaging ; 50(3): 701-714, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36326869

RESUMO

PURPOSE: The PET scanners with long axial field of view (AFOV) having ~ 20 times higher sensitivity than conventional scanners provide new opportunities for enhanced parametric imaging but suffer from the dramatically increased volume and complexity of dynamic data. This study reconstructed a high-quality direct Patlak Ki image from five-frame sinograms without input function by a deep learning framework based on DeepPET to explore the potential of artificial intelligence reducing the acquisition time and the dependence of input function in parametric imaging. METHODS: This study was implemented on a large AFOV PET/CT scanner (Biograph Vision Quadra) and twenty patients were recruited with 18F-fluorodeoxyglucose (18F-FDG) dynamic scans. During training and testing of the proposed deep learning framework, the last five-frame (25 min, 40-65 min post-injection) sinograms were set as input and the reconstructed Patlak Ki images by a nested EM algorithm on the vendor were set as ground truth. To evaluate the image quality of predicted Ki images, mean square error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM) were calculated. Meanwhile, a linear regression process was applied between predicted and true Ki means on avid malignant lesions and tumor volume of interests (VOIs). RESULTS: In the testing phase, the proposed method achieved excellent MSE of less than 0.03%, high SSIM, and PSNR of ~ 0.98 and ~ 38 dB, respectively. Moreover, there was a high correlation (DeepPET: [Formula: see text]= 0.73, self-attention DeepPET: [Formula: see text]=0.82) between predicted Ki and traditionally reconstructed Patlak Ki means over eleven lesions. CONCLUSIONS: The results show that the deep learning-based method produced high-quality parametric images from small frames of projection data without input function. It has much potential to address the dilemma of the long scan time and dependency on input function that still hamper the clinical translation of dynamic PET.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Humanos , Tomografia por Emissão de Pósitrons/métodos , Inteligência Artificial , Redes Neurais de Computação , Fluordesoxiglucose F18 , Processamento de Imagem Assistida por Computador/métodos
12.
Eur J Nucl Med Mol Imaging ; 50(3): 652-660, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36178535

RESUMO

PURPOSE: Total body positron emission tomography (TB-PET) has recently been introduced in nuclear medicine departments. There is a large interest in these systems, but for many centers, the high acquisition cost makes it very difficult to justify their current operational budget. Here, we propose medium-cost long axial FOV scanners as an alternative. METHODS: Several medium-cost long axial FOV designs are described with their advantages and drawbacks. We describe their potential for higher throughput, more cost-effective scanning, a larger group of indications, and novel research opportunities. The wider spread of TB-PET can also lead to the fast introduction of new tracers (at a low dose), new methodologies, and optimized workflows. CONCLUSIONS: A medium-cost TB-PET would be positioned between the current standard PET-CT and the full TB-PET systems in investment but recapitulate most advantages of full TB-PET. These systems could be more easily justified financially in a standard academic or large private nuclear medicine department and still have ample research options.


Assuntos
Medicina Nuclear , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Medicina Nuclear/métodos , Tomografia por Emissão de Pósitrons/métodos
13.
Eur J Nucl Med Mol Imaging ; 50(13): 3961-3969, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37535107

RESUMO

BACKGROUND: [68Ga]Ga-FAPI-04 (gallium-68-labeled fibroblast activation protein inhibitor-04) PET/CT has been widely used in diagnosing malignant tumors. Total-body PET/CT has a long axial field of view and provides higher sensitivity compared to traditional PET/CT. However, whether the reduced injected dose of [68Ga]Ga-FAPI-04 could obtain qualified imaging has not been evaluated. PURPOSE: To explore the effect of half-dose [68Ga]Ga-FAPI-04 on image quality and tumor detectability in oncology patients. METHODS: A total of twenty-seven patients with tumors or clinically suspected tumors were included, and all patients were scanned with total-body PET/CT after an injected dose of 0.84-1.14 MBq/kg [68Ga]Ga-FAPI-04. All patients obtained superior image quality with 300 s original acquisition time. Images were reconstructed using 180 s, 120 s, 60 s, 40 s, 30 s, 20 s scanning duration by ordered subset expectation maximization algorithm. The subjective image quality of all patients in each time group was scored using 5-point Likert scale. Mediastinal blood pool, liver, spleen, and muscle were analyzed as background using semi-quantitative parameters maximum standardized uptake values (SUVmax), mean standardized uptake values (SUVmean), standard deviation (SD), and signal to noise ratio (SNR). The lesion detection rate, SUVmax, and tumor-to-background ratio (TBR) were calculated for tumors confirmed by pathology. RESULTS: The subjective image quality score decreased with the shortening of scanning time; however, both 180 s and 120 s images met the diagnostic requirements in terms of overall quality, lesion conspicuity, and image noise. The SUVmax of background increased with the reduction of scanning time, while the SUVmean was relatively stable. With the shortening of scanning time, the SD gradually increased, and the SNR gradually decreased, which was consistent with subjective image quality scores. In 180 s and 120 s images, all 11 primary lesions and 79 metastatic lesions were detected. The SUVmax of tumor focus showed an increasing trend as same as the background. Compared with 300 s, the TBR muscle had no statistical difference in 180 s and 120 s. CONCLUSIONS: Half-dose [68Ga]Ga-FAPI-04 in total-body PET/CT imaging can shorten the acquisition time to 120 s with acceptable subjective image quality and 100% tumor detection rate. Total-body PET/CT imaging with a half-dose [68Ga]Ga-FAPI-04 and reduced acquisition time can be used in radiation-sensitive and poor tolerant to prolong horizontal positioning and waiting time populations such as children and gravidas.


Assuntos
Neoplasias , Quinolinas , Criança , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos de Viabilidade , Radioisótopos de Gálio , Neoplasias/diagnóstico por imagem , Fluordesoxiglucose F18
14.
Eur J Nucl Med Mol Imaging ; 50(3): 951-956, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36136102

RESUMO

PURPOSE: Performing 2-[18F]FDG PET/CT in addition to a PSMA-ligand PET/CT can assist in the detection of lesions with low PSMA expression and may help in prognostication and identification of patients who likely benefit from PSMA-radioligand therapy (PSMA-RLT). However, the cost and time needed for a separate PET/CT examination might hinder its routine implementation. In this communication, we present our initial experiences with additional low-dose 2-[18F]FDG PET/CT as part of a dual-tracer and same-day imaging protocol which exploits the higher sensitivity exhibited by long-axial field-of-view (LAFOV) and total-body PET/CT systems and demonstrates its feasibility. METHODS: Fourteen patients referred for evaluation for PSMA-RLT received [68 Ga]Ga-PSMA-11 PET/CT at 1 h p.i. with a standard activity of 150 MBq and an additional low-dose 2-[18F]FDG PET/CT with 40 MBq 1 h thereafter using a long-axial field-of-view PET/CT system in a single sitting and as per institutional protocol. Scans were scrutinized by two experienced nuclear medicine physicians for mismatch findings. RESULTS: The combined protocol identified additional lesions with low or absent PSMA-expression but high FDG-avidity in 1/14 (7%) patients. The protocol was easily implemented and well tolerated by all patients. CONCLUSION: Additional low-dose 2-[18F]FDG-PET/CT is feasible as part of a same-day imaging protocol and can help reveal lesions of low PSMA avidity as part of therapy assessment for [177Lu]-PSMA radioligand therapy and demonstrates higher sensitivity compared to [68 Ga]Ga-PSMA-11 PET/CT alone in some patients.


Assuntos
Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos/uso terapêutico , Radioisótopos , Radioisótopos de Gálio
15.
Eur J Nucl Med Mol Imaging ; 50(13): 3890-3896, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37676501

RESUMO

AIM: [18F]FDG PET/CT proved accurate in the diagnostic work-up of large vessel vasculitis (LVV). While a visual interpretation is currently considered adequate, several attempts have been made to integrate it with a semiquantitative evaluation. In this regard, there is the need to validate current or new thresholds for the semiquantitative parameters on long-axial field of view (LAFOV) scanners. METHODS: We retrospectively evaluated 100 patients (50 with LVV and 50 controls) who underwent [18F]FDG LAFOV PET/CT. Semiquantitative parameters (SUVmax and SUVmean) were calculated for large vessels in 3 districts (supra-aortic [SA], thoracic aorta [TA], and infra-aortic [IA]). Values were also normalized to liver activity (SUVmax/L-SUVmax, and SUVmax/L-SUVmean). RESULTS: Of the 50 patients diagnosed with LVV, SA vessels were affected in 38 (76%), TA in 42 (84%) and IA vessels in 26 (52%). To-liver normalized values had higher diagnostic accuracy than non-normalized values (AUC always ≥ 0.90 vs. 0.74-0.89). For the SA vessels, best thresholds were 0.66 for SUVmax/L-SUVmax and 0.88 for SUVmax/L-SUVmean; for the TA, 1.0 for SUVmax/L-SUVmax and 1.30 for SUVmax/L-SUVmean; finally, for IA vessels, the best threshold was 0.83 for SUVmax/L-SUVmax and 1.11 for SUVmax/L-SUVmean. CONCLUSION: LAFOV [18F]FDG-PET/CT is accurate in the diagnostic workup of LVV, but different threshold in semi-quantitative parameters than reported in literature for standard scanners should be considered.


Assuntos
Fluordesoxiglucose F18 , Vasculite , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Estudos Retrospectivos , Vasculite/diagnóstico por imagem
16.
Eur J Nucl Med Mol Imaging ; 50(12): 3558-3571, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37466650

RESUMO

PURPOSE: Long axial field-of-view (LAFOV) systems have a much higher sensitivity than standard axial field-of-view (SAFOV) PET systems for imaging the torso or full body, which allows faster and/or lower dose imaging. Despite its very high sensitivity, current total-body PET (TB-PET) throughput is limited by patient handling (positioning on the bed) and often a shortage of available personnel. This factor, combined with high system costs, makes it hard to justify the implementation of these systems for many academic and nearly all routine nuclear medicine departments. We, therefore, propose a novel, cost-effective, dual flat panel TB-PET system for patients in upright standing positions to avoid the time-consuming positioning on a PET-CT table; the walk-through (WT) TB-PET. We describe a patient-centered, flat panel PET design that offers very efficient patient throughput and uses monolithic detectors (with BGO or LYSO) with depth-of-interaction (DOI) capabilities and high intrinsic spatial resolution. We compare system sensitivity, component costs, and patient throughput of the proposed WT-TB-PET to a SAFOV (= 26 cm) and a LAFOV (= 106 cm) LSO PET systems. METHODS: Patient width, height (= top head to start of thighs) and depth (= distance from the bed to front of patient) were derived from 40 randomly selected PET-CT scans to define the design dimensions of the WT-TB-PET. We compare this new PET system to the commercially available Siemens Biograph Vision 600 (SAFOV) and Siemens Quadra (LAFOV) PET-CT in terms of component costs, system sensitivity, and patient throughput. System cost comparison was based on estimating the cost of the two main components in the PET system (Silicon Photomultipliers (SiPMs) and scintillators). Sensitivity values were determined using Gate Monte Carlo simulations. Patient throughput times (including CT and scout scan, patient positioning on bed and transfer) were recorded for 1 day on a Siemens Vision 600 PET. These timing values were then used to estimate the expected patient throughput (assuming an equal patient radiotracer injected activity to patients and considering differences in system sensitivity and time-of-flight information) for WT-TB-PET, SAFOV and LAFOV PET. RESULTS: The WT-TB-PET is composed of two flat panels; each is 70 cm wide and 106 cm high, with a 50-cm gap between both panels. These design dimensions were justified by the patient sizes measured from the 40 random PET-CT scans. Each panel consists of 14 × 20 monolithic BGO detector blocks that are 50 × 50 × 16 mm in size and are coupled to a readout with 6 × 6 mm SiPMs arrays. For the WT-TB-PET, the detector surface is reduced by a factor of 1.9 and the scintillator volume by a factor of 2.2 compared to LAFOV PET systems, while demonstrating comparable sensitivity and much better uniform spatial resolution (< 2 mm in all directions over the FOV). The estimated component cost for the WT-TB-PET is 3.3 × lower than that of a 106 cm LAFOV system and only 20% higher than the PET component costs of a SAFOV. The estimated maximum number of patients scanned on a standard 8-h working day increases from 28 (for SAFOV) to 53-60 (for LAFOV in limited/full acceptance) to 87 (for the WT-TB-PET). By scanning faster (more patients), the amount of ordered activity per patient can be reduced drastically: the WT-TB-PET requires 66% less ordered activity per patient than a SAFOV. CONCLUSIONS: We propose a monolithic BGO or LYSO-based WT-TB-PET system with DOI measurements that departs from the classical patient positioning on a table and allows patients to stand upright between two flat panels. The WT-TB-PET system provides a solution to achieve a much lower cost TB-PET approaching the cost of a SAFOV system. High patient throughput is increased by fast patient positioning between two vertical flat panel detectors of high sensitivity. High spatial resolution (< 2 mm) uniform over the FOV is obtained by using DOI-capable monolithic scintillators.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Humanos , Tomografia por Emissão de Pósitrons/métodos , Método de Monte Carlo , Assistência Centrada no Paciente
17.
Eur J Nucl Med Mol Imaging ; 50(13): 4096-4106, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37578502

RESUMO

PURPOSE: The purpose of this study was to assess whether total-body [68 Ga]Ga-PSMA-11 PET/CT could improve the detection rate compared with conventional [68 Ga]Ga-PSMA-11 PET/CT in patients with biochemical recurrent prostate cancer. METHODS: Two hundred biochemical recurrent prostate cancer patients with similar clinicopathological characteristics were included, of whom 100 patients underwent early total-body [68 Ga]Ga-PSMA-11 PET/CT and diuretic-delayed total-body [68 Ga]Ga-PSMA-11 PET/CT, and the other 100 patients received early conventional [68 Ga]Ga-PSMA-11 PET/CT and diuretic-delayed conventional [68 Ga]Ga-PSMA-11 PET/CT. The detection rates of total-body [68 Ga]Ga-PSMA-11 PET/CT and conventional [68 Ga]Ga-PSMA-11 PET/CT were compared using a chi-square test and stratified analysis. The image quality of total-body [68 Ga]Ga-PSMA PET/CT and conventional [68 Ga]Ga-PSMA-11 PET/CT was compared based on subjective scoring and objective parameters. Subjective scoring was conducted from background noise and lesion prominence using a 5-point scale. Objective parameters were evaluated by SUVmax, SUVmean, the standard deviation (SD) of SUV, and the signal-to-noise ratio (SNR) of liver and gluteus maximus. The SUVmax of the recurrent lesions was also measured. RESULTS: The liver SD of the total-body [68 Ga]Ga-PSMA-11 PET/CT was significantly lower than that of conventional [68 Ga]Ga-PSMA-11 PET/CT, the SNR was significantly higher than that of conventional [68 Ga]Ga-PSMA-11 PET/CT, and the subjective evaluation was significantly better than that of conventional [68 Ga]Ga-PSMA-11 PET/CT. The detection rate of total-body [68 Ga]Ga-PSMA PET/CT for biochemical recurrence of prostate cancer was significantly higher than that of conventional [68 Ga]Ga-PSMA-11 PET/CT (91.0% vs. 74.0%, P = 0.003). Total-body [68 Ga]Ga-PSMA-11 PET/CT had better detection efficiency for patients with a Gleason score ≤ 8 or PSA ≤ 2 ng/ml. The advantages of diuretic-delayed total-body [68 Ga]Ga-PSMA-11 PET/CT were more obvious. CONCLUSION: Total-body [68 Ga]Ga-PSMA-11 PET/CT could significantly improve the detection rate compared with conventional [68 Ga]Ga-PSMA-11 PET/CT in patients with biochemical recurrent prostate cancer.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata , Masculino , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Isótopos de Gálio , Radioisótopos de Gálio , Recidiva Local de Neoplasia/diagnóstico por imagem , Oligopeptídeos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Diuréticos , Ácido Edético
18.
Eur J Nucl Med Mol Imaging ; 50(11): 3400-3413, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37310427

RESUMO

PURPOSE: This study aimed to investigate the predictive value of metabolic features in response to induction immuno-chemotherapy in patients with locally advanced non-small cell cancer (LA-NSCLC), using ultra-high sensitivity dynamic total body [18F]FDG PET/CT. METHODS: The study analyzed LA-NSCLC patients who received two cycles of induction immuno-chemotherapy and underwent a 60-min dynamic total body [18F]FDG PET/CT scan before treatment. The primary tumors (PTs) were manually delineated, and their metabolic features, including the Patlak-Ki, Patlak-Intercept, maximum SUV (SUVmax), metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were evaluated. The overall response rate (ORR) to induction immuno-chemotherapy was evaluated according to RECIST 1.1 criteria. The Patlak-Ki of PTs was calculated from the 20-60 min frames using the Patlak graphical analysis. The best feature was selected using Laplacian feature importance scores, and an unsupervised K-Means method was applied to cluster patients. ROC curve was used to examine the effect of selected metabolic feature in predicting tumor response to treatment. The targeted next generation sequencing on 1021 genes was conducted. The expressions of CD68, CD86, CD163, CD206, CD33, CD34, Ki67 and VEGFA were assayed through immunohistochemistry. The independent samples t test and the Mann-Whitney U test were applied in the intergroup comparison. Statistical significance was considered at P < 0.05. RESULTS: Thirty-seven LA-NSCLC patients were analyzed between September 2020 and November 2021. All patients received two cycles of induction chemotherapy combined with Nivolumab/ Camrelizumab. The Laplacian scores showed that the Patlak-Ki of PTs had the highest importance for patient clustering, and the unsupervised K-Means derived decision boundary of Patlak-Ki was 2.779 ml/min/100 g. Patients were categorized into two groups based on their Patlak-Ki values: high FDG Patlak-Ki (H-FDG-Ki, Patlak-Ki > 2.779 ml/min/100 g) group (n = 23) and low FDG Patlak-Ki (L-FDG-Ki, Patlak-Ki ≤ 2.779 ml/min/100 g) group (n = 14). The ORR to induction immuno-chemotherapy was 67.6% (25/37) in the whole cohort, with 87% (20/23) in H-FDG-Ki group and 35.7% (5/14) in L-FDG-Ki group (P = 0.001). The sensitivity and specificity of Patlak-Ki in predicting the treatment response were 80% and 75%, respectively [AUC = 0.775 (95%CI 0.605-0.945)]. The expression of CD3+/CD8+ T cells and CD86+/CD163+/CD206+ macrophages were higher in the H-FDG-Ki group, while Ki67, CD33+ myeloid cells, CD34+ micro-vessel density (MVD) and tumor mutation burden (TMB) were comparable between the two groups. CONCLUSIONS: The total body [18F]FDG PET/CT scanner performed a dynamic acquisition of the entire body and clustered LA-NSCLC patients into H-FDG-Ki and L-FDG-Ki groups based on the Patlak-Ki. Patients with H-FDG-Ki demonstrated better response to induction immuno-chemotherapy and higher levels of immune cell infiltration in the PTs compared to those with L-FDG-Ki. Further studies with a larger patient cohort are required to validate these findings.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Fluordesoxiglucose F18 , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Antígeno Ki-67/metabolismo , Quimioterapia de Indução , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Carga Tumoral
19.
Eur Radiol ; 33(1): 615-626, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35751696

RESUMO

BACKGROUND: [18F]FDG imaging on total-body PET/CT (TB PET/CT) scanners, with improved sensitivity, offers new potentials for cancer diagnosis, staging, and radiation treatment planning. This consensus provides the protocols for clinical practices with a goal of paving the way for future studies with the total-body scanners in oncological [18F]FDG TB PET/CT imaging. METHODS: The consensus was summarized based on the published guidelines and peer-reviewed articles of TB PET/CT in the literature, along with the opinions of the experts from major research institutions with a total of 40,000 cases performed on the TB PET/CT scanners. RESULTS: This consensus describes the protocols for routine and dynamic [18F]FDG TB PET/CT scanning focusing on the reduction of imaging acquisition time and FDG injected activity, which may serve as a reference for research and clinic oncological PET/CT studies. CONCLUSION: This expert consensus focuses on the reduction of acquisition time and FDG injected activity with a TB PET/CT scanner, which may improve the patient throughput or reduce the radiation exposure in daily clinical oncologic imaging. KEY POINTS: • [18F]FDG-imaging protocols for oncological total-body PET/CT with reduced acquisition time or with different FDG activity levels have been summarized from multicenter studies. • Total-body PET/CT provides better image quality and improved diagnostic insights. • Clinical workflow and patient management have been improved.


Assuntos
Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Consenso , Tomografia por Emissão de Pósitrons/métodos , Tomógrafos Computadorizados , Compostos Radiofarmacêuticos/farmacologia
20.
BMC Med Imaging ; 23(1): 9, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627570

RESUMO

BACKGROUND: Total-body positron emission tomography/computed tomography (PET/CT) scanners are characterized by higher signal collection efficiency and greater spatial resolution compared to conventional scanners, allowing for delayed imaging and improved image quality. These advantages may also lead to better detection of physiological processes that diagnostic imaging professionals should be aware of. The gallbladder (GB) is not usually visualized as an 18F-2-fluorodeoxyglucose (18F-FDG)-avid structure in routine clinical PET/CT studies; however, with the total-body PET/CT, we have been increasingly visualizing GB activity without it being involved in an inflammatory or neoplastic process. The aim of this study was to report visualization rates and characteristics of GB 18F-FDG uptake observed in both healthy and oncological subjects scanned on a total-body PET/CT system. MATERIALS AND METHODS: Scans from 73 participants (48 healthy and 25 with newly diagnosed lymphoma) who underwent 18F-FDG total-body PET/CT were retrospectively reviewed. Subjects were scanned at multiple timepoints up to 3 h post-injection. Gallbladder 18F-FDG activity was graded using liver uptake as a reference, and the pattern was qualified as present in the wall, lumen, or both. Participants' characteristics, such as age, sex, body-mass index, blood glucose, and other clinical parameters, were collected to assess for any significant correlation with GB 18F-FDG uptake. RESULTS: All 73 subjects showed GB uptake at one or more imaging timepoints. An increase in uptake intensity overtime was observed up until the 180-min scan, and the visualization rate of GB 18F-FDG uptake was 100% in the 120- and 180-min post-injection scans. GB wall uptake was detected in a significant number of patients (44/73, 60%), especially at early timepoint scans, whereas luminal activity was detected in 71/73 (97%) subjects, especially at later timepoint scans. No significant correlation was found between GB uptake intensity/pattern and subjects' characteristics. CONCLUSION: The consistent observation of GB 18F-FDG uptake recorded in this study in healthy participants and subjects with a new oncological diagnosis indicates that this is a normal physiologic finding rather than representing an exception.


Assuntos
Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Vesícula Biliar/diagnóstico por imagem , Compostos Radiofarmacêuticos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Tomografia por Emissão de Pósitrons/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa